nalgebra/src/geometry/rotation_ops.rs

163 lines
5.4 KiB
Rust
Raw Normal View History

/*
*
* This provides the following operator overladings:
*
* Index<(usize, usize)>
*
* RotationBase × RotationBase
* RotationBase ÷ RotationBase
* RotationBase × Matrix
* Matrix × RotationBase
* Matrix ÷ RotationBase
* RotationBase × PointBase
*
*
* RotationBase ×= RotationBase
* Matrix ×= RotationBase
*/
use std::ops::{Mul, MulAssign, Div, DivAssign, Index};
use num::Zero;
use alga::general::{ClosedMul, ClosedAdd};
use core::{Scalar, Matrix, MatrixMul};
use core::dimension::{Dim, DimName, U1};
use core::constraint::{ShapeConstraint, AreMultipliable};
use core::storage::{OwnedStorage, Storage};
use core::allocator::{OwnedAllocator, Allocator};
use geometry::{PointBase, PointMul, RotationBase, OwnedRotation};
impl<N: Scalar, D: DimName, S: Storage<N, D, D>> Index<(usize, usize)> for RotationBase<N, D, S> {
type Output = N;
#[inline]
fn index(&self, row_col: (usize, usize)) -> &N {
self.matrix().index(row_col)
}
}
// RotationBase × RotationBase
md_impl_all!(
Mul, mul;
(D, D), (D, D) for D: DimName;
self: RotationBase<N, D, SA>, right: RotationBase<N, D, SB>, Output = OwnedRotation<N, D, SA::Alloc>;
[val val] => RotationBase::from_matrix_unchecked(self.unwrap() * right.unwrap());
[ref val] => RotationBase::from_matrix_unchecked(self.matrix() * right.unwrap());
[val ref] => RotationBase::from_matrix_unchecked(self.unwrap() * right.matrix());
[ref ref] => RotationBase::from_matrix_unchecked(self.matrix() * right.matrix());
);
// RotationBase ÷ RotationBase
// FIXME: instead of calling inverse explicitely, could we just add a `mul_tr` or `mul_inv` method?
md_impl_all!(
Div, div;
(D, D), (D, D) for D: DimName;
self: RotationBase<N, D, SA>, right: RotationBase<N, D, SB>, Output = OwnedRotation<N, D, SA::Alloc>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
);
// RotationBase × Matrix
md_impl_all!(
Mul, mul;
(D1, D1), (R2, C2) for D1: DimName, R2: Dim, C2: Dim
where SA::Alloc: Allocator<N, D1, C2>
where ShapeConstraint: AreMultipliable<D1, D1, R2, C2>;
self: RotationBase<N, D1, SA>, right: Matrix<N, R2, C2, SB>, Output = MatrixMul<N, D1, D1, C2 , SA>;
[val val] => self.unwrap() * right;
[ref val] => self.matrix() * right;
[val ref] => self.unwrap() * right;
[ref ref] => self.matrix() * right;
);
// Matrix × RotationBase
md_impl_all!(
Mul, mul;
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName
where SA::Alloc: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: RotationBase<N, D2, SB>, Output = MatrixMul<N, R1, C1, D2, SA>;
[val val] => self * right.unwrap();
[ref val] => self * right.unwrap();
[val ref] => self * right.matrix();
[ref ref] => self * right.matrix();
);
// Matrix ÷ RotationBase
md_impl_all!(
Div, div;
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName
where SA::Alloc: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: RotationBase<N, D2, SB>, Output = MatrixMul<N, R1, C1, D2, SA>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
);
// RotationBase × PointBase
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
// behavior?
md_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName
where SA::Alloc: Allocator<N, D, U1>
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
self: RotationBase<N, D, SA>, right: PointBase<N, D, SB>, Output = PointMul<N, D, D, SA>;
[val val] => self.unwrap() * right;
[ref val] => self.matrix() * right;
[val ref] => self.unwrap() * right;
[ref ref] => self.matrix() * right;
);
// RotationBase *= RotationBase
// FIXME: try not to call `inverse()` explicitly.
md_assign_impl_all!(
MulAssign, mul_assign;
(D, D), (D, D) for D: DimName;
self: RotationBase<N, D, SA>, right: RotationBase<N, D, SB>;
[val] => unsafe { self.matrix_mut().mul_assign(right.unwrap()) };
[ref] => unsafe { self.matrix_mut().mul_assign(right.matrix()) };
);
md_assign_impl_all!(
DivAssign, div_assign;
(D, D), (D, D) for D: DimName;
self: RotationBase<N, D, SA>, right: RotationBase<N, D, SB>;
[val] => unsafe { self.matrix_mut().mul_assign(right.inverse().unwrap()) };
[ref] => unsafe { self.matrix_mut().mul_assign(right.inverse().matrix()) };
);
// Matrix *= RotationBase
// FIXME: try not to call `inverse()` explicitly.
// FIXME: this shares the same limitations as for the current impl. of MulAssign for matrices.
// (In particular the number of matrix column must be equal to the number of rotation columns,
// i.e., equal to the rotation dimension.
md_assign_impl_all!(
MulAssign, mul_assign;
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
self: Matrix<N, R1, C1, SA>, right: RotationBase<N, C1, SB>;
[val] => self.mul_assign(right.unwrap());
[ref] => self.mul_assign(right.matrix());
);
md_assign_impl_all!(
DivAssign, div_assign;
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
self: Matrix<N, R1, C1, SA>, right: RotationBase<N, C1, SB>;
[val] => self.mul_assign(right.inverse().unwrap());
[ref] => self.mul_assign(right.inverse().matrix());
);