forked from M-Labs/nalgebra
223 lines
7.3 KiB
Rust
223 lines
7.3 KiB
Rust
|
#[cfg(feature="arbitrary")]
|
||
|
use quickcheck::{Arbitrary, Gen};
|
||
|
use rand::{Rand, Rng};
|
||
|
|
||
|
use alga::general::Real;
|
||
|
|
||
|
use core::{Scalar, SquareMatrix, OwnedSquareMatrix, ColumnVector, OwnedColumnVector, MatrixArray};
|
||
|
use core::dimension::{U1, U3, U4};
|
||
|
use core::storage::{OwnedStorage, Storage, StorageMut};
|
||
|
use core::allocator::OwnedAllocator;
|
||
|
use core::helper;
|
||
|
|
||
|
use geometry::{PointBase, OwnedPoint};
|
||
|
|
||
|
/// A 3D perspective projection stored as an homogeneous 4x4 matrix.
|
||
|
#[derive(Debug, Clone, Copy)] // FIXME: Hash
|
||
|
pub struct PerspectiveBase<N: Scalar, S: Storage<N, U4, U4>> {
|
||
|
matrix: SquareMatrix<N, U4, S>
|
||
|
}
|
||
|
|
||
|
/// A 3D perspective projection stored as a static homogeneous 4x4 matrix.
|
||
|
pub type Perspective3<N> = PerspectiveBase<N, MatrixArray<N, U4, U4>>;
|
||
|
|
||
|
impl<N, S> Eq for PerspectiveBase<N, S>
|
||
|
where N: Scalar + Eq,
|
||
|
S: Storage<N, U4, U4> { }
|
||
|
|
||
|
impl<N, S> PartialEq for PerspectiveBase<N, S>
|
||
|
where N: Scalar,
|
||
|
S: Storage<N, U4, U4> {
|
||
|
#[inline]
|
||
|
fn eq(&self, right: &Self) -> bool {
|
||
|
self.matrix == right.matrix
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N, S> PerspectiveBase<N, S>
|
||
|
where N: Real,
|
||
|
S: OwnedStorage<N, U4, U4>,
|
||
|
S::Alloc: OwnedAllocator<N, U4, U4, S> {
|
||
|
/// Creates a new perspective matrix from the aspect ratio, y field of view, and near/far planes.
|
||
|
pub fn new(aspect: N, fovy: N, znear: N, zfar: N) -> Self {
|
||
|
assert!(!relative_eq!(zfar - znear, N::zero()), "The near-plane and far-plane must not be superimposed.");
|
||
|
assert!(!relative_eq!(aspect, N::zero()), "The apsect ratio must not be zero.");
|
||
|
|
||
|
let matrix = SquareMatrix::<N, U4, S>::identity();
|
||
|
let mut res = PerspectiveBase::from_matrix_unchecked(matrix);
|
||
|
|
||
|
res.set_fovy(fovy);
|
||
|
res.set_aspect(aspect);
|
||
|
res.set_znear_and_zfar(znear, zfar);
|
||
|
|
||
|
res.matrix[(3, 3)] = N::zero();
|
||
|
res.matrix[(3, 2)] = -N::one();
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Wraps the given matrix to interpret it as a 3D perspective matrix.
|
||
|
///
|
||
|
/// It is not checked whether or not the given matrix actually represents an orthographic
|
||
|
/// projection.
|
||
|
#[inline]
|
||
|
pub fn from_matrix_unchecked(matrix: SquareMatrix<N, U4, S>) -> Self {
|
||
|
PerspectiveBase {
|
||
|
matrix: matrix
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N, S> PerspectiveBase<N, S>
|
||
|
where N: Real,
|
||
|
S: Storage<N, U4, U4> {
|
||
|
|
||
|
/// A reference to the underlying homogeneous transformation matrix.
|
||
|
#[inline]
|
||
|
pub fn as_matrix(&self) -> &SquareMatrix<N, U4, S> {
|
||
|
&self.matrix
|
||
|
}
|
||
|
|
||
|
/// Retrieves the underlying homogeneous matrix.
|
||
|
#[inline]
|
||
|
pub fn unwrap(self) -> SquareMatrix<N, U4, S> {
|
||
|
self.matrix
|
||
|
}
|
||
|
|
||
|
/// Computes the corresponding homogeneous matrix.
|
||
|
#[inline]
|
||
|
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, U4, S::Alloc> {
|
||
|
self.matrix.clone_owned()
|
||
|
}
|
||
|
|
||
|
/// Gets the `width / height` aspect ratio of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn aspect(&self) -> N {
|
||
|
self.matrix[(1, 1)] / self.matrix[(0, 0)]
|
||
|
}
|
||
|
|
||
|
/// Gets the y field of view of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn fovy(&self) -> N {
|
||
|
(N::one() / self.matrix[(1, 1)]).atan() * ::convert(2.0)
|
||
|
}
|
||
|
|
||
|
/// Gets the near plane offset of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn znear(&self) -> N {
|
||
|
let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());
|
||
|
|
||
|
self.matrix[(2, 3)] / (ratio * ::convert(2.0)) - self.matrix[(2, 3)] / ::convert(2.0)
|
||
|
}
|
||
|
|
||
|
/// Gets the far plane offset of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn zfar(&self) -> N {
|
||
|
let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());
|
||
|
|
||
|
(self.matrix[(2, 3)] - ratio * self.matrix[(2, 3)]) / ::convert(2.0)
|
||
|
}
|
||
|
|
||
|
// FIXME: add a method to retrieve znear and zfar simultaneously?
|
||
|
|
||
|
|
||
|
|
||
|
// FIXME: when we get specialization, specialize the Mul impl instead.
|
||
|
/// Projects a point. Faster than matrix multiplication.
|
||
|
#[inline]
|
||
|
pub fn project_point<SB>(&self, p: &PointBase<N, U3, SB>) -> OwnedPoint<N, U3, SB::Alloc>
|
||
|
where SB: Storage<N, U3, U1> {
|
||
|
|
||
|
let inverse_denom = -N::one() / p[2];
|
||
|
OwnedPoint::<N, U3, SB::Alloc>::new(
|
||
|
self.matrix[(0, 0)] * p[0] * inverse_denom,
|
||
|
self.matrix[(1, 1)] * p[1] * inverse_denom,
|
||
|
(self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)]) * inverse_denom
|
||
|
)
|
||
|
}
|
||
|
|
||
|
// FIXME: when we get specialization, specialize the Mul impl instead.
|
||
|
/// Projects a vector. Faster than matrix multiplication.
|
||
|
#[inline]
|
||
|
pub fn project_vector<SB>(&self, p: &ColumnVector<N, U3, SB>) -> OwnedColumnVector<N, U3, SB::Alloc>
|
||
|
where SB: Storage<N, U3, U1> {
|
||
|
|
||
|
let inverse_denom = -N::one() / p[2];
|
||
|
OwnedColumnVector::<N, U3, SB::Alloc>::new(
|
||
|
self.matrix[(0, 0)] * p[0] * inverse_denom,
|
||
|
self.matrix[(1, 1)] * p[1] * inverse_denom,
|
||
|
self.matrix[(2, 2)]
|
||
|
)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
impl<N, S> PerspectiveBase<N, S>
|
||
|
where N: Real,
|
||
|
S: StorageMut<N, U4, U4> {
|
||
|
/// Updates this perspective matrix with a new `width / height` aspect ratio of the view
|
||
|
/// frustrum.
|
||
|
#[inline]
|
||
|
pub fn set_aspect(&mut self, aspect: N) {
|
||
|
assert!(!relative_eq!(aspect, N::zero()), "The aspect ratio must not be zero.");
|
||
|
self.matrix[(0, 0)] = self.matrix[(1, 1)] / aspect;
|
||
|
}
|
||
|
|
||
|
/// Updates this perspective with a new y field of view of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn set_fovy(&mut self, fovy: N) {
|
||
|
let old_m22 = self.matrix[(1, 1)];
|
||
|
self.matrix[(1, 1)] = N::one() / (fovy / ::convert(2.0)).tan();
|
||
|
self.matrix[(0, 0)] = self.matrix[(0, 0)] * (self.matrix[(1, 1)] / old_m22);
|
||
|
}
|
||
|
|
||
|
/// Updates this perspective matrix with a new near plane offset of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn set_znear(&mut self, znear: N) {
|
||
|
let zfar = self.zfar();
|
||
|
self.set_znear_and_zfar(znear, zfar);
|
||
|
}
|
||
|
|
||
|
/// Updates this perspective matrix with a new far plane offset of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn set_zfar(&mut self, zfar: N) {
|
||
|
let znear = self.znear();
|
||
|
self.set_znear_and_zfar(znear, zfar);
|
||
|
}
|
||
|
|
||
|
/// Updates this perspective matrix with new near and far plane offsets of the view frustrum.
|
||
|
#[inline]
|
||
|
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
|
||
|
self.matrix[(2, 2)] = (zfar + znear) / (znear - zfar);
|
||
|
self.matrix[(2, 3)] = zfar * znear * ::convert(2.0) / (znear - zfar);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N, S> Rand for PerspectiveBase<N, S>
|
||
|
where N: Real + Rand,
|
||
|
S: OwnedStorage<N, U4, U4>,
|
||
|
S::Alloc: OwnedAllocator<N, U4, U4, S> {
|
||
|
fn rand<R: Rng>(r: &mut R) -> Self {
|
||
|
let znear = Rand::rand(r);
|
||
|
let zfar = helper::reject_rand(r, |&x: &N| !(x - znear).is_zero());
|
||
|
let aspect = helper::reject_rand(r, |&x: &N| !x.is_zero());
|
||
|
|
||
|
Self::new(aspect, Rand::rand(r), znear, zfar)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[cfg(feature="arbitrary")]
|
||
|
impl<N, S> Arbitrary for PerspectiveBase<N, S>
|
||
|
where N: Real + Arbitrary,
|
||
|
S: OwnedStorage<N, U4, U4> + Send,
|
||
|
S::Alloc: OwnedAllocator<N, U4, U4, S> {
|
||
|
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
||
|
let znear = Arbitrary::arbitrary(g);
|
||
|
let zfar = helper::reject(g, |&x: &N| !(x - znear).is_zero());
|
||
|
let aspect = helper::reject(g, |&x: &N| !x.is_zero());
|
||
|
|
||
|
Self::new(aspect, Arbitrary::arbitrary(g), znear, zfar)
|
||
|
}
|
||
|
}
|