nalgebra/src/geometry/similarity.rs

298 lines
9.8 KiB
Rust
Raw Normal View History

use std::fmt;
use approx::ApproxEq;
use alga::general::{ClosedMul, Real, SubsetOf};
use alga::linear::Rotation;
use core::{Scalar, OwnedSquareMatrix};
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
use core::storage::{Storage, OwnedStorage};
use core::allocator::{Allocator, OwnedAllocator};
use geometry::{PointBase, TranslationBase, IsometryBase};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
2017-02-13 01:17:09 +08:00
/// A similarity that uses a data storage deduced from the allocator `A`.
pub type OwnedSimilarityBase<N, D, A, R> =
SimilarityBase<N, D, <A as Allocator<N, D, U1>>::Buffer, R>;
/// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
#[repr(C)]
#[derive(Hash, Debug, Clone, Copy)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct SimilarityBase<N: Scalar, D: DimName, S, R> {
2017-02-13 01:17:09 +08:00
/// The part of this similarity that does not include the scaling factor.
pub isometry: IsometryBase<N, D, S, R>,
scaling: N
}
#[cfg(feature = "abomonation-serialize")]
impl<N: Scalar, D: DimName, S, R> Abomonation for SimilarityBase<N, D, S, R>
where IsometryBase<N, D, S, R>: Abomonation
{
unsafe fn entomb(&self, writer: &mut Vec<u8>) {
self.isometry.entomb(writer)
}
unsafe fn embalm(&mut self) {
self.isometry.embalm()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.isometry.exhume(bytes)
}
}
impl<N, D: DimName, S, R> SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>>,
S::Alloc: OwnedAllocator<N, D, U1, S> {
/// Creates a new similarity from its rotational and translational parts.
#[inline]
pub fn from_parts(translation: TranslationBase<N, D, S>, rotation: R, scaling: N) -> SimilarityBase<N, D, S, R> {
SimilarityBase::from_isometry(IsometryBase::from_parts(translation, rotation), scaling)
}
/// Creates a new similarity from its rotational and translational parts.
#[inline]
pub fn from_isometry(isometry: IsometryBase<N, D, S, R>, scaling: N) -> SimilarityBase<N, D, S, R> {
assert!(!relative_eq!(scaling, N::zero()), "The scaling factor must not be zero.");
SimilarityBase {
isometry: isometry,
scaling: scaling
}
}
/// Creates a new similarity that applies only a scaling factor.
#[inline]
pub fn from_scaling(scaling: N) -> SimilarityBase<N, D, S, R> {
Self::from_isometry(IsometryBase::identity(), scaling)
}
/// Inverts `self`.
#[inline]
pub fn inverse(&self) -> SimilarityBase<N, D, S, R> {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self` in-place.
#[inline]
pub fn inverse_mut(&mut self) {
self.scaling = N::one() / self.scaling;
self.isometry.inverse_mut();
self.isometry.translation.vector *= self.scaling;
}
/// The scaling factor of this similarity transformation.
#[inline]
pub fn set_scaling(&mut self, scaling: N) {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
self.scaling = scaling;
}
/// The similarity transformation that applies a scaling factor `scaling` before `self`.
#[inline]
pub fn prepend_scaling(&self, scaling: N) -> Self {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
Self::from_isometry(self.isometry.clone(), self.scaling * scaling)
}
/// The similarity transformation that applies a scaling factor `scaling` after `self`.
#[inline]
pub fn append_scaling(&self, scaling: N) -> Self {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
Self::from_parts(
TranslationBase::from_vector(&self.isometry.translation.vector * scaling),
self.isometry.rotation.clone(),
self.scaling * scaling)
}
/// Sets `self` to the similarity transformation that applies a scaling factor `scaling` before `self`.
#[inline]
pub fn prepend_scaling_mut(&mut self, scaling: N) {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
self.scaling *= scaling
}
/// Sets `self` to the similarity transformation that applies a scaling factor `scaling` after `self`.
#[inline]
pub fn append_scaling_mut(&mut self, scaling: N) {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
self.isometry.translation.vector *= scaling;
self.scaling *= scaling;
}
/// Appends to `self` the given translation in-place.
#[inline]
pub fn append_translation_mut(&mut self, t: &TranslationBase<N, D, S>) {
self.isometry.append_translation_mut(t)
}
/// Appends to `self` the given rotation in-place.
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.isometry.append_rotation_mut(r)
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &PointBase<N, D, S>) {
self.isometry.append_rotation_wrt_point_mut(r, p)
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.isometry.append_rotation_wrt_center_mut(r)
}
}
// NOTE: we don't require `R: Rotation<...>` here becaus this is not useful for the implementation
// and makes it harde to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the private scaling factor).
impl<N, D: DimName, S, R> SimilarityBase<N, D, S, R>
where N: Scalar + ClosedMul,
S: Storage<N, D, U1> {
/// Converts this similarity into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>
where D: DimNameAdd<U1>,
R: SubsetOf<OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>>,
S::Alloc: Allocator<N, D, D> +
Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
let mut res = self.isometry.to_homogeneous();
for e in res.fixed_slice_mut::<D, D>(0, 0).iter_mut() {
*e *= self.scaling
}
res
}
2017-02-13 01:17:09 +08:00
/// The scaling factor of this similarity transformation.
#[inline]
pub fn scaling(&self) -> N {
self.scaling
}
}
impl<N, D: DimName, S, R> Eq for SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + Eq,
S::Alloc: OwnedAllocator<N, D, U1, S> {
}
impl<N, D: DimName, S, R> PartialEq for SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + PartialEq,
S::Alloc: OwnedAllocator<N, D, U1, S> {
#[inline]
fn eq(&self, right: &SimilarityBase<N, D, S, R>) -> bool {
self.isometry == right.isometry && self.scaling == right.scaling
}
}
impl<N, D: DimName, S, R> ApproxEq for SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + ApproxEq<Epsilon = N::Epsilon>,
S::Alloc: OwnedAllocator<N, D, U1, S>,
N::Epsilon: Copy {
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.isometry.relative_eq(&other.isometry, epsilon, max_relative) &&
self.scaling.relative_eq(&other.scaling, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.isometry.ulps_eq(&other.isometry, epsilon, max_ulps) &&
self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N, D: DimName, S, R> fmt::Display for SimilarityBase<N, D, S, R>
where N: Real + fmt::Display,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + fmt::Display,
S::Alloc: OwnedAllocator<N, D, U1, S> + Allocator<usize, D, U1> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "SimilarityBase {{"));
try!(write!(f, "{:.*}", precision, self.isometry));
try!(write!(f, "Scaling: {:.*}", precision, self.scaling));
writeln!(f, "}}")
}
}
/*
// /*
// *
// * ToHomogeneous
// *
// */
// impl<N: Real> ToHomogeneous<$homogeneous<N>> for $t<N> {
// #[inline]
// fn to_homogeneous(&self) -> $homogeneous<N> {
// self.vector.to_homogeneous()
// }
// }
// /*
// *
// * Absolute
// *
// */
// impl<N: Absolute> Absolute for $t<N> {
// type AbsoluteValue = $submatrix<N::AbsoluteValue>;
//
// #[inline]
// fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
// Absolute::abs(&m.submatrix)
// }
// }
*/