nalgebra/src/mat_macros.rs

420 lines
9.0 KiB
Rust
Raw Normal View History

2013-07-22 16:26:20 +08:00
#[macro_escape];
macro_rules! mat_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
2013-07-22 16:26:20 +08:00
impl<N> $t<N>
{
#[inline]
pub fn new($comp0: N $(, $compN: N )*) -> $t<N>
{
$t {
$comp0: $comp0
$(, $compN: $compN )*
}
}
}
)
)
macro_rules! mat_cast_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<Nin: NumCast + Clone, Nout: NumCast> MatCast<$t<Nout>> for $t<Nin>
{
#[inline]
pub fn from(m: $t<Nin>) -> $t<Nout>
{ $t::new(NumCast::from(m.$comp0.clone()) $(, NumCast::from(m.$compN.clone()) )*) }
}
)
)
2013-07-22 16:26:20 +08:00
macro_rules! iterable_impl(
($t: ident, $dim: expr) => (
impl<N> Iterable<N> for $t<N>
{
fn iter<'l>(&'l self) -> VecIterator<'l, N>
{ unsafe { cast::transmute::<&'l $t<N>, &'l [N, ..$dim * $dim]>(self).iter() } }
}
)
)
macro_rules! iterable_mut_impl(
($t: ident, $dim: expr) => (
impl<N> IterableMut<N> for $t<N>
{
fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N>
{ unsafe { cast::transmute::<&'l mut $t<N>, &'l mut [N, ..$dim * $dim]>(self).mut_iter() } }
}
)
)
macro_rules! one_impl(
($t: ident, $value0: ident $(, $valueN: ident)* ) => (
impl<N: Clone + One + Zero> One for $t<N>
{
#[inline]
fn one() -> $t<N>
{
let (_0, _1) = (Zero::zero::<N>(), One::one::<N>());
return $t::new($value0.clone() $(, $valueN.clone() )*)
}
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N>
{
#[inline]
fn dim() -> uint
{ $dim }
}
)
)
macro_rules! indexable_impl(
($t: ident, $dim: expr) => (
impl<N: Clone> Indexable<(uint, uint), N> for $t<N>
{
#[inline]
pub fn at(&self, (i, j): (uint, uint)) -> N
{ unsafe { cast::transmute::<&$t<N>, &[N, ..$dim * $dim]>(self)[i * $dim + j].clone() } }
#[inline]
pub fn set(&mut self, (i, j): (uint, uint), val: N)
{ unsafe { cast::transmute::<&mut $t<N>, &mut [N, ..$dim * $dim]>(self)[i * $dim + j] = val } }
#[inline]
pub fn swap(&mut self, (i1, j1): (uint, uint), (i2, j2): (uint, uint))
{
unsafe {
cast::transmute::<&mut $t<N>, &mut [N, ..$dim * $dim]>(self)
.swap(i1 * $dim + j1, i2 * $dim + j2)
}
}
}
)
)
macro_rules! column_impl(
($t: ident, $dim: expr) => (
impl<N: Clone, V: Zero + Iterable<N> + IterableMut<N>> Column<V> for $t<N>
{
fn set_column(&mut self, col: uint, v: V)
{
for v.iter().enumerate().advance |(i, e)|
{
if i == Dim::dim::<$t<N>>()
{ break }
self.set((i, col), e.clone());
}
}
fn column(&self, col: uint) -> V
{
let mut res = Zero::zero::<V>();
for res.mut_iter().enumerate().advance |(i, e)|
{
if i >= Dim::dim::<$t<N>>()
{ break }
*e = self.at((i, col));
}
res
}
}
)
)
macro_rules! mul_impl(
($t: ident, $dim: expr) => (
impl<N: Clone + Ring>
Mul<$t<N>, $t<N>> for $t<N>
{
fn mul(&self, other: &$t<N>) -> $t<N>
{
let mut res: $t<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{
let mut acc = Zero::zero::<N>();
for iterate(0u, $dim) |k|
{ acc = acc + self.at((i, k)) * other.at((k, j)); }
res.set((i, j), acc);
}
}
res
}
}
)
)
macro_rules! rmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Clone + Ring>
RMul<$v<N>> for $t<N>
{
fn rmul(&self, other: &$v<N>) -> $v<N>
{
let mut res : $v<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{
let val = res.at(i) + other.at(j) * self.at((i, j));
res.set(i, val)
}
}
res
}
}
)
)
macro_rules! lmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Clone + Ring>
LMul<$v<N>> for $t<N>
{
fn lmul(&self, other: &$v<N>) -> $v<N>
{
let mut res : $v<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{
let val = res.at(i) + other.at(j) * self.at((j, i));
res.set(i, val)
}
}
res
}
}
)
)
macro_rules! transform_impl(
($t: ident, $v: ident) => (
impl<N: Clone + DivisionRing + Eq>
Transform<$v<N>> for $t<N>
{
#[inline]
fn transform_vec(&self, v: &$v<N>) -> $v<N>
{ self.rmul(v) }
#[inline]
fn inv_transform(&self, v: &$v<N>) -> $v<N>
{
match self.inverse()
{
Some(t) => t.transform_vec(v),
None => fail!("Cannot use inv_transform on a non-inversible matrix.")
}
}
}
)
)
macro_rules! inv_impl(
($t: ident, $dim: expr) => (
impl<N: Clone + Eq + DivisionRing>
Inv for $t<N>
{
#[inline]
fn inverse(&self) -> Option<$t<N>>
{
let mut res : $t<N> = self.clone();
if res.inplace_inverse()
{ Some(res) }
else
{ None }
}
fn inplace_inverse(&mut self) -> bool
{
let mut res: $t<N> = One::one();
let _0N: N = Zero::zero();
// inversion using Gauss-Jordan elimination
for iterate(0u, $dim) |k|
{
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while (n0 != $dim)
{
if self.at((n0, k)) != _0N
{ break; }
n0 = n0 + 1;
}
if n0 == $dim
{ return false }
// swap pivot line
if n0 != k
{
for iterate(0u, $dim) |j|
{
self.swap((n0, j), (k, j));
res.swap((n0, j), (k, j));
}
}
let pivot = self.at((k, k));
for iterate(k, $dim) |j|
{
let selfval = self.at((k, j)) / pivot;
self.set((k, j), selfval);
}
for iterate(0u, $dim) |j|
{
let resval = res.at((k, j)) / pivot;
res.set((k, j), resval);
}
for iterate(0u, $dim) |l|
{
if l != k
{
let normalizer = self.at((l, k));
for iterate(k, $dim) |j|
{
let selfval = self.at((l, j)) - self.at((k, j)) * normalizer;
self.set((l, j), selfval);
}
for iterate(0u, $dim) |j|
{
let resval = res.at((l, j)) - res.at((k, j)) * normalizer;
res.set((l, j), resval);
}
}
}
}
*self = res;
true
}
}
)
)
macro_rules! transpose_impl(
($t: ident, $dim: expr) => (
impl<N: Clone> Transpose for $t<N>
{
#[inline]
fn transposed(&self) -> $t<N>
{
let mut res = self.clone();
res.transpose();
res
}
fn transpose(&mut self)
{
for iterate(1u, $dim) |i|
{
2013-07-23 17:15:20 +08:00
for iterate(0u, i) |j|
2013-07-22 16:26:20 +08:00
{ self.swap((i, j), (j, i)) }
}
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
{
#[inline]
fn approx_epsilon() -> N
{ ApproxEq::approx_epsilon::<N, N>() }
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool
{
let mut zip = self.iter().zip(other.iter());
do zip.all |(a, b)| { a.approx_eq(b) }
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
{
let mut zip = self.iter().zip(other.iter());
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
}
}
)
)
macro_rules! to_homogeneous_impl(
($t: ident, $t2: ident, $dim: expr, $dim2: expr) => (
impl<N: One + Zero + Clone> ToHomogeneous<$t2<N>> for $t<N>
{
fn to_homogeneous(&self) -> $t2<N>
{
let mut res: $t2<N> = One::one();
for iterate(0, $dim) |i|
{
for iterate(0, $dim) |j|
{ res.set((i, j), self.at((i, j))) }
}
res
}
}
)
)
macro_rules! from_homogeneous_impl(
($t: ident, $t2: ident, $dim: expr, $dim2: expr) => (
impl<N: One + Zero + Clone> FromHomogeneous<$t2<N>> for $t<N>
{
fn from_homogeneous(m: &$t2<N>) -> $t<N>
{
let mut res: $t<N> = One::one();
for iterate(0, $dim2) |i|
{
for iterate(0, $dim2) |j|
{ res.set((i, j), m.at((i, j))) }
}
// FIXME: do we have to deal the lost components
// (like if the 1 is not a 1… do we have to divide?)
res
}
}
)
)