2021-01-22 21:32:13 +08:00
|
|
|
//! Sparse matrix arithmetic operations.
|
|
|
|
//!
|
2021-01-25 22:54:25 +08:00
|
|
|
//! This module contains a number of routines for sparse matrix arithmetic. These routines are
|
|
|
|
//! primarily intended for "expert usage". Most users should prefer to use standard
|
|
|
|
//! `std::ops` operations for simple and readable code when possible. The routines provided here
|
|
|
|
//! offer more control over allocation, and allow fusing some low-level operations for higher
|
|
|
|
//! performance.
|
2021-01-22 21:32:13 +08:00
|
|
|
//!
|
|
|
|
//! The available operations are organized by backend. Currently, only the [`serial`] backend
|
|
|
|
//! is available. In the future, backends that expose parallel operations may become available.
|
2021-01-25 22:54:25 +08:00
|
|
|
//! All `std::ops` implementations will remain single-threaded and powered by the
|
|
|
|
//! `serial` backend.
|
2021-01-22 21:32:13 +08:00
|
|
|
//!
|
|
|
|
//! Many routines are able to implicitly transpose matrices involved in the operation.
|
|
|
|
//! For example, the routine [`spadd_csr_prealloc`](serial::spadd_csr_prealloc) performs the
|
|
|
|
//! operation `C <- beta * C + alpha * op(A)`. Here `op(A)` indicates that the matrix `A` can
|
|
|
|
//! either be used as-is or transposed. The notation `op(A)` is represented in code by the
|
|
|
|
//! [`Op`] enum.
|
2021-01-25 22:54:25 +08:00
|
|
|
//!
|
|
|
|
//! # Available `std::ops` implementations
|
|
|
|
//!
|
|
|
|
//! ## Binary operators
|
|
|
|
//!
|
|
|
|
//! The below table summarizes the currently supported binary operators between matrices.
|
|
|
|
//! In general, binary operators between sparse matrices are only supported if both matrices
|
|
|
|
//! are stored in the same format. All supported binary operators are implemented for
|
|
|
|
//! all four combinations of values and references.
|
|
|
|
//!
|
|
|
|
//! <table>
|
|
|
|
//! <tr>
|
|
|
|
//! <th>LHS (down) \ RHS (right)</th>
|
|
|
|
//! <th>COO</th>
|
|
|
|
//! <th>CSR</th>
|
|
|
|
//! <th>CSC</th>
|
|
|
|
//! <th>Dense</th>
|
|
|
|
//! </tr>
|
|
|
|
//! <tr>
|
|
|
|
//! <th>COO</th>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td></td>
|
|
|
|
//! </tr>
|
|
|
|
//! <tr>
|
|
|
|
//! <th>CSR</th>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td>+ - *</td>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td>*</td>
|
|
|
|
//! </tr>
|
|
|
|
//! <tr>
|
|
|
|
//! <th>CSC</th>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td>+ - *</td>
|
|
|
|
//! <td>*</td>
|
|
|
|
//! </tr>
|
|
|
|
//! <tr>
|
|
|
|
//! <th>Dense</th>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td></td>
|
|
|
|
//! <td>+ - *</td>
|
|
|
|
//! </tr>
|
|
|
|
//! </table>
|
|
|
|
//!
|
|
|
|
//! As can be seen from the table, only `CSR * Dense` and `CSC * Dense` are supported.
|
|
|
|
//! The other way around, i.e. `Dense * CSR` and `Dense * CSC` are not implemented.
|
|
|
|
//!
|
|
|
|
//! Additionally, [CsrMatrix](`crate::csr::CsrMatrix`) and [CooMatrix](`crate::coo::CooMatrix`)
|
|
|
|
//! support multiplication with scalars, in addition to division by a scalar.
|
|
|
|
//! Note that only `Matrix * Scalar` works in a generic context, although `Scalar * Matrix`
|
|
|
|
//! has been implemented for many of the built-in arithmetic types. This is due to a fundamental
|
|
|
|
//! restriction of the Rust type system. Therefore, in generic code you will need to always place
|
|
|
|
//! the matrix on the left-hand side of the multiplication.
|
|
|
|
//!
|
|
|
|
//! ## Unary operators
|
|
|
|
//!
|
|
|
|
//! The following table lists currently supported unary operators.
|
|
|
|
//!
|
|
|
|
//! | Format | AddAssign\<Matrix\> | MulAssign\<Matrix\> | MulAssign\<Scalar\> | Neg |
|
|
|
|
//! | -------- | ----------------- | ----------------- | ------------------- | ------ |
|
|
|
|
//! | COO | | | | |
|
|
|
|
//! | CSR | | | x | x |
|
|
|
|
//! | CSC | | | x | x |
|
|
|
|
//! |
|
|
|
|
//! # Example usage
|
|
|
|
//!
|
|
|
|
//! For example, consider the case where you want to compute the expression
|
|
|
|
//! `C <- 3.0 * C + 2.0 * A^T * B`, where `A`, `B`, `C` are matrices and `A^T` is the transpose
|
|
|
|
//! of `A`. The simplest way to write this is:
|
|
|
|
//!
|
|
|
|
//! ```rust
|
|
|
|
//! # use nalgebra_sparse::csr::CsrMatrix;
|
|
|
|
//! # let a = CsrMatrix::identity(10); let b = CsrMatrix::identity(10);
|
|
|
|
//! # let mut c = CsrMatrix::identity(10);
|
|
|
|
//! c = 3.0 * c + 2.0 * a.transpose() * b;
|
|
|
|
//! ```
|
|
|
|
//! This is simple and straightforward to read, and therefore the recommended way to implement
|
|
|
|
//! it. However, if you have determined that this is a performance bottleneck of your application,
|
|
|
|
//! it may be possible to speed things up. First, let's see what's going on here. The `std`
|
|
|
|
//! operations are evaluated eagerly. This means that the following steps take place:
|
|
|
|
//!
|
|
|
|
//! 1. Evaluate `let c_temp = 3.0 * c`. This requires scaling all values of the matrix.
|
|
|
|
//! 2. Evaluate `let a_t = a.transpose()` into a new temporary matrix.
|
|
|
|
//! 3. Evaluate `let a_t_b = a_t * b` into a new temporary matrix.
|
|
|
|
//! 4. Evaluate `let a_t_b_scaled = 2.0 * a_t_b`. This requires scaling all values of the matrix.
|
|
|
|
//! 5. Evaluate `c = c_temp + a_t_b_scaled`.
|
|
|
|
//!
|
|
|
|
//! An alternative way to implement this expression (here using CSR matrices) is:
|
|
|
|
//!
|
|
|
|
//! ```rust
|
|
|
|
//! # use nalgebra_sparse::csr::CsrMatrix;
|
|
|
|
//! # let a = CsrMatrix::identity(10); let b = CsrMatrix::identity(10);
|
|
|
|
//! # let mut c = CsrMatrix::identity(10);
|
|
|
|
//! use nalgebra_sparse::ops::{Op, serial::spmm_csr_prealloc};
|
|
|
|
//!
|
|
|
|
//! // Evaluate the expression `c <- 3.0 * c + 2.0 * a^T * b
|
|
|
|
//! spmm_csr_prealloc(3.0, &mut c, 2.0, Op::Transpose(&a), Op::NoOp(&b))
|
|
|
|
//! .expect("We assume that the pattern of C is able to accommodate the result.");
|
|
|
|
//! ```
|
|
|
|
//! Compared to the simpler example, this snippet is harder to read, but it calls a single
|
|
|
|
//! computational kernel that avoids many of the intermediate steps listed out before. Therefore
|
|
|
|
//! directly calling kernels may sometimes lead to better performance. However, this should
|
|
|
|
//! always be verified by performance profiling!
|
2020-12-02 23:56:22 +08:00
|
|
|
|
2020-12-10 20:30:37 +08:00
|
|
|
mod impl_std_ops;
|
2020-12-02 23:56:22 +08:00
|
|
|
pub mod serial;
|
|
|
|
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Determines whether a matrix should be transposed in a given operation.
|
|
|
|
///
|
|
|
|
/// See the [module-level documentation](crate::ops) for the purpose of this enum.
|
2021-01-15 22:21:50 +08:00
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
2020-12-21 22:09:29 +08:00
|
|
|
pub enum Op<T> {
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Indicates that the matrix should be used as-is.
|
2020-12-21 22:09:29 +08:00
|
|
|
NoOp(T),
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Indicates that the matrix should be transposed.
|
2020-12-21 22:09:29 +08:00
|
|
|
Transpose(T),
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Op<T> {
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Returns a reference to the inner value that the operation applies to.
|
2021-06-07 22:34:03 +08:00
|
|
|
#[must_use]
|
2020-12-21 22:09:29 +08:00
|
|
|
pub fn inner_ref(&self) -> &T {
|
2021-01-06 20:10:43 +08:00
|
|
|
self.as_ref().into_inner()
|
2020-12-21 22:09:29 +08:00
|
|
|
}
|
|
|
|
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Returns an `Op` applied to a reference of the inner value.
|
2021-06-07 22:34:03 +08:00
|
|
|
#[must_use]
|
2020-12-21 22:09:29 +08:00
|
|
|
pub fn as_ref(&self) -> Op<&T> {
|
|
|
|
match self {
|
|
|
|
Op::NoOp(obj) => Op::NoOp(&obj),
|
2021-01-26 00:26:27 +08:00
|
|
|
Op::Transpose(obj) => Op::Transpose(&obj),
|
2020-12-21 22:09:29 +08:00
|
|
|
}
|
|
|
|
}
|
2020-12-02 23:56:22 +08:00
|
|
|
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Converts the underlying data type.
|
2020-12-21 22:09:29 +08:00
|
|
|
pub fn convert<U>(self) -> Op<U>
|
2021-01-26 00:26:27 +08:00
|
|
|
where
|
|
|
|
T: Into<U>,
|
2020-12-21 22:09:29 +08:00
|
|
|
{
|
2020-12-21 22:13:31 +08:00
|
|
|
self.map_same_op(T::into)
|
2020-12-21 22:09:29 +08:00
|
|
|
}
|
|
|
|
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Transforms the inner value with the provided function, but preserves the operation.
|
2020-12-21 22:09:29 +08:00
|
|
|
pub fn map_same_op<U, F: FnOnce(T) -> U>(self, f: F) -> Op<U> {
|
|
|
|
match self {
|
|
|
|
Op::NoOp(obj) => Op::NoOp(f(obj)),
|
2021-01-26 00:26:27 +08:00
|
|
|
Op::Transpose(obj) => Op::Transpose(f(obj)),
|
2020-12-21 22:09:29 +08:00
|
|
|
}
|
2020-12-02 23:56:22 +08:00
|
|
|
}
|
2020-12-21 22:13:31 +08:00
|
|
|
|
2021-01-22 21:32:13 +08:00
|
|
|
/// Consumes the `Op` and returns the inner value.
|
2021-01-06 20:10:43 +08:00
|
|
|
pub fn into_inner(self) -> T {
|
2020-12-21 22:13:31 +08:00
|
|
|
match self {
|
|
|
|
Op::NoOp(obj) | Op::Transpose(obj) => obj,
|
|
|
|
}
|
|
|
|
}
|
2020-12-30 23:09:46 +08:00
|
|
|
|
|
|
|
/// Applies the transpose operation.
|
|
|
|
///
|
|
|
|
/// This operation follows the usual semantics of transposition. In particular, double
|
|
|
|
/// transposition is equivalent to no transposition.
|
|
|
|
pub fn transposed(self) -> Self {
|
|
|
|
match self {
|
|
|
|
Op::NoOp(obj) => Op::Transpose(obj),
|
2021-01-26 00:26:27 +08:00
|
|
|
Op::Transpose(obj) => Op::NoOp(obj),
|
2020-12-30 23:09:46 +08:00
|
|
|
}
|
|
|
|
}
|
2020-12-10 20:30:37 +08:00
|
|
|
}
|
|
|
|
|
2020-12-21 22:09:29 +08:00
|
|
|
impl<T> From<T> for Op<T> {
|
|
|
|
fn from(obj: T) -> Self {
|
|
|
|
Self::NoOp(obj)
|
|
|
|
}
|
|
|
|
}
|