2017-08-03 01:37:44 +08:00
|
|
|
use std::mem;
|
|
|
|
use alga::general::{Field, Real};
|
|
|
|
use core::{Scalar, Matrix, MatrixN, MatrixMN, DefaultAllocator};
|
|
|
|
use dimension::{Dim, DimMin, DimMinimum};
|
|
|
|
use storage::{Storage, StorageMut};
|
|
|
|
use allocator::{Allocator, Reallocator};
|
|
|
|
use constraint::{ShapeConstraint, SameNumberOfRows};
|
|
|
|
|
|
|
|
use linalg::PermutationSequence;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// LU decomposition with partial (row) pivoting.
|
|
|
|
pub struct LU<N: Real, R: DimMin<C>, C: Dim>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>> {
|
|
|
|
lu: MatrixMN<N, R, C>,
|
|
|
|
p: PermutationSequence<DimMinimum<R, C>>
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs a LU decomposition to overwrite `out` with the inverse of `matrix`.
|
|
|
|
///
|
|
|
|
/// If `matrix` is not invertible, `false` is returned and `out` may contain invalid data.
|
|
|
|
pub fn try_invert_to<N: Real, D: Dim, S>(mut matrix: MatrixN<N, D>,
|
|
|
|
out: &mut Matrix<N, D, D, S>)
|
|
|
|
-> bool
|
|
|
|
where S: StorageMut<N, D, D>,
|
|
|
|
DefaultAllocator: Allocator<N, D, D> {
|
|
|
|
|
|
|
|
assert!(matrix.is_square(), "LU inversion: unable to invert a rectangular matrix.");
|
|
|
|
let dim = matrix.nrows();
|
|
|
|
|
|
|
|
out.fill_with_identity();
|
|
|
|
|
|
|
|
for i in 0 .. dim {
|
|
|
|
let piv = matrix.slice_range(i .., i).iamax() + i;
|
|
|
|
let diag = matrix[(piv, i)];
|
|
|
|
|
|
|
|
if diag.is_zero() {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if piv != i {
|
|
|
|
out.swap_rows(i, piv);
|
|
|
|
matrix.columns_range_mut(.. i).swap_rows(i, piv);
|
|
|
|
gauss_step_swap(&mut matrix, diag, i, piv);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
gauss_step(&mut matrix, diag, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
matrix.solve_lower_triangular_with_diag_mut(out, N::one());
|
|
|
|
matrix.solve_upper_triangular_mut(out)
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim> LU<N, R, C>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>> {
|
|
|
|
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
|
|
|
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
|
|
|
let (nrows, ncols) = matrix.data.shape();
|
|
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
|
|
|
|
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
|
|
|
|
|
|
|
|
if min_nrows_ncols.value() == 0 {
|
|
|
|
return LU { lu: matrix, p: p };
|
|
|
|
}
|
|
|
|
|
|
|
|
for i in 0 .. min_nrows_ncols.value() {
|
|
|
|
let piv = matrix.slice_range(i .., i).iamax() + i;
|
|
|
|
let diag = matrix[(piv, i)];
|
|
|
|
|
|
|
|
if diag.is_zero() {
|
|
|
|
// No non-zero entries on this column.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if piv != i {
|
|
|
|
p.append_permutation(i, piv);
|
|
|
|
matrix.columns_range_mut(.. i).swap_rows(i, piv);
|
|
|
|
gauss_step_swap(&mut matrix, diag, i, piv);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
gauss_step(&mut matrix, diag, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
LU { lu: matrix, p: p }
|
|
|
|
}
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn lu_internal(&self) -> &MatrixMN<N, R, C> {
|
|
|
|
&self.lu
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
|
|
|
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
|
|
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
|
|
|
m.fill_upper_triangle(N::zero(), 1);
|
|
|
|
m.fill_diagonal(N::one());
|
|
|
|
m
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
|
|
fn l_unpack_with_p(self) -> (MatrixMN<N, R, DimMinimum<R, C>>,
|
|
|
|
PermutationSequence<DimMinimum<R, C>>)
|
|
|
|
where DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>> {
|
|
|
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), N::zero());
|
|
|
|
m.fill_upper_triangle(N::zero(), 1);
|
|
|
|
m.fill_diagonal(N::one());
|
|
|
|
(m, self.p)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn l_unpack(self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
|
|
|
where DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>> {
|
|
|
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), N::zero());
|
|
|
|
m.fill_upper_triangle(N::zero(), 1);
|
|
|
|
m.fill_diagonal(N::one());
|
|
|
|
m
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// The upper triangular matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
|
|
|
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The row permutation matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
|
|
|
|
&self.p
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The two matrix of this decomposition and the permutation matrix: `(P, L, U)`.
|
|
|
|
#[inline]
|
|
|
|
pub fn unpack(self) -> (PermutationSequence<DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, R, DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, DimMinimum<R, C>, C>)
|
|
|
|
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> +
|
|
|
|
Allocator<N, DimMinimum<R, C>, C> +
|
|
|
|
Reallocator<N, R, C, R, DimMinimum<R, C>> {
|
|
|
|
// Use reallocation for either l or u.
|
|
|
|
let u = self.u();
|
|
|
|
let (l, p) = self.l_unpack_with_p();
|
|
|
|
|
|
|
|
(p, l, u)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: Real, D: DimMin<D, Output = D>> LU<N, D, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<(usize, usize), D> {
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
///
|
|
|
|
/// Returns `None` if `self` is not invertible.
|
|
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
|
|
|
|
where S2: StorageMut<N, R2, C2>,
|
|
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
|
|
DefaultAllocator: Allocator<N, R2, C2> {
|
|
|
|
let mut res = b.clone_owned();
|
|
|
|
if self.solve_mut(&mut res) {
|
|
|
|
Some(res)
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
///
|
|
|
|
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` is
|
|
|
|
/// overwritten with meaningless informations.
|
|
|
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
|
|
|
where S2: StorageMut<N, R2, C2>,
|
|
|
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
|
|
|
|
|
|
|
assert_eq!(self.lu.nrows(), b.nrows(), "LU solve matrix dimension mismatch.");
|
|
|
|
assert!(self.lu.is_square(), "LU solve: unable to solve a non-square system.");
|
|
|
|
|
|
|
|
self.p.permute_rows(b);
|
|
|
|
self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
|
|
|
self.lu.solve_upper_triangular_mut(b)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
|
|
///
|
|
|
|
/// Returnrs `None` if the matrix is not invertible.
|
|
|
|
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
|
|
|
|
assert!(self.lu.is_square(), "LU inverse: unable to compute the inverse of a non-square matrix.");
|
|
|
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
let mut res = MatrixN::identity_generic(nrows, ncols);
|
|
|
|
if self.try_inverse_to(&mut res) {
|
|
|
|
Some(res)
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the inverse of the decomposed matrix and outputs the result to `out`.
|
|
|
|
///
|
|
|
|
/// If the decomposed matrix is not invertible, this returns `false` and `out` may contain
|
|
|
|
/// meaninless informations.
|
|
|
|
pub fn try_inverse_to<S2: StorageMut<N, D, D>>(&self, out: &mut Matrix<N, D, D, S2>) -> bool {
|
|
|
|
assert!(self.lu.is_square(), "LU inverse: unable to compute the inverse of a non-square matrix.");
|
|
|
|
assert!(self.lu.shape() == out.shape(), "LU inverse: mismatched output shape.");
|
|
|
|
|
|
|
|
out.fill_with_identity();
|
|
|
|
self.solve_mut(out)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the determinant of the decomposed matrix.
|
|
|
|
pub fn determinant(&self) -> N {
|
|
|
|
let dim = self.lu.nrows();
|
|
|
|
assert!(self.lu.is_square(), "LU determinant: unable to compute the determinant of a non-square matrix.");
|
|
|
|
|
|
|
|
let mut res = N::one();
|
|
|
|
for i in 0 .. dim {
|
|
|
|
res *= unsafe { *self.lu.get_unchecked(i, i) };
|
|
|
|
}
|
|
|
|
|
|
|
|
res * self.p.determinant()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Indicates if the decomposed matrix is invertible.
|
|
|
|
pub fn is_invertible(&self) -> bool {
|
|
|
|
assert!(self.lu.is_square(), "QR: unable to test the invertibility of a non-square matrix.");
|
|
|
|
|
|
|
|
for i in 0 .. self.lu.nrows() {
|
|
|
|
if self.lu[(i, i)].is_zero() {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
/// Executes one step of gaussian elimination on the i-th row and column of `matrix`. The diagonal
|
|
|
|
/// element `matrix[(i, i)]` is provided as argument.
|
|
|
|
pub fn gauss_step<N, R: Dim, C: Dim, S>(matrix: &mut Matrix<N, R, C, S>, diag: N, i: usize)
|
|
|
|
where N: Scalar + Field,
|
|
|
|
S: StorageMut<N, R, C> {
|
|
|
|
|
|
|
|
let mut submat = matrix.slice_range_mut(i .., i ..);
|
|
|
|
|
|
|
|
let inv_diag = N::one() / diag;
|
|
|
|
|
|
|
|
let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1 ..);
|
|
|
|
|
|
|
|
let mut coeffs = coeffs.rows_range_mut(1 ..);
|
|
|
|
coeffs *= inv_diag;
|
|
|
|
|
|
|
|
let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1 ..);
|
|
|
|
|
|
|
|
for k in 0 .. pivot_row.ncols() {
|
|
|
|
down.column_mut(k).axpy(-pivot_row[k], &coeffs, N::one());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
/// Swaps the rows `i` with the row `piv` and executes one step of gaussian elimination on the i-th
|
|
|
|
/// row and column of `matrix`. The diagonal element `matrix[(i, i)]` is provided as argument.
|
|
|
|
pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(matrix: &mut Matrix<N, R, C, S>, diag: N, i: usize, piv: usize)
|
|
|
|
where N: Scalar + Field,
|
|
|
|
S: StorageMut<N, R, C> {
|
|
|
|
|
|
|
|
let piv = piv - i;
|
|
|
|
let mut submat = matrix.slice_range_mut(i .., i ..);
|
|
|
|
|
|
|
|
let inv_diag = N::one() / diag;
|
|
|
|
|
|
|
|
let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1 ..);
|
|
|
|
|
|
|
|
coeffs.swap((0, 0), (piv, 0));
|
|
|
|
let mut coeffs = coeffs.rows_range_mut(1 ..);
|
|
|
|
coeffs *= inv_diag;
|
|
|
|
|
|
|
|
let (mut pivot_row, mut down) = submat.rows_range_pair_mut(0, 1 ..);
|
|
|
|
|
|
|
|
for k in 0 .. pivot_row.ncols() {
|
|
|
|
mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
|
|
|
|
down.column_mut(k).axpy(-pivot_row[k], &coeffs, N::one());
|
|
|
|
}
|
|
|
|
}
|
2017-08-14 01:52:46 +08:00
|
|
|
|
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>> {
|
|
|
|
|
|
|
|
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
|
|
|
pub fn lu(self) -> LU<N, R, C> {
|
|
|
|
LU::new(self.into_owned())
|
|
|
|
}
|
|
|
|
}
|