artiq/artiq/compiler/ir.py
2016-07-13 08:48:31 +00:00

1435 lines
42 KiB
Python

"""
The :mod:`ir` module contains the intermediate representation
of the ARTIQ compiler.
"""
from collections import OrderedDict
from pythonparser import ast
from . import types, builtins, iodelay
# Generic SSA IR classes
def escape_name(name):
if all([str.isalnum(x) or x == "." for x in name]):
return name
else:
return "\"{}\"".format(name.replace("\"", "\\\""))
class TBasicBlock(types.TMono):
def __init__(self):
super().__init__("label")
def is_basic_block(typ):
return isinstance(typ, TBasicBlock)
class TOption(types.TMono):
def __init__(self, value):
super().__init__("option", {"value": value})
def is_option(typ):
return isinstance(typ, TOption)
class TKeyword(types.TMono):
def __init__(self, value):
super().__init__("keyword", {"value": value})
def is_keyword(typ):
return isinstance(typ, TKeyword)
class TExceptionTypeInfo(types.TMono):
def __init__(self):
super().__init__("exntypeinfo")
def is_exn_typeinfo(typ):
return isinstance(typ, TExceptionTypeInfo)
class Value:
"""
An SSA value that keeps track of its uses.
:ivar type: (:class:`.types.Type`) type of this value
:ivar uses: (list of :class:`Value`) values that use this value
"""
def __init__(self, typ):
self.uses, self.type = set(), typ.find()
def replace_all_uses_with(self, value):
for user in set(self.uses):
user.replace_uses_of(self, value)
def __str__(self):
return self.as_entity(type_printer=types.TypePrinter())
class Constant(Value):
"""
A constant value.
:ivar value: (Python object) value
"""
def __init__(self, value, typ):
super().__init__(typ)
self.value = value
def as_operand(self, type_printer):
return self.as_entity(type_printer)
def as_entity(self, type_printer):
return "{} {}".format(type_printer.name(self.type),
repr(self.value))
def __hash__(self):
return hash(self.value)
def __eq__(self, other):
return isinstance(other, Constant) and \
other.type == self.type and other.value == self.value
def __ne__(self, other):
return not (self == other)
class NamedValue(Value):
"""
An SSA value that has a name.
:ivar name: (string) name of this value
:ivar function: (:class:`Function`) function containing this value
"""
def __init__(self, typ, name):
super().__init__(typ)
self.name, self.function = name, None
def set_name(self, new_name):
if self.function is not None:
self.function._remove_name(self.name)
self.name = self.function._add_name(new_name)
else:
self.name = new_name
def _set_function(self, new_function):
if self.function != new_function:
if self.function is not None:
self.function._remove_name(self.name)
self.function = new_function
if self.function is not None:
self.name = self.function._add_name(self.name)
def _detach(self):
self.function = None
def as_operand(self, type_printer):
return "{} %{}".format(type_printer.name(self.type),
escape_name(self.name))
class User(NamedValue):
"""
An SSA value that has operands.
:ivar operands: (list of :class:`Value`) operands of this value
"""
def __init__(self, operands, typ, name):
super().__init__(typ, name)
self.operands = []
self.set_operands(operands)
def set_operands(self, new_operands):
for operand in set(self.operands):
operand.uses.remove(self)
self.operands = new_operands
for operand in set(self.operands):
operand.uses.add(self)
def drop_references(self):
self.set_operands([])
def replace_uses_of(self, value, replacement):
assert value in self.operands
for index, operand in enumerate(self.operands):
if operand == value:
self.operands[index] = replacement
value.uses.remove(self)
replacement.uses.add(self)
class Instruction(User):
"""
An SSA instruction.
:ivar loc: (:class:`pythonparser.source.Range` or None)
source location
"""
def __init__(self, operands, typ, name=""):
assert isinstance(operands, list)
assert isinstance(typ, types.Type)
super().__init__(operands, typ, name)
self.basic_block = None
self.loc = None
def copy(self, mapper):
self_copy = self.__class__.__new__(self.__class__)
Instruction.__init__(self_copy, list(map(mapper, self.operands)),
self.type, self.name)
self_copy.loc = self.loc
return self_copy
def set_basic_block(self, new_basic_block):
self.basic_block = new_basic_block
if self.basic_block is not None:
self._set_function(self.basic_block.function)
else:
self._set_function(None)
def opcode(self):
"""String representation of the opcode."""
return "???"
def _detach(self):
self.set_basic_block(None)
def remove_from_parent(self):
if self.basic_block is not None:
self.basic_block.remove(self)
def erase(self):
self.remove_from_parent()
self.drop_references()
# Check this after drop_references in case this
# is a self-referencing phi.
assert not any(self.uses)
def replace_with(self, value):
self.replace_all_uses_with(value)
if isinstance(value, Instruction):
self.basic_block.replace(self, value)
self.drop_references()
else:
self.erase()
def _operands_as_string(self, type_printer):
return ", ".join([operand.as_operand(type_printer) for operand in self.operands])
def as_entity(self, type_printer):
if builtins.is_none(self.type) and len(self.uses) == 0:
prefix = ""
else:
prefix = "%{} = {} ".format(escape_name(self.name),
type_printer.name(self.type))
if any(self.operands):
return "{}{} {}".format(prefix, self.opcode(),
self._operands_as_string(type_printer))
else:
return "{}{}".format(prefix, self.opcode())
class Phi(Instruction):
"""
An SSA instruction that joins data flow.
Use :meth:`incoming` and :meth:`add_incoming` instead of
directly reading :attr:`operands` or calling :meth:`set_operands`.
"""
def __init__(self, typ, name=""):
super().__init__([], typ, name)
def opcode(self):
return "phi"
def incoming(self):
operand_iter = iter(self.operands)
while True:
try:
yield next(operand_iter), next(operand_iter)
except StopIteration:
return
def incoming_blocks(self):
return (block for (value, block) in self.incoming())
def incoming_values(self):
return (value for (value, block) in self.incoming())
def incoming_value_for_block(self, target_block):
for (value, block) in self.incoming():
if block == target_block:
return value
assert False
def add_incoming(self, value, block):
assert value.type == self.type
self.operands.append(value)
value.uses.add(self)
self.operands.append(block)
block.uses.add(self)
def remove_incoming_value(self, value):
index = self.operands.index(value)
assert index % 2 == 0
self.operands[index].uses.remove(self)
self.operands[index + 1].uses.remove(self)
del self.operands[index:index + 2]
def remove_incoming_block(self, block):
index = self.operands.index(block)
assert index % 2 == 1
self.operands[index - 1].uses.remove(self)
self.operands[index].uses.remove(self)
del self.operands[index - 1:index + 1]
def as_entity(self, type_printer):
if builtins.is_none(self.type):
prefix = ""
else:
prefix = "%{} = {} ".format(escape_name(self.name),
type_printer.name(self.type))
if any(self.operands):
operand_list = ["%{} => {}".format(escape_name(block.name),
value.as_operand(type_printer))
for value, block in self.incoming()]
return "{}{} [{}]".format(prefix, self.opcode(), ", ".join(operand_list))
else:
return "{}{} [???]".format(prefix, self.opcode())
class Terminator(Instruction):
"""
An SSA instruction that performs control flow.
"""
def successors(self):
return [operand for operand in self.operands if isinstance(operand, BasicBlock)]
class BasicBlock(NamedValue):
"""
A block of instructions with no control flow inside it.
:ivar instructions: (list of :class:`Instruction`)
"""
def __init__(self, instructions, name=""):
super().__init__(TBasicBlock(), name)
self.instructions = []
self.set_instructions(instructions)
def set_instructions(self, new_insns):
for insn in self.instructions:
insn.detach()
self.instructions = new_insns
for insn in self.instructions:
insn.set_basic_block(self)
def remove_from_parent(self):
if self.function is not None:
self.function.remove(self)
def erase(self):
# self.instructions is updated while iterating
for insn in reversed(self.instructions):
insn.erase()
self.remove_from_parent()
# Check this after erasing instructions in case the block
# loops into itself.
assert not any(self.uses)
def prepend(self, insn):
assert isinstance(insn, Instruction)
insn.set_basic_block(self)
self.instructions.insert(0, insn)
return insn
def append(self, insn):
assert isinstance(insn, Instruction)
insn.set_basic_block(self)
self.instructions.append(insn)
return insn
def index(self, insn):
return self.instructions.index(insn)
def insert(self, insn, before):
assert isinstance(insn, Instruction)
insn.set_basic_block(self)
self.instructions.insert(self.index(before), insn)
return insn
def remove(self, insn):
assert insn in self.instructions
insn._detach()
self.instructions.remove(insn)
return insn
def replace(self, insn, replacement):
self.insert(replacement, before=insn)
self.remove(insn)
def is_terminated(self):
return any(self.instructions) and isinstance(self.instructions[-1], Terminator)
def terminator(self):
assert self.is_terminated()
return self.instructions[-1]
def successors(self):
return self.terminator().successors()
def predecessors(self):
return [use.basic_block for use in self.uses if isinstance(use, Terminator)]
def as_entity(self, type_printer):
# Header
lines = ["{}:".format(escape_name(self.name))]
if self.function is not None:
lines[0] += " ; predecessors: {}".format(
", ".join([escape_name(pred.name) for pred in self.predecessors()]))
# Annotated instructions
loc = None
for insn in self.instructions:
if loc != insn.loc:
loc = insn.loc
if loc is None:
lines.append("; <synthesized>")
else:
source_lines = loc.source_lines()
beg_col, end_col = loc.column(), loc.end().column()
source_lines[-1] = \
source_lines[-1][:end_col] + "\x1b[0m" + source_lines[-1][end_col:]
source_lines[0] = \
source_lines[0][:beg_col] + "\x1b[1;32m" + source_lines[0][beg_col:]
line_desc = "{}:{}".format(loc.source_buffer.name, loc.line())
lines += ["; {} {}".format(line_desc, line.rstrip("\n"))
for line in source_lines]
lines.append(" " + insn.as_entity(type_printer))
return "\n".join(lines)
def __repr__(self):
return "<artiq.compiler.ir.BasicBlock {}>".format(repr(self.name))
class Argument(NamedValue):
"""
A function argument.
"""
def as_entity(self, type_printer):
return self.as_operand(type_printer)
class Function:
"""
A function containing SSA IR.
:ivar loc: (:class:`pythonparser.source.Range` or None)
source location of function definition
:ivar is_internal:
(bool) if True, the function should not be accessible from outside
the module it is contained in
:ivar is_cold:
(bool) if True, the function should be considered rarely called
:ivar is_generated:
(bool) if True, the function will not appear in backtraces
:ivar flags: (set of str) Code generation flags.
Flag ``fast-math`` is the equivalent of gcc's ``-ffast-math``.
"""
def __init__(self, typ, name, arguments, loc=None):
self.type, self.name, self.loc = typ, name, loc
self.names, self.arguments, self.basic_blocks = set(), [], []
self.next_name = 1
self.set_arguments(arguments)
self.is_internal = False
self.is_cold = False
self.is_generated = False
self.flags = {}
def _remove_name(self, name):
self.names.remove(name)
def _add_name(self, base_name):
if base_name == "":
name = "UNN.{}".format(self.next_name)
self.next_name += 1
elif base_name in self.names:
name = "{}.{}".format(base_name, self.next_name)
self.next_name += 1
else:
name = base_name
self.names.add(name)
return name
def set_arguments(self, new_arguments):
for argument in self.arguments:
argument._set_function(None)
self.arguments = new_arguments
for argument in self.arguments:
argument._set_function(self)
def add(self, basic_block):
basic_block._set_function(self)
self.basic_blocks.append(basic_block)
def remove(self, basic_block):
basic_block._detach()
self.basic_blocks.remove(basic_block)
def entry(self):
assert any(self.basic_blocks)
return self.basic_blocks[0]
def exits(self):
return [block for block in self.basic_blocks if not any(block.successors())]
def instructions(self):
for basic_block in self.basic_blocks:
yield from iter(basic_block.instructions)
def as_entity(self, type_printer):
postorder = []
visited = set()
def visit(block):
visited.add(block)
for next_block in block.successors():
if next_block not in visited:
visit(next_block)
postorder.append(block)
visit(self.entry())
lines = []
lines.append("{} {}({}) {{ ; type: {}".format(
type_printer.name(self.type.ret), self.name,
", ".join([arg.as_operand(type_printer) for arg in self.arguments]),
type_printer.name(self.type)))
postorder_blocks = list(reversed(postorder))
orphan_blocks = [block for block in self.basic_blocks if block not in postorder]
for block in postorder_blocks + orphan_blocks:
lines.append(block.as_entity(type_printer))
lines.append("}")
return "\n".join(lines)
def __str__(self):
return self.as_entity(types.TypePrinter())
# Python-specific SSA IR classes
class TEnvironment(types.TMono):
def __init__(self, name, vars, outer=None):
assert isinstance(name, str)
self.env_name = name # for readable type names in LLVM IR
if outer is not None:
assert isinstance(outer, TEnvironment)
env = OrderedDict({"$outer": outer})
env.update(vars)
else:
env = OrderedDict(vars)
super().__init__("environment", env)
def type_of(self, name):
if name in self.params:
return self.params[name].find()
elif "$outer" in self.params:
return self.params["$outer"].type_of(name)
else:
assert False
def outermost(self):
if "$outer" in self.params:
return self.params["$outer"].outermost()
else:
return self
"""
Add a new binding, ensuring hygiene.
:returns: (string) mangled name
"""
def add(self, base_name, typ):
name, counter = base_name, 1
while name in self.params or name == "":
if base_name == "":
name = str(counter)
else:
name = "{}.{}".format(name, counter)
counter += 1
self.params[name] = typ.find()
return name
def is_environment(typ):
return isinstance(typ, TEnvironment)
class EnvironmentArgument(Argument):
"""
A function argument specifying an outer environment.
"""
def as_operand(self, type_printer):
return "environment(...) %{}".format(escape_name(self.name))
class Alloc(Instruction):
"""
An instruction that allocates an object specified by
the type of the intsruction.
"""
def __init__(self, operands, typ, name=""):
for operand in operands: assert isinstance(operand, Value)
super().__init__(operands, typ, name)
def opcode(self):
return "alloc"
def as_operand(self, type_printer):
if is_environment(self.type):
# Only show full environment in the instruction itself
return "%{}".format(escape_name(self.name))
else:
return super().as_operand(type_printer)
class GetLocal(Instruction):
"""
An intruction that loads a local variable from an environment,
possibly going through multiple levels of indirection.
:ivar var_name: (string) variable name
"""
"""
:param env: (:class:`Value`) local environment
:param var_name: (string) local variable name
"""
def __init__(self, env, var_name, name=""):
assert isinstance(env, Value)
assert isinstance(env.type, TEnvironment)
assert isinstance(var_name, str)
super().__init__([env], env.type.type_of(var_name), name)
self.var_name = var_name
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.var_name = self.var_name
return self_copy
def opcode(self):
return "getlocal({})".format(repr(self.var_name))
def environment(self):
return self.operands[0]
class SetLocal(Instruction):
"""
An intruction that stores a local variable into an environment,
possibly going through multiple levels of indirection.
:ivar var_name: (string) variable name
"""
"""
:param env: (:class:`Value`) local environment
:param var_name: (string) local variable name
:param value: (:class:`Value`) value to assign
"""
def __init__(self, env, var_name, value, name=""):
assert isinstance(env, Value)
assert isinstance(env.type, TEnvironment)
assert isinstance(var_name, str)
assert env.type.type_of(var_name) == value.type
assert isinstance(value, Value)
super().__init__([env, value], builtins.TNone(), name)
self.var_name = var_name
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.var_name = self.var_name
return self_copy
def opcode(self):
return "setlocal({})".format(repr(self.var_name))
def environment(self):
return self.operands[0]
def value(self):
return self.operands[1]
class GetAttr(Instruction):
"""
An intruction that loads an attribute from an object,
or extracts a tuple element.
:ivar attr: (string) variable name
"""
"""
:param obj: (:class:`Value`) object or tuple
:param attr: (string or integer) attribute or index
"""
def __init__(self, obj, attr, name=""):
assert isinstance(obj, Value)
assert isinstance(attr, (str, int))
if isinstance(attr, int):
assert isinstance(obj.type, types.TTuple)
typ = obj.type.elts[attr]
elif attr in obj.type.attributes:
typ = obj.type.attributes[attr]
else:
typ = obj.type.constructor.attributes[attr]
if types.is_function(typ) or types.is_rpc(typ):
typ = types.TMethod(obj.type, typ)
super().__init__([obj], typ, name)
self.attr = attr
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.attr = self.attr
return self_copy
def opcode(self):
return "getattr({})".format(repr(self.attr))
def object(self):
return self.operands[0]
class SetAttr(Instruction):
"""
An intruction that stores an attribute to an object.
:ivar attr: (string) variable name
"""
"""
:param obj: (:class:`Value`) object or tuple
:param attr: (string or integer) attribute
:param value: (:class:`Value`) value to store
"""
def __init__(self, obj, attr, value, name=""):
assert isinstance(obj, Value)
assert isinstance(attr, (str, int))
assert isinstance(value, Value)
if isinstance(attr, int):
assert value.type == obj.type.elts[attr].find()
else:
assert value.type == obj.type.attributes[attr].find()
super().__init__([obj, value], builtins.TNone(), name)
self.attr = attr
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.attr = self.attr
return self_copy
def opcode(self):
return "setattr({})".format(repr(self.attr))
def object(self):
return self.operands[0]
def value(self):
return self.operands[1]
class GetElem(Instruction):
"""
An intruction that loads an element from a list.
"""
"""
:param lst: (:class:`Value`) list
:param index: (:class:`Value`) index
"""
def __init__(self, lst, index, name=""):
assert isinstance(lst, Value)
assert isinstance(index, Value)
super().__init__([lst, index], builtins.get_iterable_elt(lst.type), name)
def opcode(self):
return "getelem"
def list(self):
return self.operands[0]
def index(self):
return self.operands[1]
class SetElem(Instruction):
"""
An intruction that stores an element into a list.
"""
"""
:param lst: (:class:`Value`) list
:param index: (:class:`Value`) index
:param value: (:class:`Value`) value to store
"""
def __init__(self, lst, index, value, name=""):
assert isinstance(lst, Value)
assert isinstance(index, Value)
assert isinstance(value, Value)
assert builtins.get_iterable_elt(lst.type) == value.type.find()
super().__init__([lst, index, value], builtins.TNone(), name)
def opcode(self):
return "setelem"
def list(self):
return self.operands[0]
def index(self):
return self.operands[1]
def value(self):
return self.operands[2]
class Coerce(Instruction):
"""
A coercion operation for numbers.
"""
def __init__(self, value, typ, name=""):
assert isinstance(value, Value)
assert isinstance(typ, types.Type)
super().__init__([value], typ, name)
def opcode(self):
return "coerce"
def value(self):
return self.operands[0]
class Arith(Instruction):
"""
An arithmetic operation on numbers.
:ivar op: (:class:`pythonparser.ast.operator`) operation
"""
"""
:param op: (:class:`pythonparser.ast.operator`) operation
:param lhs: (:class:`Value`) left-hand operand
:param rhs: (:class:`Value`) right-hand operand
"""
def __init__(self, op, lhs, rhs, name=""):
assert isinstance(op, ast.operator)
assert isinstance(lhs, Value)
assert isinstance(rhs, Value)
assert lhs.type == rhs.type
super().__init__([lhs, rhs], lhs.type, name)
self.op = op
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.op = self.op
return self_copy
def opcode(self):
return "arith({})".format(type(self.op).__name__)
def lhs(self):
return self.operands[0]
def rhs(self):
return self.operands[1]
class Compare(Instruction):
"""
A comparison operation on numbers.
:ivar op: (:class:`pythonparser.ast.cmpop`) operation
"""
"""
:param op: (:class:`pythonparser.ast.cmpop`) operation
:param lhs: (:class:`Value`) left-hand operand
:param rhs: (:class:`Value`) right-hand operand
"""
def __init__(self, op, lhs, rhs, name=""):
assert isinstance(op, ast.cmpop)
assert isinstance(lhs, Value)
assert isinstance(rhs, Value)
assert lhs.type == rhs.type
super().__init__([lhs, rhs], builtins.TBool(), name)
self.op = op
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.op = self.op
return self_copy
def opcode(self):
return "compare({})".format(type(self.op).__name__)
def lhs(self):
return self.operands[0]
def rhs(self):
return self.operands[1]
class Builtin(Instruction):
"""
A builtin operation. Similar to a function call that
never raises.
:ivar op: (string) operation name
"""
"""
:param op: (string) operation name
"""
def __init__(self, op, operands, typ, name=None):
assert isinstance(op, str)
for operand in operands: assert isinstance(operand, Value)
if name is None:
name = "BLT.{}".format(op)
super().__init__(operands, typ, name)
self.op = op
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.op = self.op
return self_copy
def opcode(self):
return "builtin({})".format(self.op)
class Closure(Instruction):
"""
A closure creation operation.
:ivar target_function: (:class:`Function`) function to invoke
"""
"""
:param func: (:class:`Function`) function
:param env: (:class:`Value`) outer environment
"""
def __init__(self, func, env, name=""):
assert isinstance(func, Function)
assert isinstance(env, Value)
assert is_environment(env.type)
super().__init__([env], func.type, name)
self.target_function = func
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.target_function = self.target_function
return self_copy
def opcode(self):
return "closure({})".format(self.target_function.name)
def environment(self):
return self.operands[0]
class Call(Instruction):
"""
A function call operation.
:ivar arg_exprs: (dict of str to `iodelay.Expr`)
iodelay expressions for values of arguments
:ivar static_target_function: (:class:`Function` or None)
statically resolved callee
:ivar is_cold: (bool)
the callee function is cold
"""
"""
:param func: (:class:`Value`) function to call
:param args: (list of :class:`Value`) function arguments
:param arg_exprs: (dict of str to `iodelay.Expr`)
"""
def __init__(self, func, args, arg_exprs, name=""):
assert isinstance(func, Value)
for arg in args: assert isinstance(arg, Value)
for arg in arg_exprs:
assert isinstance(arg, str)
assert isinstance(arg_exprs[arg], iodelay.Expr)
super().__init__([func] + args, func.type.ret, name)
self.arg_exprs = arg_exprs
self.static_target_function = None
self.is_cold = False
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.arg_exprs = self.arg_exprs
self_copy.static_target_function = self.static_target_function
return self_copy
def opcode(self):
return "call"
def target_function(self):
return self.operands[0]
def arguments(self):
return self.operands[1:]
def as_entity(self, type_printer):
result = super().as_entity(type_printer)
if self.static_target_function is not None:
result += " ; calls {}".format(self.static_target_function.name)
return result
class Select(Instruction):
"""
A conditional select instruction.
"""
"""
:param cond: (:class:`Value`) select condition
:param if_true: (:class:`Value`) value of select if condition is truthful
:param if_false: (:class:`Value`) value of select if condition is falseful
"""
def __init__(self, cond, if_true, if_false, name=""):
assert isinstance(cond, Value)
assert builtins.is_bool(cond.type)
assert isinstance(if_true, Value)
assert isinstance(if_false, Value)
assert if_true.type == if_false.type
super().__init__([cond, if_true, if_false], if_true.type, name)
def opcode(self):
return "select"
def condition(self):
return self.operands[0]
def if_true(self):
return self.operands[1]
def if_false(self):
return self.operands[2]
class Quote(Instruction):
"""
A quote operation. Returns a host interpreter value as a constant.
:ivar value: (string) operation name
"""
"""
:param value: (string) operation name
"""
def __init__(self, value, typ, name=""):
super().__init__([], typ, name)
self.value = value
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.value = self.value
return self_copy
def opcode(self):
return "quote({})".format(repr(self.value))
class Branch(Terminator):
"""
An unconditional branch instruction.
"""
"""
:param target: (:class:`BasicBlock`) branch target
"""
def __init__(self, target, name=""):
assert isinstance(target, BasicBlock)
super().__init__([target], builtins.TNone(), name)
def opcode(self):
return "branch"
def target(self):
return self.operands[0]
def set_target(self, new_target):
self.operands[0].uses.remove(self)
self.operands[0] = new_target
self.operands[0].uses.add(self)
class BranchIf(Terminator):
"""
A conditional branch instruction.
"""
"""
:param cond: (:class:`Value`) branch condition
:param if_true: (:class:`BasicBlock`) branch target if condition is truthful
:param if_false: (:class:`BasicBlock`) branch target if condition is falseful
"""
def __init__(self, cond, if_true, if_false, name=""):
assert isinstance(cond, Value)
assert builtins.is_bool(cond.type)
assert isinstance(if_true, BasicBlock)
assert isinstance(if_false, BasicBlock)
assert if_true != if_false # use Branch instead
super().__init__([cond, if_true, if_false], builtins.TNone(), name)
def opcode(self):
return "branchif"
def condition(self):
return self.operands[0]
def if_true(self):
return self.operands[1]
def if_false(self):
return self.operands[2]
class IndirectBranch(Terminator):
"""
An indirect branch instruction.
"""
"""
:param target: (:class:`Value`) branch target
:param destinations: (list of :class:`BasicBlock`) all possible values of `target`
"""
def __init__(self, target, destinations, name=""):
assert isinstance(target, Value)
assert all([isinstance(dest, BasicBlock) for dest in destinations])
super().__init__([target] + destinations, builtins.TNone(), name)
def opcode(self):
return "indirectbranch"
def target(self):
return self.operands[0]
def destinations(self):
return self.operands[1:]
def add_destination(self, destination):
destination.uses.add(self)
self.operands.append(destination)
def _operands_as_string(self, type_printer):
return "{}, [{}]".format(self.operands[0].as_operand(type_printer),
", ".join([dest.as_operand(type_printer)
for dest in self.operands[1:]]))
class Return(Terminator):
"""
A return instruction.
"""
"""
:param value: (:class:`Value`) return value
"""
def __init__(self, value, name=""):
assert isinstance(value, Value)
super().__init__([value], builtins.TNone(), name)
def opcode(self):
return "return"
def value(self):
return self.operands[0]
class Unreachable(Terminator):
"""
An instruction used to mark unreachable branches.
"""
"""
:param target: (:class:`BasicBlock`) branch target
"""
def __init__(self, name=""):
super().__init__([], builtins.TNone(), name)
def opcode(self):
return "unreachable"
class Raise(Terminator):
"""
A raise instruction.
"""
"""
:param value: (:class:`Value`) exception value
:param exn: (:class:`BasicBlock` or None) exceptional target
"""
def __init__(self, value=None, exn=None, name=""):
assert isinstance(value, Value)
operands = [value]
if exn is not None:
assert isinstance(exn, BasicBlock)
operands.append(exn)
super().__init__(operands, builtins.TNone(), name)
def opcode(self):
return "raise"
def value(self):
return self.operands[0]
def exception_target(self):
if len(self.operands) > 1:
return self.operands[1]
class Reraise(Terminator):
"""
A reraise instruction.
"""
"""
:param exn: (:class:`BasicBlock` or None) exceptional target
"""
def __init__(self, exn=None, name=""):
operands = []
if exn is not None:
assert isinstance(exn, BasicBlock)
operands.append(exn)
super().__init__(operands, builtins.TNone(), name)
def opcode(self):
return "reraise"
def exception_target(self):
if len(self.operands) > 0:
return self.operands[0]
class Invoke(Terminator):
"""
A function call operation that supports exception handling.
:ivar arg_exprs: (dict of str to `iodelay.Expr`)
iodelay expressions for values of arguments
:ivar static_target_function: (:class:`Function` or None)
statically resolved callee
:ivar is_cold: (bool)
the callee function is cold
"""
"""
:param func: (:class:`Value`) function to call
:param args: (list of :class:`Value`) function arguments
:param normal: (:class:`BasicBlock`) normal target
:param exn: (:class:`BasicBlock`) exceptional target
:param arg_exprs: (dict of str to `iodelay.Expr`)
"""
def __init__(self, func, args, arg_exprs, normal, exn, name=""):
assert isinstance(func, Value)
for arg in args: assert isinstance(arg, Value)
assert isinstance(normal, BasicBlock)
assert isinstance(exn, BasicBlock)
for arg in arg_exprs:
assert isinstance(arg, str)
assert isinstance(arg_exprs[arg], iodelay.Expr)
super().__init__([func] + args + [normal, exn], func.type.ret, name)
self.arg_exprs = arg_exprs
self.static_target_function = None
self.is_cold = False
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.arg_exprs = self.arg_exprs
self_copy.static_target_function = self.static_target_function
return self_copy
def opcode(self):
return "invoke"
def target_function(self):
return self.operands[0]
def arguments(self):
return self.operands[1:-2]
def normal_target(self):
return self.operands[-2]
def exception_target(self):
return self.operands[-1]
def _operands_as_string(self, type_printer):
result = ", ".join([operand.as_operand(type_printer) for operand in self.operands[:-2]])
result += " to {} unwind {}".format(self.operands[-2].as_operand(type_printer),
self.operands[-1].as_operand(type_printer))
return result
def as_entity(self, type_printer):
result = super().as_entity(type_printer)
if self.static_target_function is not None:
result += " ; calls {}".format(self.static_target_function.name)
return result
class LandingPad(Terminator):
"""
An instruction that gives an incoming exception a name and
dispatches it according to its type.
Once dispatched, the exception should be cast to its proper
type by calling the "exncast" builtin on the landing pad value.
:ivar types: (a list of :class:`builtins.TException`)
exception types corresponding to the basic block operands
"""
def __init__(self, cleanup, name=""):
super().__init__([cleanup], builtins.TException(), name)
self.types = []
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.types = list(self.types)
return self_copy
def opcode(self):
return "landingpad"
def cleanup(self):
return self.operands[0]
def clauses(self):
return zip(self.operands[1:], self.types)
def add_clause(self, target, typ):
assert isinstance(target, BasicBlock)
assert typ is None or builtins.is_exception(typ)
self.operands.append(target)
self.types.append(typ.find() if typ is not None else None)
target.uses.add(self)
def _operands_as_string(self, type_printer):
table = []
for target, typ in self.clauses():
if typ is None:
table.append("... => {}".format(target.as_operand(type_printer)))
else:
table.append("{} => {}".format(type_printer.name(typ),
target.as_operand(type_printer)))
return "cleanup {}, [{}]".format(self.cleanup().as_operand(type_printer),
", ".join(table))
class Delay(Terminator):
"""
A delay operation. Ties an :class:`iodelay.Expr` to SSA values so that
inlining could lead to the expression folding to a constant.
:ivar interval: (:class:`iodelay.Expr`) expression
"""
"""
:param interval: (:class:`iodelay.Expr`) expression
:param call: (:class:`Call` or ``Constant(None, builtins.TNone())``)
the call instruction that caused this delay, if any
:param target: (:class:`BasicBlock`) branch target
"""
def __init__(self, interval, decomposition, target, name=""):
assert isinstance(decomposition, Call) or isinstance(decomposition, Invoke) or \
isinstance(decomposition, Builtin) and decomposition.op in ("delay", "delay_mu")
assert isinstance(target, BasicBlock)
super().__init__([decomposition, target], builtins.TNone(), name)
self.interval = interval
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.interval = self.interval
return self_copy
def decomposition(self):
return self.operands[0]
def set_decomposition(self, new_decomposition):
self.operands[0].uses.remove(self)
self.operands[0] = new_decomposition
self.operands[0].uses.add(self)
def target(self):
return self.operands[1]
def set_target(self, new_target):
self.operands[1].uses.remove(self)
self.operands[1] = new_target
self.operands[1].uses.add(self)
def _operands_as_string(self, type_printer):
result = "decomp {}, to {}".format(self.decomposition().as_operand(type_printer),
self.target().as_operand(type_printer))
return result
def opcode(self):
return "delay({})".format(self.interval)
class Loop(Terminator):
"""
A terminator for loop headers that carries metadata useful
for unrolling. It includes an :class:`iodelay.Expr` specifying
the trip count, tied to SSA values so that inlining could lead
to the expression folding to a constant.
:ivar trip_count: (:class:`iodelay.Expr`)
expression for trip count
"""
"""
:param trip_count: (:class:`iodelay.Expr`) expression
:param indvar: (:class:`Phi`)
phi node corresponding to the induction SSA value,
which advances from ``0`` to ``trip_count - 1``
:param cond: (:class:`Value`) branch condition
:param if_true: (:class:`BasicBlock`) branch target if condition is truthful
:param if_false: (:class:`BasicBlock`) branch target if condition is falseful
"""
def __init__(self, trip_count, indvar, cond, if_true, if_false, name=""):
assert isinstance(indvar, Phi)
assert isinstance(cond, Value)
assert builtins.is_bool(cond.type)
assert isinstance(if_true, BasicBlock)
assert isinstance(if_false, BasicBlock)
super().__init__([indvar, cond, if_true, if_false], builtins.TNone(), name)
self.trip_count = trip_count
def copy(self, mapper):
self_copy = super().copy(mapper)
self_copy.trip_count = self.trip_count
return self_copy
def induction_variable(self):
return self.operands[0]
def condition(self):
return self.operands[1]
def if_true(self):
return self.operands[2]
def if_false(self):
return self.operands[3]
def _operands_as_string(self, type_printer):
result = "indvar {}, if {}, {}, {}".format(
*list(map(lambda value: value.as_operand(type_printer), self.operands)))
return result
def opcode(self):
return "loop({} times)".format(self.trip_count)
class Interleave(Terminator):
"""
An instruction that schedules several threads of execution
in parallel.
"""
def __init__(self, destinations, name=""):
super().__init__(destinations, builtins.TNone(), name)
def opcode(self):
return "interleave"
def destinations(self):
return self.operands
def add_destination(self, destination):
destination.uses.add(self)
self.operands.append(destination)