artiq/artiq/compiler/analyses/domination.py
whitequark 3fbee2707b analyses.domination: consider unreachable blocks dominated by any other.
As a result, the dominator tree can now process arbitrary (reducible)
CFGs and we do not run DCE before analyses, risking loss of
correspondence to the AST, which would arbitrarily silence analyses.
2015-12-18 16:39:52 +08:00

144 lines
4.8 KiB
Python

"""
:class:`DominatorTree` computes the dominance relation over
control flow graphs.
See http://www.cs.rice.edu/~keith/EMBED/dom.pdf.
"""
class GenericDominatorTree:
def __init__(self):
self._assign_names()
self._compute()
def _traverse_in_postorder(self):
raise NotImplementedError
def _prev_block_names(self, block):
raise NotImplementedError
def _assign_names(self):
postorder = self._traverse_in_postorder()
self._start_name = len(postorder) - 1
self._block_of_name = postorder
self._name_of_block = {}
for block_name, block in enumerate(postorder):
self._name_of_block[block] = block_name
def _intersect(self, block_name_1, block_name_2):
finger_1, finger_2 = block_name_1, block_name_2
while finger_1 != finger_2:
while finger_1 < finger_2:
finger_1 = self._doms[finger_1]
while finger_2 < finger_1:
finger_2 = self._doms[finger_2]
return finger_1
def _compute(self):
self._doms = {}
# Start block dominates itself.
self._doms[self._start_name] = self._start_name
# We don't yet know what blocks dominate all other blocks.
for block_name in range(self._start_name):
self._doms[block_name] = None
changed = True
while changed:
changed = False
# For all blocks except start block, in reverse postorder...
for block_name in reversed(range(self._start_name)):
# Select a new immediate dominator from the blocks we have
# already processed, and remember all others.
# We've already processed at least one previous block because
# of the graph traverse order.
new_idom, prev_block_names = None, []
for prev_block_name in self._prev_block_names(block_name):
if new_idom is None and self._doms[prev_block_name] is not None:
new_idom = prev_block_name
else:
prev_block_names.append(prev_block_name)
# Find a common previous block
for prev_block_name in prev_block_names:
if self._doms[prev_block_name] is not None:
new_idom = self._intersect(prev_block_name, new_idom)
if self._doms[block_name] != new_idom:
self._doms[block_name] = new_idom
changed = True
def immediate_dominator(self, block):
return self._block_of_name[self._doms[self._name_of_block[block]]]
def dominators(self, block):
# Blocks that are statically unreachable from entry are considered
# dominated by every other block.
if block not in self._name_of_block:
yield from self._block_of_name
return
block_name = self._name_of_block[block]
while block_name != self._doms[block_name]:
block_name = self._doms[block_name]
yield self._block_of_name[block_name]
class DominatorTree(GenericDominatorTree):
def __init__(self, function):
self.function = function
super().__init__()
def _traverse_in_postorder(self):
postorder = []
visited = set()
def visit(block):
visited.add(block)
for next_block in block.successors():
if next_block not in visited:
visit(next_block)
postorder.append(block)
visit(self.function.entry())
return postorder
def _prev_block_names(self, block_name):
for block in self._block_of_name[block_name].predecessors():
# Only return predecessors that are statically reachable from entry.
if block in self._name_of_block:
yield self._name_of_block[block]
class PostDominatorTree(GenericDominatorTree):
def __init__(self, function):
self.function = function
super().__init__()
def _traverse_in_postorder(self):
postorder = []
visited = set()
def visit(block):
visited.add(block)
for next_block in block.predecessors():
if next_block not in visited:
visit(next_block)
postorder.append(block)
for block in self.function.basic_blocks:
if not any(block.successors()):
visit(block)
postorder.append(None) # virtual exit block
return postorder
def _prev_block_names(self, block_name):
succ_blocks = self._block_of_name[block_name].successors()
if len(succ_blocks) > 0:
for block in succ_blocks:
yield self._name_of_block[block]
else:
yield self._start_name