forked from M-Labs/artiq
451 lines
16 KiB
Python
451 lines
16 KiB
Python
import warnings
|
|
from collections import OrderedDict
|
|
from inspect import isclass
|
|
|
|
from artiq.protocols import pyon
|
|
from artiq.language import units
|
|
from artiq.language.core import rpc
|
|
|
|
|
|
__all__ = ["NoDefault",
|
|
"PYONValue", "BooleanValue", "EnumerationValue",
|
|
"NumberValue", "StringValue",
|
|
"HasEnvironment", "Experiment", "EnvExperiment"]
|
|
|
|
|
|
class NoDefault:
|
|
"""Represents the absence of a default value."""
|
|
pass
|
|
|
|
|
|
class DefaultMissing(Exception):
|
|
"""Raised by the ``default`` method of argument processors when no default
|
|
value is available."""
|
|
pass
|
|
|
|
|
|
class _SimpleArgProcessor:
|
|
def __init__(self, default=NoDefault):
|
|
# If default is a list, it means multiple defaults are specified, with
|
|
# decreasing priority.
|
|
if isinstance(default, list):
|
|
raise NotImplementedError
|
|
if default is not NoDefault:
|
|
self.default_value = default
|
|
|
|
def default(self):
|
|
if not hasattr(self, "default_value"):
|
|
raise DefaultMissing
|
|
return self.default_value
|
|
|
|
def process(self, x):
|
|
return x
|
|
|
|
def describe(self):
|
|
d = {"ty": self.__class__.__name__}
|
|
if hasattr(self, "default_value"):
|
|
d["default"] = self.default_value
|
|
return d
|
|
|
|
|
|
class PYONValue(_SimpleArgProcessor):
|
|
"""An argument that can be any PYON-serializable value."""
|
|
def __init__(self, default=NoDefault):
|
|
# Override the _SimpleArgProcessor init, as list defaults are valid
|
|
# PYON values
|
|
if default is not NoDefault:
|
|
self.default_value = default
|
|
|
|
def process(self, x):
|
|
return pyon.decode(x)
|
|
|
|
def describe(self):
|
|
d = {"ty": self.__class__.__name__}
|
|
if hasattr(self, "default_value"):
|
|
d["default"] = pyon.encode(self.default_value)
|
|
return d
|
|
|
|
|
|
class BooleanValue(_SimpleArgProcessor):
|
|
"""A boolean argument."""
|
|
pass
|
|
|
|
|
|
class EnumerationValue(_SimpleArgProcessor):
|
|
"""An argument that can take a string value among a predefined set of
|
|
values.
|
|
|
|
:param choices: A list of string representing the possible values of the
|
|
argument.
|
|
"""
|
|
def __init__(self, choices, default=NoDefault):
|
|
_SimpleArgProcessor.__init__(self, default)
|
|
assert default is NoDefault or default in choices
|
|
self.choices = choices
|
|
|
|
def describe(self):
|
|
d = _SimpleArgProcessor.describe(self)
|
|
d["choices"] = self.choices
|
|
return d
|
|
|
|
class NumberValue(_SimpleArgProcessor):
|
|
"""An argument that can take a numerical value.
|
|
|
|
If ndecimals = 0, scale = 1 and step is integer, then it returns
|
|
an integer value. Otherwise, it returns a floating point value.
|
|
The simplest way to represent an integer argument is
|
|
``NumberValue(step=1, ndecimals=0)``.
|
|
|
|
When ``scale`` is not specified, and the unit is a common one (i.e.
|
|
defined in ``artiq.language.units``), then the scale is obtained from
|
|
the unit using a simple string match. For example, milliseconds (``"ms"``)
|
|
units set the scale to 0.001. No unit (default) corresponds to a scale of
|
|
1.0.
|
|
|
|
For arguments with uncommon or complex units, use both the unit parameter
|
|
(a string for display) and the scale parameter (a numerical scale for
|
|
experiments).
|
|
For example, ``NumberValue(1, unit="xyz", scale=0.001)`` will display as
|
|
1 xyz in the GUI window because of the unit setting, and appear as the
|
|
numerical value 0.001 in the code because of the scale setting.
|
|
|
|
:param unit: A string representing the unit of the value.
|
|
:param scale: A numerical scaling factor by which the displayed value is
|
|
multiplied when referenced in the experiment.
|
|
:param step: The step with which the value should be modified by up/down
|
|
buttons in a UI. The default is the scale divided by 10.
|
|
:param min: The minimum value of the argument.
|
|
:param max: The maximum value of the argument.
|
|
:param ndecimals: The number of decimals a UI should use.
|
|
"""
|
|
def __init__(self, default=NoDefault, unit="", scale=None,
|
|
step=None, min=None, max=None, ndecimals=2):
|
|
if scale is None:
|
|
if unit == "":
|
|
scale = 1.0
|
|
else:
|
|
try:
|
|
scale = getattr(units, unit)
|
|
except AttributeError:
|
|
raise KeyError("Unit {} is unknown, you must specify "
|
|
"the scale manually".format(unit))
|
|
if step is None:
|
|
step = scale/10.0
|
|
if default is not NoDefault:
|
|
self.default_value = default
|
|
self.unit = unit
|
|
self.scale = scale
|
|
self.step = step
|
|
self.min = min
|
|
self.max = max
|
|
self.ndecimals = ndecimals
|
|
|
|
def _is_int(self):
|
|
return (self.ndecimals == 0
|
|
and int(self.step) == self.step
|
|
and self.scale == 1)
|
|
|
|
def default(self):
|
|
if not hasattr(self, "default_value"):
|
|
raise DefaultMissing
|
|
if self._is_int():
|
|
return int(self.default_value)
|
|
else:
|
|
return float(self.default_value)
|
|
|
|
def process(self, x):
|
|
if self._is_int():
|
|
return int(x)
|
|
else:
|
|
return float(x)
|
|
|
|
def describe(self):
|
|
d = {"ty": self.__class__.__name__}
|
|
if hasattr(self, "default_value"):
|
|
d["default"] = self.default_value
|
|
d["unit"] = self.unit
|
|
d["scale"] = self.scale
|
|
d["step"] = self.step
|
|
d["min"] = self.min
|
|
d["max"] = self.max
|
|
d["ndecimals"] = self.ndecimals
|
|
return d
|
|
|
|
|
|
class StringValue(_SimpleArgProcessor):
|
|
"""A string argument."""
|
|
pass
|
|
|
|
|
|
class TraceArgumentManager:
|
|
def __init__(self):
|
|
self.requested_args = OrderedDict()
|
|
|
|
def get(self, key, processor, group, tooltip):
|
|
self.requested_args[key] = processor, group, tooltip
|
|
return None
|
|
|
|
|
|
class ProcessArgumentManager:
|
|
def __init__(self, unprocessed_arguments):
|
|
self.unprocessed_arguments = unprocessed_arguments
|
|
|
|
def get(self, key, processor, group, tooltip):
|
|
if key in self.unprocessed_arguments:
|
|
r = processor.process(self.unprocessed_arguments[key])
|
|
else:
|
|
r = processor.default()
|
|
return r
|
|
|
|
|
|
class HasEnvironment:
|
|
"""Provides methods to manage the environment of an experiment (arguments,
|
|
devices, datasets)."""
|
|
def __init__(self, managers_or_parent, *args, **kwargs):
|
|
self.children = []
|
|
if isinstance(managers_or_parent, tuple):
|
|
self.__device_mgr = managers_or_parent[0]
|
|
self.__dataset_mgr = managers_or_parent[1]
|
|
self.__argument_mgr = managers_or_parent[2]
|
|
self.__scheduler_defaults = managers_or_parent[3]
|
|
else:
|
|
self.__device_mgr = managers_or_parent.__device_mgr
|
|
self.__dataset_mgr = managers_or_parent.__dataset_mgr
|
|
self.__argument_mgr = managers_or_parent.__argument_mgr
|
|
self.__scheduler_defaults = {}
|
|
managers_or_parent.register_child(self)
|
|
|
|
self.__in_build = True
|
|
self.build(*args, **kwargs)
|
|
self.__in_build = False
|
|
|
|
def register_child(self, child):
|
|
self.children.append(child)
|
|
|
|
def build(self):
|
|
"""Should be implemented by the user to request arguments.
|
|
|
|
Other initialization steps such as requesting devices may also be
|
|
performed here.
|
|
|
|
There are two situations where the requested devices are replaced by
|
|
``DummyDevice()`` and arguments are set to their defaults (or ``None``)
|
|
instead: when the repository is scanned to build the list of
|
|
available experiments and when the dataset browser ``artiq_browser``
|
|
is used to open or run the analysis stage of an experiment. Do not
|
|
rely on being able to operate on devices or arguments in :meth:`build`.
|
|
|
|
Datasets are read-only in this method.
|
|
|
|
Leftover positional and keyword arguments from the constructor are
|
|
forwarded to this method. This is intended for experiments that are
|
|
only meant to be executed programmatically (not from the GUI)."""
|
|
pass
|
|
|
|
def get_argument(self, key, processor, group=None, tooltip=None):
|
|
"""Retrieves and returns the value of an argument.
|
|
|
|
This function should only be called from ``build``.
|
|
|
|
:param key: Name of the argument.
|
|
:param processor: A description of how to process the argument, such
|
|
as instances of ``BooleanValue`` and ``NumberValue``.
|
|
:param group: An optional string that defines what group the argument
|
|
belongs to, for user interface purposes.
|
|
:param tooltip: An optional string to describe the argument in more
|
|
detail, applied as a tooltip to the argument name in the user
|
|
interface.
|
|
"""
|
|
if not self.__in_build:
|
|
raise TypeError("get_argument() should only "
|
|
"be called from build()")
|
|
return self.__argument_mgr.get(key, processor, group, tooltip)
|
|
|
|
def setattr_argument(self, key, processor=None, group=None, tooltip=None):
|
|
"""Sets an argument as attribute. The names of the argument and of the
|
|
attribute are the same.
|
|
|
|
The key is added to the instance's kernel invariants."""
|
|
setattr(self, key, self.get_argument(key, processor, group, tooltip))
|
|
kernel_invariants = getattr(self, "kernel_invariants", set())
|
|
self.kernel_invariants = kernel_invariants | {key}
|
|
|
|
def get_device_db(self):
|
|
"""Returns the full contents of the device database."""
|
|
return self.__device_mgr.get_device_db()
|
|
|
|
def get_device(self, key):
|
|
"""Creates and returns a device driver."""
|
|
return self.__device_mgr.get(key)
|
|
|
|
def setattr_device(self, key):
|
|
"""Sets a device driver as attribute. The names of the device driver
|
|
and of the attribute are the same.
|
|
|
|
The key is added to the instance's kernel invariants."""
|
|
setattr(self, key, self.get_device(key))
|
|
kernel_invariants = getattr(self, "kernel_invariants", set())
|
|
self.kernel_invariants = kernel_invariants | {key}
|
|
|
|
@rpc(flags={"async"})
|
|
def set_dataset(self, key, value,
|
|
broadcast=False, persist=False, archive=True, save=None):
|
|
"""Sets the contents and handling modes of a dataset.
|
|
|
|
Datasets must be scalars (``bool``, ``int``, ``float`` or NumPy scalar)
|
|
or NumPy arrays.
|
|
|
|
:param broadcast: the data is sent in real-time to the master, which
|
|
dispatches it.
|
|
:param persist: the master should store the data on-disk. Implies
|
|
broadcast.
|
|
:param archive: the data is saved into the local storage of the current
|
|
run (archived as a HDF5 file).
|
|
:param save: deprecated.
|
|
"""
|
|
if save is not None:
|
|
warnings.warn("set_dataset save parameter is deprecated, "
|
|
"use archive instead", FutureWarning)
|
|
archive = save
|
|
self.__dataset_mgr.set(key, value, broadcast, persist, archive)
|
|
|
|
@rpc(flags={"async"})
|
|
def mutate_dataset(self, key, index, value):
|
|
"""Mutate an existing dataset at the given index (e.g. set a value at
|
|
a given position in a NumPy array)
|
|
|
|
If the dataset was created in broadcast mode, the modification is
|
|
immediately transmitted.
|
|
|
|
If the index is a tuple of integers, it is interpreted as
|
|
``slice(*index)``.
|
|
If the index is a tuple of tuples, each sub-tuple is interpreted
|
|
as ``slice(*sub_tuple)`` (multi-dimensional slicing)."""
|
|
self.__dataset_mgr.mutate(key, index, value)
|
|
|
|
@rpc(flags={"async"})
|
|
def append_to_dataset(self, key, value):
|
|
"""Append a value to a dataset.
|
|
|
|
The target dataset must be a list (i.e. support ``append()``), and must
|
|
have previously been set from this experiment.
|
|
|
|
The broadcast/persist/archive mode of the given key remains unchanged
|
|
from when the dataset was last set. Appended values are transmitted
|
|
efficiently as incremental modifications in broadcast mode."""
|
|
self.__dataset_mgr.append_to(key, value)
|
|
|
|
def get_dataset(self, key, default=NoDefault, archive=True):
|
|
"""Returns the contents of a dataset.
|
|
|
|
The local storage is searched first, followed by the master storage
|
|
(which contains the broadcasted datasets from all experiments) if the
|
|
key was not found initially.
|
|
|
|
If the dataset does not exist, returns the default value. If no default
|
|
is provided, raises ``KeyError``.
|
|
|
|
By default, datasets obtained by this method are archived into the output
|
|
HDF5 file of the experiment. If an archived dataset is requested more
|
|
than one time (and therefore its value has potentially changed) or is
|
|
modified, a warning is emitted.
|
|
|
|
:param archive: Set to ``False`` to prevent archival together with the run's results.
|
|
Default is ``True``
|
|
"""
|
|
try:
|
|
return self.__dataset_mgr.get(key, archive)
|
|
except KeyError:
|
|
if default is NoDefault:
|
|
raise
|
|
else:
|
|
return default
|
|
|
|
def setattr_dataset(self, key, default=NoDefault, archive=True):
|
|
"""Sets the contents of a dataset as attribute. The names of the
|
|
dataset and of the attribute are the same."""
|
|
setattr(self, key, self.get_dataset(key, default, archive))
|
|
|
|
def set_default_scheduling(self, priority=None, pipeline_name=None, flush=None):
|
|
"""Sets the default scheduling options.
|
|
|
|
This function should only be called from ``build``."""
|
|
if not self.__in_build:
|
|
raise TypeError("set_default_scheduling() should only "
|
|
"be called from build()")
|
|
|
|
if priority is not None:
|
|
self.__scheduler_defaults["priority"] = int(priority)
|
|
if pipeline_name is not None:
|
|
self.__scheduler_defaults["pipeline_name"] = pipeline_name
|
|
if flush is not None:
|
|
self.__scheduler_defaults["flush"] = flush
|
|
|
|
|
|
class Experiment:
|
|
"""Base class for top-level experiments.
|
|
|
|
Deriving from this class enables automatic experiment discovery in
|
|
Python modules.
|
|
"""
|
|
def prepare(self):
|
|
"""Entry point for pre-computing data necessary for running the
|
|
experiment.
|
|
|
|
Doing such computations outside of :meth:`run` enables more efficient
|
|
scheduling of multiple experiments that need to access the shared
|
|
hardware during part of their execution.
|
|
|
|
This method must not interact with the hardware.
|
|
"""
|
|
pass
|
|
|
|
def run(self):
|
|
"""The main entry point of the experiment.
|
|
|
|
This method must be overloaded by the user to implement the main
|
|
control flow of the experiment.
|
|
|
|
This method may interact with the hardware.
|
|
|
|
The experiment may call the scheduler's :meth:`pause` method while in
|
|
:meth:`run`.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def analyze(self):
|
|
"""Entry point for analyzing the results of the experiment.
|
|
|
|
This method may be overloaded by the user to implement the analysis
|
|
phase of the experiment, for example fitting curves.
|
|
|
|
Splitting this phase from :meth:`run` enables tweaking the analysis
|
|
algorithm on pre-existing data, and CPU-bound analyses to be run
|
|
overlapped with the next experiment in a pipelined manner.
|
|
|
|
This method must not interact with the hardware.
|
|
"""
|
|
pass
|
|
|
|
|
|
class EnvExperiment(Experiment, HasEnvironment):
|
|
"""Base class for top-level experiments that use the
|
|
:class:`~artiq.language.environment.HasEnvironment` environment manager.
|
|
|
|
Most experiments should derive from this class."""
|
|
def prepare(self):
|
|
"""This default prepare method calls :meth:`~artiq.language.environment.Experiment.prepare`
|
|
for all children, in the order of instantiation, if the child has a
|
|
:meth:`~artiq.language.environment.Experiment.prepare` method."""
|
|
for child in self.children:
|
|
if hasattr(child, "prepare"):
|
|
child.prepare()
|
|
|
|
|
|
def is_experiment(o):
|
|
"""Checks if a Python object is a top-level experiment class."""
|
|
return (isclass(o)
|
|
and issubclass(o, Experiment)
|
|
and o is not Experiment
|
|
and o is not EnvExperiment)
|