artiq/artiq/compiler/embedding.py

372 lines
15 KiB
Python

"""
The :class:`Stitcher` class allows to transparently combine compiled
Python code and Python code executed on the host system: it resolves
the references to the host objects and translates the functions
annotated as ``@kernel`` when they are referenced.
"""
import os, re, linecache, inspect
from collections import OrderedDict
from pythonparser import ast, source, diagnostic, parse_buffer
from . import types, builtins, asttyped, prelude
from .transforms import ASTTypedRewriter, Inferencer, IntMonomorphizer
class ASTSynthesizer:
def __init__(self, expanded_from=None):
self.source = ""
self.source_buffer = source.Buffer(self.source, "<synthesized>")
self.expanded_from = expanded_from
def finalize(self):
self.source_buffer.source = self.source
return self.source_buffer
def _add(self, fragment):
range_from = len(self.source)
self.source += fragment
range_to = len(self.source)
return source.Range(self.source_buffer, range_from, range_to,
expanded_from=self.expanded_from)
def quote(self, value):
"""Construct an AST fragment equal to `value`."""
if value is None:
typ = builtins.TNone()
return asttyped.NameConstantT(value=value, type=typ,
loc=self._add(repr(value)))
elif value is True or value is False:
typ = builtins.TBool()
return asttyped.NameConstantT(value=value, type=typ,
loc=self._add(repr(value)))
elif isinstance(value, (int, float)):
if isinstance(value, int):
typ = builtins.TInt()
elif isinstance(value, float):
typ = builtins.TFloat()
return asttyped.NumT(n=value, ctx=None, type=typ,
loc=self._add(repr(value)))
elif isinstance(value, str):
return asttyped.StrT(s=value, ctx=None, type=builtins.TStr(),
loc=self._add(repr(value)))
elif isinstance(value, list):
begin_loc = self._add("[")
elts = []
for index, elt in enumerate(value):
elts.append(self.quote(elt))
if index < len(value) - 1:
self._add(", ")
end_loc = self._add("]")
return asttyped.ListT(elts=elts, ctx=None, type=builtins.TList(),
begin_loc=begin_loc, end_loc=end_loc,
loc=begin_loc.join(end_loc))
else:
raise "no"
# return asttyped.QuoteT(value=value, type=types.TVar())
def call(self, function_node, args, kwargs):
"""
Construct an AST fragment calling a function specified by
an AST node `function_node`, with given arguments.
"""
arg_nodes = []
kwarg_nodes = []
kwarg_locs = []
name_loc = self._add(function_node.name)
begin_loc = self._add("(")
for index, arg in enumerate(args):
arg_nodes.append(self.quote(arg))
if index < len(args) - 1:
self._add(", ")
if any(args) and any(kwargs):
self._add(", ")
for index, kw in enumerate(kwargs):
arg_loc = self._add(kw)
equals_loc = self._add("=")
kwarg_locs.append((arg_loc, equals_loc))
kwarg_nodes.append(self.quote(kwargs[kw]))
if index < len(kwargs) - 1:
self._add(", ")
end_loc = self._add(")")
return asttyped.CallT(
func=asttyped.NameT(id=function_node.name, ctx=None,
type=function_node.signature_type,
loc=name_loc),
args=arg_nodes,
keywords=[ast.keyword(arg=kw, value=value,
arg_loc=arg_loc, equals_loc=equals_loc,
loc=arg_loc.join(value.loc))
for kw, value, (arg_loc, equals_loc)
in zip(kwargs, kwarg_nodes, kwarg_locs)],
starargs=None, kwargs=None,
type=types.TVar(),
begin_loc=begin_loc, end_loc=end_loc, star_loc=None, dstar_loc=None,
loc=name_loc.join(end_loc))
class StitchingASTTypedRewriter(ASTTypedRewriter):
def __init__(self, engine, prelude, globals, host_environment, quote_function):
super().__init__(engine, prelude)
self.globals = globals
self.env_stack.append(self.globals)
self.host_environment = host_environment
self.quote_function = quote_function
def visit_Name(self, node):
typ = super()._try_find_name(node.id)
if typ is not None:
# Value from device environment.
return asttyped.NameT(type=typ, id=node.id, ctx=node.ctx,
loc=node.loc)
else:
# Try to find this value in the host environment and quote it.
if node.id in self.host_environment:
value = self.host_environment[node.id]
if inspect.isfunction(value):
# It's a function. We need to translate the function and insert
# a reference to it.
function_name = self.quote_function(value, node.loc)
return asttyped.NameT(id=function_name, ctx=None,
type=self.globals[function_name],
loc=node.loc)
else:
# It's just a value. Quote it.
synthesizer = ASTSynthesizer(expanded_from=node.loc)
node = synthesizer.quote(value)
synthesizer.finalize()
return node
else:
diag = diagnostic.Diagnostic("fatal",
"name '{name}' is not bound to anything", {"name":node.id},
node.loc)
self.engine.process(diag)
class Stitcher:
def __init__(self, engine=None):
if engine is None:
self.engine = diagnostic.Engine(all_errors_are_fatal=True)
else:
self.engine = engine
self.name = ""
self.typedtree = []
self.prelude = prelude.globals()
self.globals = {}
self.functions = {}
self.next_rpc = 0
self.rpc_map = {}
self.inverse_rpc_map = {}
def _map(self, obj):
obj_id = id(obj)
if obj_id in self.inverse_rpc_map:
return self.inverse_rpc_map[obj_id]
self.next_rpc += 1
self.rpc_map[self.next_rpc] = obj
self.inverse_rpc_map[obj_id] = self.next_rpc
return self.next_rpc
def _iterate(self):
inferencer = Inferencer(engine=self.engine)
# Iterate inference to fixed point.
self.inference_finished = False
while not self.inference_finished:
self.inference_finished = True
inferencer.visit(self.typedtree)
# After we have found all functions, synthesize a module to hold them.
source_buffer = source.Buffer("", "<synthesized>")
self.typedtree = asttyped.ModuleT(
typing_env=self.globals, globals_in_scope=set(),
body=self.typedtree, loc=source.Range(source_buffer, 0, 0))
def _quote_embedded_function(self, function):
if not hasattr(function, "artiq_embedded"):
raise ValueError("{} is not an embedded function".format(repr(function)))
# Extract function source.
embedded_function = function.artiq_embedded.function
source_code = inspect.getsource(embedded_function)
filename = embedded_function.__code__.co_filename
module_name, _ = os.path.splitext(os.path.basename(filename))
first_line = embedded_function.__code__.co_firstlineno
# Extract function environment.
host_environment = dict()
host_environment.update(embedded_function.__globals__)
cells = embedded_function.__closure__
cell_names = embedded_function.__code__.co_freevars
host_environment.update({var: cells[index] for index, var in enumerate(cell_names)})
# Parse.
source_buffer = source.Buffer(source_code, filename, first_line)
parsetree, comments = parse_buffer(source_buffer, engine=self.engine)
function_node = parsetree.body[0]
# Mangle the name, since we put everything into a single module.
function_node.name = "{}.{}".format(module_name, function_node.name)
# Normally, LocalExtractor would populate the typing environment
# of the module with the function name. However, since we run
# ASTTypedRewriter on the function node directly, we need to do it
# explicitly.
self.globals[function_node.name] = types.TVar()
# Memoize the function before typing it to handle recursive
# invocations.
self.functions[function] = function_node.name
# Rewrite into typed form.
asttyped_rewriter = StitchingASTTypedRewriter(
engine=self.engine, prelude=self.prelude,
globals=self.globals, host_environment=host_environment,
quote_function=self._quote_function)
return asttyped_rewriter.visit(function_node)
def _function_loc(self, function):
filename = function.__code__.co_filename
line = function.__code__.co_firstlineno
name = function.__code__.co_name
source_line = linecache.getline(filename, line)
column = re.search("def", source_line).start(0)
source_buffer = source.Buffer(source_line, filename, line)
return source.Range(source_buffer, column, column)
def _function_def_note(self, function):
return diagnostic.Diagnostic("note",
"definition of function '{function}'",
{"function": function.__name__},
self._function_loc(function))
def _extract_annot(self, function, annot, kind, call_loc):
if not isinstance(annot, types.Type):
note = diagnostic.Diagnostic("note",
"in function called remotely here", {},
call_loc)
diag = diagnostic.Diagnostic("error",
"type annotation for {kind}, '{annot}', is not an ARTIQ type",
{"kind": kind, "annot": repr(annot)},
self._function_loc(function),
notes=[note])
self.engine.process(diag)
return types.TVar()
else:
return annot
def _type_of_param(self, function, loc, param):
if param.annotation is not inspect.Parameter.empty:
# Type specified explicitly.
return self._extract_annot(function, param.annotation,
"argument {}".format(param.name), loc)
elif param.default is not inspect.Parameter.empty:
# Try and infer the type from the default value.
# This is tricky, because the default value might not have
# a well-defined type in APython.
# In this case, we bail out, but mention why we do it.
synthesizer = ASTSynthesizer()
ast = synthesizer.quote(param.default)
synthesizer.finalize()
def proxy_diagnostic(diag):
note = diagnostic.Diagnostic("note",
"expanded from here while trying to infer a type for an"
" unannotated optional argument '{param_name}' from its default value",
{"param_name": param.name},
loc)
diag.notes.append(note)
diag.notes.append(self._function_def_note(function))
self.engine.process(diag)
proxy_engine = diagnostic.Engine()
proxy_engine.process = proxy_diagnostic
Inferencer(engine=proxy_engine).visit(ast)
IntMonomorphizer(engine=proxy_engine).visit(ast)
return ast.type
else:
# Let the rest of the program decide.
return types.TVar()
def _quote_rpc_function(self, function, loc):
signature = inspect.signature(function)
arg_types = OrderedDict()
optarg_types = OrderedDict()
for param in signature.parameters.values():
if param.kind not in (inspect.Parameter.POSITIONAL_ONLY,
inspect.Parameter.POSITIONAL_OR_KEYWORD):
# We pretend we don't see *args, kwpostargs=..., **kwargs.
# Since every method can be still invoked without any arguments
# going into *args and the slots after it, this is always safe,
# if sometimes constraining.
#
# Accepting POSITIONAL_ONLY is OK, because the compiler
# desugars the keyword arguments into positional ones internally.
continue
if param.default is inspect.Parameter.empty:
arg_types[param.name] = self._type_of_param(function, loc, param)
else:
optarg_types[param.name] = self._type_of_param(function, loc, param)
if signature.return_annotation is not inspect.Signature.empty:
ret_type = self._extract_annot(function, signature.return_annotation,
"return type", loc)
else:
diag = diagnostic.Diagnostic("fatal",
"function must have a return type specified to be called remotely", {},
self._function_loc(function))
self.engine.process(diag)
rpc_type = types.TRPCFunction(arg_types, optarg_types, ret_type,
service=self._map(function))
rpc_name = "__rpc_{}__".format(rpc_type.service)
self.globals[rpc_name] = rpc_type
self.functions[function] = rpc_name
return rpc_name
def _quote_function(self, function, loc):
if function in self.functions:
return self.functions[function]
if hasattr(function, "artiq_embedded"):
# Insert the typed AST for the new function and restart inference.
# It doesn't really matter where we insert as long as it is before
# the final call.
function_node = self._quote_embedded_function(function)
self.typedtree.insert(0, function_node)
self.inference_finished = False
return function_node.name
else:
# Insert a storage-less global whose type instructs the compiler
# to perform an RPC instead of a regular call.
return self._quote_rpc_function(function, loc)
def stitch_call(self, function, args, kwargs):
function_node = self._quote_embedded_function(function)
self.typedtree.append(function_node)
# We synthesize source code for the initial call so that
# diagnostics would have something meaningful to display to the user.
synthesizer = ASTSynthesizer()
call_node = synthesizer.call(function_node, args, kwargs)
synthesizer.finalize()
self.typedtree.append(call_node)
self._iterate()