artiq/artiq/compiler/targets.py
whitequark 1d8b0d46bc compiler: mark FFI functions as ModRef=Ref using TBAA metadata.
Fascinatingly, the fact that you can mark call instructions with
!tbaa metadata is completely undocumented. Regardless, it is true:
a !tbaa metadata for an "immutable" type will cause
AliasAnalysis::getModRefBehavior to return OnlyReadsMemory for that
call site.

Don't bother marking loads with TBAA yet since we already place
!load.invariant on them (which is as good as the TBAA "immutable"
flag) and after that we're limited by lack of !nonnull anyway.

Also, add TBAA analysis passes in our pipeline to actually engage it.
2016-03-28 02:52:15 +00:00

228 lines
8.2 KiB
Python

import os, sys, tempfile, subprocess
from artiq.compiler import types
from llvmlite_artiq import ir as ll, binding as llvm
llvm.initialize()
llvm.initialize_all_targets()
llvm.initialize_all_asmprinters()
class RunTool:
def __init__(self, pattern, **tempdata):
self.files = []
self.pattern = pattern
self.tempdata = tempdata
def maketemp(self, data):
f = tempfile.NamedTemporaryFile()
f.write(data)
f.flush()
self.files.append(f)
return f
def __enter__(self):
tempfiles = {}
tempnames = {}
for key in self.tempdata:
tempfiles[key] = self.maketemp(self.tempdata[key])
tempnames[key] = tempfiles[key].name
cmdline = []
for argument in self.pattern:
cmdline.append(argument.format(**tempnames))
process = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
if process.returncode != 0:
raise Exception("{} invocation failed: {}".
format(cmdline[0], stderr.decode('utf-8')))
tempfiles["__stdout__"] = stdout.decode('utf-8')
return tempfiles
def __exit__(self, exc_typ, exc_value, exc_trace):
for f in self.files:
f.close()
def _dump(target, kind, suffix, content):
if target is not None:
print("====== {} DUMP ======".format(kind.upper()), file=sys.stderr)
content_bytes = bytes(content(), 'utf-8')
if target == "":
file = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
else:
file = open(target + suffix, "wb")
file.write(content_bytes)
file.close()
print("{} dumped as {}".format(kind, file.name), file=sys.stderr)
class Target:
"""
A description of the target environment where the binaries
generated by the ARTIQ compiler will be deployed.
:var triple: (string)
LLVM target triple, e.g. ``"or1k"``
:var data_layout: (string)
LLVM target data layout, e.g. ``"E-m:e-p:32:32-i64:32-f64:32-v64:32-v128:32-a:0:32-n32"``
:var features: (list of string)
LLVM target CPU features, e.g. ``["mul", "div", "ffl1"]``
:var print_function: (string)
Name of a formatted print functions (with the signature of ``printf``)
provided by the target, e.g. ``"printf"``.
"""
triple = "unknown"
data_layout = ""
features = []
print_function = "printf"
def __init__(self):
self.llcontext = ll.Context()
def target_machine(self):
lltarget = llvm.Target.from_triple(self.triple)
return lltarget.create_target_machine(
features=",".join(["+{}".format(f) for f in self.features]),
reloc="pic", codemodel="default")
def optimize(self, llmodule):
llpassmgr = llvm.create_module_pass_manager()
self.target_machine().target_data.add_pass(llpassmgr)
# Register our alias analysis passes.
llpassmgr.add_basic_alias_analysis_pass()
llpassmgr.add_type_based_alias_analysis_pass()
# Start by cleaning up after our codegen and exposing as much
# information to LLVM as possible.
llpassmgr.add_constant_merge_pass()
llpassmgr.add_cfg_simplification_pass()
llpassmgr.add_instruction_combining_pass()
llpassmgr.add_sroa_pass()
llpassmgr.add_dead_code_elimination_pass()
llpassmgr.add_function_attrs_pass()
llpassmgr.add_global_optimizer_pass()
# Now, actually optimize the code.
llpassmgr.add_function_inlining_pass(275)
llpassmgr.add_ipsccp_pass()
llpassmgr.add_instruction_combining_pass()
llpassmgr.add_gvn_pass()
llpassmgr.add_cfg_simplification_pass()
llpassmgr.add_licm_pass()
# Clean up after optimizing.
llpassmgr.add_dead_arg_elimination_pass()
llpassmgr.add_global_dce_pass()
llpassmgr.run(llmodule)
def compile(self, module):
"""Compile the module to a relocatable object for this target."""
if os.getenv("ARTIQ_DUMP_SIG"):
print("====== MODULE_SIGNATURE DUMP ======", file=sys.stderr)
print(module, file=sys.stderr)
type_printer = types.TypePrinter()
_dump(os.getenv("ARTIQ_DUMP_IR"), "ARTIQ IR", ".txt",
lambda: "\n".join(fn.as_entity(type_printer) for fn in module.artiq_ir))
llmod = module.build_llvm_ir(self)
try:
llparsedmod = llvm.parse_assembly(str(llmod))
llparsedmod.verify()
except RuntimeError:
_dump("", "LLVM IR (broken)", ".ll", lambda: str(llmod))
raise
_dump(os.getenv("ARTIQ_DUMP_UNOPT_LLVM"), "LLVM IR (generated)", "_unopt.ll",
lambda: str(llparsedmod))
self.optimize(llparsedmod)
_dump(os.getenv("ARTIQ_DUMP_LLVM"), "LLVM IR (optimized)", ".ll",
lambda: str(llparsedmod))
return llparsedmod
def assemble(self, llmodule):
llmachine = self.target_machine()
_dump(os.getenv("ARTIQ_DUMP_ASM"), "Assembly", ".s",
lambda: llmachine.emit_assembly(llmodule))
return llmachine.emit_object(llmodule)
def link(self, objects, init_fn):
"""Link the relocatable objects into a shared library for this target."""
with RunTool([self.triple + "-ld", "-shared", "--eh-frame-hdr", "-init", init_fn] +
["{{obj{}}}".format(index) for index in range(len(objects))] +
["-o", "{output}"],
output=b"",
**{"obj{}".format(index): obj for index, obj in enumerate(objects)}) \
as results:
library = results["output"].read()
_dump(os.getenv("ARTIQ_DUMP_ELF"), "Shared library", ".so",
lambda: library)
return library
def compile_and_link(self, modules):
return self.link([self.assemble(self.compile(module)) for module in modules],
init_fn=modules[0].entry_point())
def strip(self, library):
with RunTool([self.triple + "-strip", "--strip-debug", "{library}", "-o", "{output}"],
library=library, output=b"") \
as results:
return results["output"].read()
def symbolize(self, library, addresses):
if addresses == []:
return []
# We got a list of return addresses, i.e. addresses of instructions
# just after the call. Offset them back to get an address somewhere
# inside the call instruction (or its delay slot), since that's what
# the backtrace entry should point at.
offset_addresses = [hex(addr - 1) for addr in addresses]
with RunTool([self.triple + "-addr2line", "--addresses", "--functions", "--inlines",
"--exe={library}"] + offset_addresses,
library=library) \
as results:
lines = iter(results["__stdout__"].rstrip().split("\n"))
backtrace = []
while True:
try:
address_or_function = next(lines)
except StopIteration:
break
if address_or_function[:2] == "0x":
address = int(address_or_function[2:], 16) + 1 # remove offset
function = next(lines)
else:
address = backtrace[-1][4] # inlined
function = address_or_function
location = next(lines)
filename, line = location.rsplit(":", 1)
if filename == "??" or filename == "<synthesized>":
continue
# can't get column out of addr2line D:
backtrace.append((filename, int(line), -1, function, address))
return backtrace
class NativeTarget(Target):
def __init__(self):
super().__init__()
self.triple = llvm.get_default_triple()
class OR1KTarget(Target):
triple = "or1k-linux"
data_layout = "E-m:e-p:32:32-i64:32-f64:32-v64:32-v128:32-a:0:32-n32"
features = ["mul", "div", "ffl1", "cmov", "addc"]
print_function = "core_log"