forked from M-Labs/artiq
examples: add fit_image
This commit is contained in:
parent
3c624c777a
commit
590bedbd1e
138
examples/fit_image.py
Normal file
138
examples/fit_image.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import numpy as np
|
||||||
|
from scipy.optimize import least_squares
|
||||||
|
from scipy import constants
|
||||||
|
# from numba import jit
|
||||||
|
|
||||||
|
|
||||||
|
class Fit:
|
||||||
|
variables = [] # fixed ordering
|
||||||
|
|
||||||
|
def build(self, data, meta):
|
||||||
|
self.data = data
|
||||||
|
self.meta = meta
|
||||||
|
|
||||||
|
def variables_dict(self, param):
|
||||||
|
return dict(zip(self.variables, param))
|
||||||
|
|
||||||
|
def guess(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def model(self, *param, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def fit(self, *param, **kwargs):
|
||||||
|
def fun(x, *args, **kwargs):
|
||||||
|
return (self.model(x, *args, **kwargs) - self.data).ravel()
|
||||||
|
|
||||||
|
try:
|
||||||
|
mjac = self.model_jacobian
|
||||||
|
|
||||||
|
def jac(x, *args, **kwargs):
|
||||||
|
return mjac(x, *args, **kwargs).reshape(-1, x.size)
|
||||||
|
except AttributeError:
|
||||||
|
jac = "2-point"
|
||||||
|
|
||||||
|
res = least_squares(fun, param, jac, **kwargs)
|
||||||
|
_, s, v = np.linalg.svd(res.jac, full_matrices=False)
|
||||||
|
threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
|
||||||
|
s = s[s > threshold]
|
||||||
|
v = v[:s.size]
|
||||||
|
pcov = np.dot(v.T/s**2, v)
|
||||||
|
return res.x, pcov
|
||||||
|
|
||||||
|
def process(self, cov, *param):
|
||||||
|
return self.variables_dict(param)
|
||||||
|
|
||||||
|
def run(self, data, meta, **kwargs):
|
||||||
|
self.build(data, meta)
|
||||||
|
param = self.guess()
|
||||||
|
param, cov = self.fit(*param, **kwargs)
|
||||||
|
results = self.process(cov, *param)
|
||||||
|
return param, results
|
||||||
|
|
||||||
|
|
||||||
|
def od_to_n(od, meta):
|
||||||
|
return (od*meta["pitch_x"]*meta["pitch_x"] *
|
||||||
|
(1.+4.*meta["detuning"]**2)/meta["sigma0"])
|
||||||
|
|
||||||
|
|
||||||
|
def area_gauss(p, h, w):
|
||||||
|
return 2.*np.pi*p*abs(w*h)
|
||||||
|
|
||||||
|
|
||||||
|
def area_parabola(p, h, w):
|
||||||
|
return p*2/5.*np.pi/abs(w*h)**.5
|
||||||
|
|
||||||
|
|
||||||
|
def t_gauss(mass, omega, width, tof):
|
||||||
|
return mass/constants.Boltzmann*(omega*width)**2/(1. + (tof*omega)**2)
|
||||||
|
|
||||||
|
|
||||||
|
class Fit2DGaussParabola(Fit):
|
||||||
|
variables = ["i_offset", "x_center", "y_center",
|
||||||
|
"a_parabola", "v_parabola", "w_parabola",
|
||||||
|
"a_gauss", "v_gauss", "w_gauss"]
|
||||||
|
|
||||||
|
def build(self, data, meta):
|
||||||
|
super(Fit2DGaussParabola, self).build(data, meta)
|
||||||
|
self.xy = np.ogrid[:data.shape[0], :data.shape[1]]
|
||||||
|
|
||||||
|
def guess(self):
|
||||||
|
# TODO: this is usually smarter, based on self.data and self.meta
|
||||||
|
return [1000, 100, 100, 2000, 4, 4, 2000, 20, 20]
|
||||||
|
|
||||||
|
# @jit
|
||||||
|
def model(self, param):
|
||||||
|
p = self.variables_dict(param)
|
||||||
|
x, y = self.xy
|
||||||
|
x2 = (x - p["x_center"])**2
|
||||||
|
y2 = (y - p["y_center"])**2
|
||||||
|
gauss = p["a_gauss"]*np.exp(
|
||||||
|
-(x2/p["v_gauss"]**2 + y2/p["w_gauss"]**2)/2)
|
||||||
|
r = 1 - p["v_parabola"]*x2 - p["w_parabola"]*y2
|
||||||
|
parabola = p["a_parabola"]*np.where(r > 0, r, 0)**1.5
|
||||||
|
return p["i_offset"] + gauss + parabola
|
||||||
|
|
||||||
|
def process(self, cov, *param):
|
||||||
|
r = self.variables_dict(param)
|
||||||
|
r["cov"] = np.diag(cov)
|
||||||
|
# TODO: handle cov, compute confidence intervals
|
||||||
|
r["n_condensate"] = area_parabola(od_to_n(r["a_parabola"], self.meta),
|
||||||
|
r["v_parabola"], r["w_parabola"])
|
||||||
|
r["n_thermal"] = area_gauss(od_to_n(r["a_gauss"], self.meta),
|
||||||
|
r["v_gauss"], r["w_gauss"])
|
||||||
|
r["t_x"] = t_gauss(self.meta["mass"], self.meta["omega_x"],
|
||||||
|
r["v_gauss"]*self.meta["pitch_x"], self.meta["tof"])
|
||||||
|
r["t_y"] = t_gauss(self.meta["mass"], self.meta["omega_y"],
|
||||||
|
r["w_gauss"]*self.meta["pitch_y"], self.meta["tof"])
|
||||||
|
r["t"] = (r["t_x"] + r["t_y"])/2
|
||||||
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# generate some test data
|
||||||
|
f = Fit2DGaussParabola()
|
||||||
|
f.xy = np.ogrid[:300, :300]
|
||||||
|
i = f.model(f.guess())
|
||||||
|
# make it noisy
|
||||||
|
i += 100 + np.random.randn(*i.shape)*200 + i*np.random.randn(*i.shape)*.1
|
||||||
|
meta = dict(mass=constants.atomic_mass*87, tof=25e-3,
|
||||||
|
omega_x=2*np.pi*30, omega_y=2*np.pi*100,
|
||||||
|
pitch_x=2e-6, pitch_y=2e-6,
|
||||||
|
detuning=0, sigma0=1e-12)
|
||||||
|
|
||||||
|
# fit it
|
||||||
|
f = Fit2DGaussParabola()
|
||||||
|
p, r = f.run(i, meta)
|
||||||
|
print(r)
|
||||||
|
|
||||||
|
from timeit import timeit
|
||||||
|
print(timeit("f.model(p)", globals=globals(), number=10))
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
fig, ax = plt.subplots(2, 2)
|
||||||
|
for axi, ii in zip(ax.ravel(),
|
||||||
|
(i, f.model(f.guess()),
|
||||||
|
f.model(p), (f.model(p) - i) + 1000)):
|
||||||
|
axi.imshow(ii, cmap=plt.cm.Greys, vmin=0, vmax=5000)
|
||||||
|
plt.show()
|
Loading…
Reference in New Issue
Block a user