forked from M-Labs/artiq
examples/flopping_f_simulation: numpy outputs
This commit is contained in:
parent
a6d38b8a97
commit
24e728f075
|
@ -37,16 +37,20 @@ class FloppingF(EnvExperiment):
|
||||||
self.setattr_device("scheduler")
|
self.setattr_device("scheduler")
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
frequency = self.set_dataset("flopping_f_frequency", [],
|
l = len(self.frequency_scan)
|
||||||
|
frequency = self.set_dataset("flopping_f_frequency",
|
||||||
|
np.full(l, np.nan),
|
||||||
broadcast=True, save=False)
|
broadcast=True, save=False)
|
||||||
brightness = self.set_dataset("flopping_f_brightness", [],
|
brightness = self.set_dataset("flopping_f_brightness",
|
||||||
|
np.full(l, np.nan),
|
||||||
broadcast=True)
|
broadcast=True)
|
||||||
self.set_dataset("flopping_f_fit", [], broadcast=True, save=False)
|
self.set_dataset("flopping_f_fit", np.full(l, np.nan),
|
||||||
|
broadcast=True, save=False)
|
||||||
|
|
||||||
for f in self.frequency_scan:
|
for i, f in enumerate(self.frequency_scan):
|
||||||
m_brightness = model(f, self.F0) + self.noise_amplitude*random.random()
|
m_brightness = model(f, self.F0) + self.noise_amplitude*random.random()
|
||||||
frequency.append(f)
|
frequency[i] = f
|
||||||
brightness.append(m_brightness)
|
brightness[i] = m_brightness
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
||||||
self.scheduler.submit(self.scheduler.pipeline_name, self.scheduler.expid,
|
self.scheduler.submit(self.scheduler.pipeline_name, self.scheduler.expid,
|
||||||
self.scheduler.priority, time.time() + 20, False)
|
self.scheduler.priority, time.time() + 20, False)
|
||||||
|
@ -57,11 +61,11 @@ class FloppingF(EnvExperiment):
|
||||||
brightness = self.get_dataset("flopping_f_brightness")
|
brightness = self.get_dataset("flopping_f_brightness")
|
||||||
popt, pcov = curve_fit(model_numpy,
|
popt, pcov = curve_fit(model_numpy,
|
||||||
frequency, brightness,
|
frequency, brightness,
|
||||||
p0=[self.get_dataset("flopping_freq")])
|
p0=[self.get_dataset("flopping_freq", 1500.0)])
|
||||||
perr = np.sqrt(np.diag(pcov))
|
perr = np.sqrt(np.diag(pcov))
|
||||||
if perr < 0.1:
|
if perr < 0.1:
|
||||||
F0 = float(popt)
|
F0 = float(popt)
|
||||||
self.set_dataset("flopping_freq", F0, persist=True, save=False)
|
self.set_dataset("flopping_freq", F0, persist=True, save=False)
|
||||||
self.set_dataset("flopping_f_fit",
|
self.set_dataset("flopping_f_fit",
|
||||||
[model(x, F0) for x in frequency],
|
np.array([model(x, F0) for x in frequency]),
|
||||||
broadcast=True, save=False)
|
broadcast=True, save=False)
|
||||||
|
|
Loading…
Reference in New Issue