#![no_std] #![no_main] #![feature(const_in_array_repeat_expressions)] #![feature(naked_functions)] extern crate alloc; use alloc::collections::BTreeMap; use core::arch::asm; use libasync::{ delay, smoltcp::{Sockets, TcpStream}, task, }; use libboard_zynq::{ self as zynq, clocks::source::{ArmPll, ClockSource, IoPll}, clocks::Clocks, println, stdio, mpcore, gic, smoltcp::{ iface::{EthernetInterfaceBuilder, NeighborCache, Routes}, time::Instant, wire::{EthernetAddress, IpAddress, IpCidr}, }, time::Milliseconds, }; #[cfg(feature = "target_zc706")] use libboard_zynq::print; use libcortex_a9::{ mutex::Mutex, l2c::enable_l2_cache, sync_channel::{Sender, Receiver}, sync_channel, regs::{MPIDR, SP}, spin_lock_yield, notify_spin_lock, asm, interrupt_handler }; use libregister::{RegisterR, RegisterW}; use libsupport_zynq::{ boot, exception_vectors, ram, }; use log::{info, warn}; use core::sync::atomic::{AtomicBool, Ordering}; const HWADDR: [u8; 6] = [0, 0x23, 0xde, 0xea, 0xbe, 0xef]; static mut CORE1_REQ: (Sender, Receiver) = sync_channel!(usize, 10); static mut CORE1_RES: (Sender, Receiver) = sync_channel!(usize, 10); extern "C" { static mut __stack1_start: u32; } static CORE1_RESTART: AtomicBool = AtomicBool::new(false); interrupt_handler!(IRQ, irq, __irq_stack0_start, __irq_stack1_start, { let mpcore = mpcore::RegisterBlock::mpcore(); let mut gic = gic::InterruptController::gic(mpcore); let id = gic.get_interrupt_id(); match MPIDR.read().cpu_id(){ 0 => { if id.0 == 0 { println!("Interrupting core0..."); gic.end_interrupt(id); return; } }, 1 => { if id.0 == 0 { gic.end_interrupt(id); asm::exit_irq(); SP.write(&mut __stack1_start as *mut _ as u32); asm::enable_irq(); CORE1_RESTART.store(false, Ordering::Relaxed); notify_spin_lock(); main_core1(); } }, _ => {} } stdio::drop_uart(); println!("IRQ"); loop {} }); pub fn restart_core1() { let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); CORE1_RESTART.store(true, Ordering::Relaxed); interrupt_controller.send_sgi(gic::InterruptId(0), gic::CPUCore::Core1.into()); while CORE1_RESTART.load(Ordering::Relaxed) { spin_lock_yield(); } } #[no_mangle] pub fn main_core0() { exception_vectors::set_vector_table(0x0); // zynq::clocks::CpuClocks::enable_io(1_250_000_000); enable_l2_cache(0x8); println!("\nZynq experiments"); let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); interrupt_controller.enable_interrupts(); libboard_zynq::logger::init().unwrap(); log::set_max_level(log::LevelFilter::Trace); info!( "Boot mode: {:?}", zynq::slcr::RegisterBlock::slcr() .boot_mode .read() .boot_mode_pins() ); #[cfg(any( feature = "target_zc706", feature = "target_ebaz4205", feature = "target_redpitaya", feature = "target_kasli_soc", ))] const CPU_FREQ: u32 = 800_000_000; #[cfg(feature = "target_coraz7")] const CPU_FREQ: u32 = 650_000_000; info!("Setup clock sources..."); ArmPll::setup(2 * CPU_FREQ); Clocks::set_cpu_freq(CPU_FREQ); IoPll::setup(1_000_000_000); libboard_zynq::stdio::drop_uart(); info!("PLLs set up"); let clocks = zynq::clocks::Clocks::get(); info!( "CPU Clocks: {}/{}/{}/{}", clocks.cpu_6x4x(), clocks.cpu_3x2x(), clocks.cpu_2x(), clocks.cpu_1x() ); let timer = libboard_zynq::timer::GlobalTimer::start(); let mut ddr = zynq::ddr::DdrRam::ddrram(); #[cfg(not(feature = "target_zc706"))] ddr.memtest(); ram::init_alloc_ddr(&mut ddr); info!("Send software interrupt to core0"); interrupt_controller.send_sgi(gic::InterruptId(0), gic::CPUCore::Core0.into()); info!("Core0 returned from interrupt"); boot::Core1::start(false); let core1_req = unsafe { &mut CORE1_REQ.0 }; let core1_res = unsafe { &mut CORE1_RES.1 }; task::block_on(async { for i in 0..10 { restart_core1(); core1_req.async_send(i).await; let j = core1_res.async_recv().await; println!("{} -> {}", i, j); } }); unsafe { core1_req.drop_elements(); } // Test I2C #[cfg(feature = "target_zc706")] { let mut i2c = zynq::i2c::I2c::i2c0(); i2c.init().unwrap(); println!("I2C bit-banging enabled"); let mut eeprom = zynq::i2c::eeprom::EEPROM::new(&mut i2c, 16); // Write to 0x00 and 0x08 let eeprom_buffer: [u8; 22] = [ 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0x01, ]; eeprom.write(0x00, &eeprom_buffer[0..6]).unwrap(); eeprom.write(0x08, &eeprom_buffer[6..22]).unwrap(); println!("Data written to EEPROM"); let mut eeprom_buffer = [0u8; 24]; // Read from 0x00 eeprom.read(0x00, &mut eeprom_buffer).unwrap(); print!("Data read from EEPROM @ 0x00: (hex) "); for i in 0..6 { print!("{:02x} ", eeprom_buffer[i]); } println!(""); // Read from 0x08 eeprom.read(0x08, &mut eeprom_buffer).unwrap(); print!("Data read from EEPROM @ 0x08: (hex) "); for i in 0..16 { print!("{:02x} ", eeprom_buffer[i]); } println!(""); } #[cfg(feature = "target_kasli_soc")] { let mut err_cdwn = timer.countdown(); let mut err_state = true; let mut led = zynq::error_led::ErrorLED::error_led(); task::spawn( async move { loop { led.toggle(err_state); err_state = !err_state; delay(&mut err_cdwn, Milliseconds(1000)).await; } }); } let eth = zynq::eth::Eth::eth0(HWADDR.clone()); println!("Eth on"); const RX_LEN: usize = 4096; // Number of transmission buffers (minimum is two because with // one, duplicate packet transmission occurs) const TX_LEN: usize = 4096; let eth = eth.start_rx(RX_LEN); let mut eth = eth.start_tx(TX_LEN); let ethernet_addr = EthernetAddress(HWADDR); // IP stack let local_addr = IpAddress::v4(192, 168, 1, 51); let mut ip_addrs = [IpCidr::new(local_addr, 24)]; let routes = Routes::new(BTreeMap::new()); let neighbor_cache = NeighborCache::new(BTreeMap::new()); let mut iface = EthernetInterfaceBuilder::new(&mut eth) .ethernet_addr(ethernet_addr) .ip_addrs(&mut ip_addrs[..]) .routes(routes) .neighbor_cache(neighbor_cache) .finalize(); Sockets::init(32); const TCP_PORT: u16 = 19; // (rx, tx) let stats = alloc::rc::Rc::new(core::cell::RefCell::new((0, 0))); let stats_tx = stats.clone(); task::spawn(async move { while let Ok(stream) = TcpStream::accept(TCP_PORT, 0x10_0000, 0x10_0000).await { let stats_tx = stats_tx.clone(); task::spawn(async move { let tx_data = (0..=255).cycle().take(4096).collect::>(); loop { // const CHUNK_SIZE: usize = 65536; // match stream.send((0..=255).cycle().take(CHUNK_SIZE)).await { match stream.send_slice(&tx_data[..]).await { Ok(_len) => stats_tx.borrow_mut().1 += tx_data.len(), //CHUNK_SIZE, Err(e) => { warn!("tx: {:?}", e); break } } } }); } }); let stats_rx = stats.clone(); task::spawn(async move { while let Ok(stream) = TcpStream::accept(TCP_PORT+1, 0x10_0000, 0x10_0000).await { let stats_rx = stats_rx.clone(); task::spawn(async move { loop { match stream.recv(|buf| (buf.len(), buf.len())).await { Ok(len) => stats_rx.borrow_mut().0 += len, Err(e) => { warn!("rx: {:?}", e); break } } } }); } }); let mut countdown = timer.countdown(); task::spawn(async move { loop { delay(&mut countdown, Milliseconds(1000)).await; let timestamp = timer.get_us().0; let seconds = timestamp / 1_000_000; let micros = timestamp % 1_000_000; let (rx, tx) = { let mut stats = stats.borrow_mut(); let result = *stats; *stats = (0, 0); result }; info!("time: {:6}.{:06}s, rx: {}k/s, tx: {}k/s", seconds, micros, rx / 1024, tx / 1024); } }); Sockets::run(&mut iface, || { Instant::from_millis(timer.get_time().0 as i64) }) } static DONE: Mutex = Mutex::new(false); #[no_mangle] pub fn main_core1() { println!("Hello from core1!"); let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); interrupt_controller.enable_interrupts(); let req = unsafe { &mut CORE1_REQ.1 }; let res = unsafe { &mut CORE1_RES.0 }; for i in req { res.send(i * i); } println!("core1 done!"); *DONE.lock() = true; loop {} }