//! Quad-SPI Flash Controller use core::marker::PhantomData; use crate::regs::{RegisterR, RegisterW, RegisterRW}; use super::slcr; use super::clocks::CpuClocks; mod regs; mod bytes; pub use bytes::{BytesTransferExt, BytesTransfer}; const FLASH_BAUD_RATE: u32 = 50_000_000; const SINGLE_CAPACITY: u32 = 16 * 1024 * 1024; ///Instruction: Read Configure Register const INST_RDCR: u8 = 0x3f; /// Instruction Read Identification const INST_RDID: u8 = 0x9F; pub struct LinearAddressing; pub struct Manual; /// Flash Interface Driver /// /// For 2x Spansion S25FL128SAGMFIR01 pub struct Flash { regs: &'static mut regs::RegisterBlock, _mode: PhantomData, } impl Flash { fn transition(self) -> Flash { Flash { regs: self.regs, _mode: PhantomData, } } fn disable_interrupts(&mut self) { self.regs.intr_dis.write( regs::IntrDis::zeroed() .rx_overflow(true) .tx_fifo_not_full(true) .tx_fifo_full(true) .rx_fifo_not_empty(true) .rx_fifo_full(true) .tx_fifo_underflow(true) ); } fn enable_interrupts(&mut self) { self.regs.intr_en.write( regs::IntrEn::zeroed() .rx_overflow(true) .tx_fifo_not_full(true) .tx_fifo_full(true) .rx_fifo_not_empty(true) .rx_fifo_full(true) .tx_fifo_underflow(true) ); } fn clear_rx_fifo(&self) { while self.regs.intr_status.read().rx_fifo_not_empty() { let _ = self.regs.rx_data.read(); } } fn clear_interrupt_status(&mut self) { self.regs.intr_status.write( regs::IntrStatus::zeroed() .rx_overflow(true) .tx_fifo_underflow(true) ); } } impl Flash<()> { pub fn new(clock: u32) -> Self { Self::enable_clocks(clock); Self::setup_signals(); Self::reset(); let regs = regs::RegisterBlock::qspi(); let mut flash = Flash { regs, _mode: PhantomData }; flash.configure((FLASH_BAUD_RATE - 1 + clock) / FLASH_BAUD_RATE); flash } fn enable_clocks(clock: u32) { let io_pll = CpuClocks::get().io; let divisor = ((clock - 1 + io_pll) / clock) .max(1).min(63) as u8; slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_clk_ctrl.write( slcr::LqspiClkCtrl::zeroed() .src_sel(slcr::PllSource::IoPll) .divisor(divisor) .clkact(true) ); }); } fn setup_signals() { slcr::RegisterBlock::unlocked(|slcr| { // 1. Configure MIO pin 1 for chip select 0 output. slcr.mio_pin_01.write( slcr::MioPin01::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Configure MIO pins 2 through 5 for I/O. slcr.mio_pin_02.write( slcr::MioPin02::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_03.write( slcr::MioPin03::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_04.write( slcr::MioPin04::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_05.write( slcr::MioPin05::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // 3. Configure MIO pin 6 for serial clock 0 output. slcr.mio_pin_06.write( slcr::MioPin06::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Second Device Chip Select // 4. Configure MIO pin 0 for chip select 1 output. slcr.mio_pin_00.write( slcr::MioPin00::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Option: Add Second Serial Clock // 5. Configure MIO pin 9 for serial clock 1 output. slcr.mio_pin_09.write( slcr::MioPin09::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add 4-bit Data // 6. Configure MIO pins 10 through 13 for I/O. slcr.mio_pin_10.write( slcr::MioPin10::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_11.write( slcr::MioPin11::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_12.write( slcr::MioPin12::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_13.write( slcr::MioPin13::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Feedback Output Clock // 7. Configure MIO pin 8 for feedback clock. slcr.mio_pin_08.write( slcr::MioPin08::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); }); } fn reset() { slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() .ref_rst(true) .cpu1x_rst(true) ); slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() ); }); } fn configure(&mut self, divider: u32) { // Disable self.regs.enable.write( regs::Enable::zeroed() ); self.disable_interrupts(); self.regs.lqspi_cfg.write( regs::LqspiCfg::zeroed() ); self.clear_rx_fifo(); self.clear_interrupt_status(); // for a baud_rate_div=1 LPBK_DLY_ADJ would be required let mut baud_rate_div = 2u32; while baud_rate_div < 7 && 2u32.pow(1 + baud_rate_div) < divider { baud_rate_div += 1; } self.regs.config.write(regs::Config::zeroed() .baud_rate_div(baud_rate_div as u8) .mode_sel(true) .leg_flsh(true) .holdb_dr(true) // 32 bits TX FIFO width .fifo_width(0b11) ); // Initialize RX/TX pipes thresholds unsafe { self.regs.rx_thres.write(32); self.regs.tx_thres.write(1); } } pub fn linear_addressing_mode(self) -> Flash { // Set manual start enable to auto mode. // Assert the chip select. self.regs.config.modify(|_, w| w .man_start_en(false) .pcs(false) .manual_cs(false) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() // Quad I/O Fast Read .inst_code(0xEB) .mode_bits(0xFF) .dummy_byte(0x2) .mode_en(true) // 2 devices .two_mem(true) .u_page(false) // Linear Addressing Mode .lq_mode(true) ); self.regs.enable.write( regs::Enable::zeroed() .spi_en(true) ); self.transition() } pub fn manual_mode(self, chip_index: usize) -> Flash { self.regs.config.modify(|_, w| w .man_start_en(true) .manual_cs(true) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() .mode_bits(0xFF) .dummy_byte(0x2) .mode_en(true) // 2 devices .two_mem(true) // .sep_bus(true) .u_page(chip_index != 0) // Manual I/O mode .lq_mode(false) ); self.transition() } } impl Flash { /// Stop linear addressing mode pub fn stop(self) -> Flash<()> { self.regs.enable.modify(|_, w| w.spi_en(false)); // De-assert chip select. self.regs.config.modify(|_, w| w.pcs(true)); self.transition() } pub fn ptr(&mut self) -> *mut T { 0xFC00_0000 as *mut _ } pub fn size(&self) -> usize { 2 * (SINGLE_CAPACITY as usize) } } impl Flash { pub fn stop(self) -> Flash<()> { self.transition() } /// Read Configuration Register pub fn rdcr(&mut self) -> u8 { self.transfer(INST_RDCR, core::iter::empty()) .bytes_transfer().skip(1) .next().unwrap() as u8 } /// Read Identifiaction pub fn rdid(&mut self) -> core::iter::Skip>>> { self.transfer(INST_RDID, core::iter::empty()) .bytes_transfer().skip(1) } pub fn transfer<'s: 't, 't, Args>(&'s mut self, inst_code: u8, args: Args) -> Transfer<'t, Args> where Args: Iterator, { Transfer::new(self, inst_code, args) } pub fn read(&mut self, offset: u32, len: usize) -> core::iter::Take>>>> { // TODO: let args = Some(0u32); // Read self.transfer(0x03, args.into_iter()) .bytes_transfer().skip(1).take(len) } } pub struct Transfer<'a, Args: Iterator> { flash: &'a mut Flash, args: Args, } impl<'a, Args: Iterator> Transfer<'a, Args> { pub fn new(flash: &'a mut Flash, inst_code: u8, mut args: Args) -> Self where Args: Iterator, { flash.regs.config.modify(|_, w| w.pcs(false)); flash.regs.enable.write( regs::Enable::zeroed() .spi_en(true) ); while flash.regs.intr_status.read().rx_fifo_not_empty() { flash.regs.rx_data.read(); } unsafe { flash.regs.txd1.write(inst_code.into()); } flash.regs.config.modify(|_, w| w.man_start_com(true)); // Flush after `txd1` access while !flash.regs.intr_status.read().tx_fifo_not_full() {} while !flash.regs.intr_status.read().tx_fifo_full() { let arg = args.next().unwrap_or(0); unsafe { flash.regs.txd0.write(arg); } } flash.regs.config.modify(|_, w| w.man_start_com(true)); Transfer { flash, args, } } } impl<'a, Args: Iterator> Drop for Transfer<'a, Args> { fn drop(&mut self) { // Discard remaining rx_data while self.flash.regs.intr_status.read().rx_fifo_not_empty() { self.flash.regs.rx_data.read(); } // Stop self.flash.regs.enable.write( regs::Enable::zeroed() .spi_en(false) ); self.flash.regs.config.modify(|_, w| w .pcs(true) .man_start_com(false) ); } } impl<'a, Args: Iterator> Iterator for Transfer<'a, Args> { type Item = u32; fn next<'s>(&'s mut self) -> Option { while !self.flash.regs.intr_status.read().rx_fifo_not_empty() {} let rx = self.flash.regs.rx_data.read(); let arg = self.args.next().unwrap_or(0); unsafe { self.flash.regs.txd0.write(arg); } Some(rx) } }