//! Quad-SPI Flash Controller use core::marker::PhantomData; use crate::regs::{RegisterR, RegisterW, RegisterRW}; use super::slcr; use super::clocks::CpuClocks; pub mod regs; const FLASH_BAUD_RATE: u32 = 50_000_000; const SINGLE_CAPACITY: u32 = 16 * 1024 * 1024; pub struct LinearAddressing; pub struct Manual; /// Flash Interface Driver /// /// For 2x Spansion S25FL128SAGMFIR01 pub struct Flash { regs: &'static mut regs::RegisterBlock, _mode: PhantomData, } impl Flash { fn transition(self) -> Flash { Flash { regs: self.regs, _mode: PhantomData, } } } impl Flash<()> { pub fn new(clock: u32) -> Self { Self::enable_clocks(clock); Self::setup_signals(); Self::reset(); let regs = regs::RegisterBlock::qspi(); let mut flash = Flash { regs, _mode: PhantomData }; flash.configure((FLASH_BAUD_RATE - 1 + clock) / FLASH_BAUD_RATE); flash } fn enable_clocks(clock: u32) { let io_pll = CpuClocks::get().io; let divisor = ((clock - 1 + io_pll) / clock) .max(1).min(63) as u8; slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_clk_ctrl.write( slcr::LqspiClkCtrl::zeroed() .src_sel(slcr::PllSource::IoPll) .divisor(divisor) .clkact(true) ); }); } fn setup_signals() { slcr::RegisterBlock::unlocked(|slcr| { // 1. Configure MIO pin 1 for chip select 0 output. slcr.mio_pin_01.write( slcr::MioPin01::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Configure MIO pins 2 through 5 for I/O. slcr.mio_pin_02.write( slcr::MioPin02::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_03.write( slcr::MioPin03::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_04.write( slcr::MioPin04::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_05.write( slcr::MioPin05::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // 3. Configure MIO pin 6 for serial clock 0 output. slcr.mio_pin_06.write( slcr::MioPin06::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Second Device Chip Select // 4. Configure MIO pin 0 for chip select 1 output. slcr.mio_pin_00.write( slcr::MioPin00::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Option: Add Second Serial Clock // 5. Configure MIO pin 9 for serial clock 1 output. slcr.mio_pin_09.write( slcr::MioPin09::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add 4-bit Data // 6. Configure MIO pins 10 through 13 for I/O. slcr.mio_pin_10.write( slcr::MioPin10::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_11.write( slcr::MioPin11::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_12.write( slcr::MioPin12::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_13.write( slcr::MioPin13::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Feedback Output Clock // 7. Configure MIO pin 8 for feedback clock. slcr.mio_pin_08.write( slcr::MioPin08::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); }); } fn reset() { slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() .ref_rst(true) .cpu1x_rst(true) ); slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() ); }); } fn configure(&mut self, divider: u32) { self.disable_interrupts(); self.clear_rx_fifo(); // for a baud_rate_div=1 LPBK_DLY_ADJ would be required let mut baud_rate_div = 2u32; while baud_rate_div < 7 && 2u32.pow(1 + baud_rate_div) < divider { baud_rate_div += 1; } self.regs.config.write(regs::Config::zeroed() .baud_rate_div(baud_rate_div as u8) .mode_sel(true) .leg_flsh(true) // 32 bits TX FIFO width .fifo_width(0b11) ); // Initialize RX/TX pipes thresholds unsafe { self.regs.rx_thres.write(32); self.regs.tx_thres.write(1); } } fn disable_interrupts(&mut self) { self.regs.intr_dis.write( regs::IntrDis::zeroed() .rx_overflow(true) .tx_fifo_not_full(true) .tx_fifo_full(true) .rx_fifo_not_empty(true) .rx_fifo_full(true) .tx_fifo_underflow(true) ); } fn clear_rx_fifo(&self) { while self.regs.intr_status.read().rx_fifo_not_empty() { let _ = self.regs.rx_data.read(); } } pub fn linear_addressing_mode(self) -> Flash { // Set manual start enable to auto mode. // Assert the chip select. self.regs.config.modify(|_, w| w .man_start_en(false) .pcs(false) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() // Quad I/O Fast Read .inst_code(0xEB) .mode_bits(0xFF) .dummy_byte(0x2) .mode_en(true) // 2 devices .two_mem(true) // Linear Addressing Mode .lq_mode(true) ); self.regs.enable.modify(|_, w| w.spi_en(true)); self.transition() } pub fn manual_mode(self, chip_index: usize) -> Flash { self.regs.config.modify(|_, w| w .man_start_en(true) .manual_cs(true) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() .mode_bits(0xFF) .dummy_byte(0x2) .mode_en(true) // 2 devices .two_mem(true) .u_page(chip_index != 0) ); self.regs.config.modify(|_, w| w .pcs(false) ); self.regs.enable.modify(|_, w| w.spi_en(true)); self.transition() } } impl Flash { /// Stop linear addressing mode pub fn stop(self) -> Flash<()> { self.regs.enable.modify(|_, w| w.spi_en(false)); // De-assert chip select. self.regs.config.modify(|_, w| w.pcs(true)); self.transition() } pub fn ptr(&mut self) -> *mut T { 0xFC00_0000 as *mut _ } pub fn size(&self) -> usize { 2 * (SINGLE_CAPACITY as usize) } } impl Flash { pub fn stop(self) -> Flash<()> { self.regs.enable.modify(|_, w| w.spi_en(false)); // De-assert chip select. self.regs.config.modify(|_, w| w.pcs(true)); self.transition() } pub fn read(&mut self, offset: u32, dest: &mut [u8]) { self.regs.config.modify(|_, w| w.man_start_com(true)); // Quad I/O Read let instr = 0xEB; unsafe { self.regs.txd0.write( instr | (offset << 8) ); } while self.regs.intr_status.read().tx_fifo_not_full() { unsafe { self.regs.txd0.write(0); } let rx = self.regs.rx_data.read(); } for d in dest { while !self.regs.intr_status.read().rx_fifo_not_empty() {} // TODO: drops data? let rx = self.regs.rx_data.read(); *d = rx as u8; // Output dummy byte to generate clock for further RX unsafe { self.regs.txd1.write(0); } } } fn wait_tx_not_full(&self) { while self.regs.intr_status.read().tx_fifo_full() {} } }