//! Quad-SPI Flash Controller use crate::{print, println}; use core::marker::PhantomData; use libregister::{RegisterR, RegisterW, RegisterRW}; use super::slcr; use super::clocks::CpuClocks; mod regs; mod bytes; pub use bytes::{BytesTransferExt, BytesTransfer}; mod spi_flash_register; use spi_flash_register::*; mod transfer; use transfer::Transfer; const FLASH_BAUD_RATE: u32 = 50_000_000; /// 16 MB pub const SINGLE_CAPACITY: u32 = 0x1000000; pub const SECTOR_SIZE: u32 = 0x10000; pub const PAGE_SIZE: u32 = 0x100; /// Instruction: Read Identification const INST_RDID: u8 = 0x9F; const INST_READ: u8 = 0x03; /// Instruction: Write Disable const INST_WRDI: u8 = 0x04; /// Instruction: Write Enable const INST_WREN: u8 = 0x06; /// Instruction: Program page const INST_PP: u8 = 02; /// Instruction: Sector Erase const INST_SE: u8 = 0xD8; /// Instruction: Erase 4K Block const INST_BE_4K: u8 = 0x20; #[derive(Clone)] pub enum SpiWord { W8(u8), W16(u16), W24(u32), W32(u32), } impl From for SpiWord { fn from(x: u8) -> Self { SpiWord::W8(x) } } impl From for SpiWord { fn from(x: u16) -> Self { SpiWord::W16(x) } } impl From for SpiWord { fn from(x: u32) -> Self { SpiWord::W32(x) } } /// Memory-mapped mode pub struct LinearAddressing; /// Manual I/O mode pub struct Manual; /// Flash Interface Driver /// /// For 2x Spansion S25FL128SAGMFIR01 pub struct Flash { regs: &'static mut regs::RegisterBlock, _mode: PhantomData, } impl Flash { fn transition(self) -> Flash { Flash { regs: self.regs, _mode: PhantomData, } } fn disable_interrupts(&mut self) { self.regs.intr_dis.write( regs::IntrDis::zeroed() .rx_overflow(true) .tx_fifo_not_full(true) .tx_fifo_full(true) .rx_fifo_not_empty(true) .rx_fifo_full(true) .tx_fifo_underflow(true) ); } fn enable_interrupts(&mut self) { self.regs.intr_en.write( regs::IntrEn::zeroed() .rx_overflow(true) .tx_fifo_not_full(true) .tx_fifo_full(true) .rx_fifo_not_empty(true) .rx_fifo_full(true) .tx_fifo_underflow(true) ); } fn clear_rx_fifo(&self) { while self.regs.intr_status.read().rx_fifo_not_empty() { let _ = self.regs.rx_data.read(); } } fn clear_interrupt_status(&mut self) { self.regs.intr_status.write( regs::IntrStatus::zeroed() .rx_overflow(true) .tx_fifo_underflow(true) ); } fn wait_tx_fifo_flush(&mut self) { while !self.regs.intr_status.read().tx_fifo_not_full() {} } } impl Flash<()> { pub fn new(clock: u32) -> Self { Self::enable_clocks(clock); Self::setup_signals(); Self::reset(); let regs = regs::RegisterBlock::qspi(); let mut flash = Flash { regs, _mode: PhantomData }; flash.configure((FLASH_BAUD_RATE - 1 + clock) / FLASH_BAUD_RATE); flash } fn enable_clocks(clock: u32) { let io_pll = CpuClocks::get().io; let divisor = ((clock - 1 + io_pll) / clock) .max(1).min(63) as u8; slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_clk_ctrl.write( slcr::LqspiClkCtrl::zeroed() .src_sel(slcr::PllSource::IoPll) .divisor(divisor) .clkact(true) ); }); } fn setup_signals() { slcr::RegisterBlock::unlocked(|slcr| { // 1. Configure MIO pin 1 for chip select 0 output. slcr.mio_pin_01.write( slcr::MioPin01::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Configure MIO pins 2 through 5 for I/O. slcr.mio_pin_02.write( slcr::MioPin02::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_03.write( slcr::MioPin03::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_04.write( slcr::MioPin04::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_05.write( slcr::MioPin05::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // 3. Configure MIO pin 6 for serial clock 0 output. slcr.mio_pin_06.write( slcr::MioPin06::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Second Device Chip Select // 4. Configure MIO pin 0 for chip select 1 output. slcr.mio_pin_00.write( slcr::MioPin00::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Option: Add Second Serial Clock // 5. Configure MIO pin 9 for serial clock 1 output. slcr.mio_pin_09.write( slcr::MioPin09::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add 4-bit Data // 6. Configure MIO pins 10 through 13 for I/O. slcr.mio_pin_10.write( slcr::MioPin10::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_11.write( slcr::MioPin11::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_12.write( slcr::MioPin12::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_13.write( slcr::MioPin13::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Feedback Output Clock // 7. Configure MIO pin 8 for feedback clock. slcr.mio_pin_08.write( slcr::MioPin08::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); }); } fn reset() { slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() .ref_rst(true) .cpu1x_rst(true) ); slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() ); }); } fn configure(&mut self, divider: u32) { // Disable self.regs.enable.write( regs::Enable::zeroed() ); self.disable_interrupts(); self.regs.lqspi_cfg.write( regs::LqspiCfg::zeroed() ); self.clear_rx_fifo(); self.clear_interrupt_status(); // for a baud_rate_div=1 LPBK_DLY_ADJ would be required let mut baud_rate_div = 2u32; while baud_rate_div < 7 && 2u32.pow(1 + baud_rate_div) < divider { baud_rate_div += 1; } self.regs.config.write(regs::Config::zeroed() .baud_rate_div(baud_rate_div as u8) .mode_sel(true) .leg_flsh(true) .holdb_dr(true) // 32 bits TX FIFO width .fifo_width(0b11) ); // Initialize RX/TX pipes thresholds unsafe { self.regs.rx_thres.write(1); self.regs.tx_thres.write(1); } } pub fn linear_addressing_mode(self) -> Flash { // Set manual start enable to auto mode. // Assert the chip select. self.regs.config.modify(|_, w| w .man_start_en(false) .pcs(false) .manual_cs(false) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() // Quad I/O Fast Read .inst_code(0xEB) .mode_bits(0xFF) .dummy_byte(0x2) .mode_en(true) // 2 devices .two_mem(true) .u_page(false) // Linear Addressing Mode .lq_mode(true) ); self.regs.enable.write( regs::Enable::zeroed() .spi_en(true) ); self.transition() } pub fn manual_mode(self, chip_index: usize) -> Flash { self.regs.config.modify(|_, w| w .man_start_en(true) .manual_cs(true) .endian(true) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() .mode_bits(0xFF) .dummy_byte(0x2) .mode_en(true) // 2 devices .two_mem(true) .sep_bus(true) .u_page(chip_index != 0) // Manual I/O mode .lq_mode(false) ); self.transition() } } impl Flash { /// Stop linear addressing mode pub fn stop(self) -> Flash<()> { self.regs.enable.modify(|_, w| w.spi_en(false)); // De-assert chip select. self.regs.config.modify(|_, w| w.pcs(true)); self.transition() } pub fn ptr(&mut self) -> *mut T { 0xFC00_0000 as *mut _ } pub fn size(&self) -> usize { 2 * (SINGLE_CAPACITY as usize) } } impl Flash { pub fn stop(self) -> Flash<()> { self.transition() } pub fn read_reg(&mut self) -> R { let args = Some(R::inst_code()); let transfer = self.transfer(args.into_iter(), 2) .bytes_transfer(); R::new(transfer.skip(1).next().unwrap()) } pub fn read_reg_until(&mut self, f: F) -> A where R: SpiFlashRegister, F: Fn(R) -> Option, { let mut result = None; while result.is_none() { let args = Some(R::inst_code()); for b in self.transfer(args.into_iter(), 32) .bytes_transfer().skip(1) { result = f(R::new(b)); if result.is_none() { break; } } } result.unwrap() } /// Status Register-1 remains `0x00` immediately after invoking a command. fn wait_while_sr1_zeroed(&mut self) -> SR1 { self.read_reg_until::(|sr1| if sr1.is_zeroed() { None } else { Some(sr1) } ) } /// Read Identification pub fn rdid(&mut self) -> core::iter::Skip, u32>>> { let args = Some((INST_RDID as u32) << 24); self.transfer(args.into_iter(), 0x44) .bytes_transfer().skip(1) } /// Read flash data pub fn read(&mut self, offset: u32, len: usize ) -> core::iter::Take, u32>>>> { let args = Some(((INST_READ as u32) << 24) | (offset as u32)); self.transfer(args.into_iter(), len + 6) .bytes_transfer().skip(6).take(len) } pub fn erase(&mut self, offset: u32) { let args = Some(((INST_BE_4K as u32) << 24) | (offset as u32)); self.transfer(args.into_iter(), 4); let sr1 = self.wait_while_sr1_zeroed(); if sr1.e_err() { println!("E_ERR"); } else if sr1.p_err() { println!("P_ERR"); } else if sr1.wip() { print!("Erase in progress"); while self.read_reg::().wip() { print!("."); } println!(""); } else { println!("erased? sr1={:02X}", sr1.inner); } } pub fn program>(&mut self, offset: u32, data: I) { { let len = 4 + 4 * data.size_hint().0; let args = Some(SpiWord::W32(((INST_PP as u32) << 24) | (offset as u32))) .into_iter() .chain(data.map(SpiWord::W32)); self.transfer(args, len); } // let sr1 = self.wait_while_sr1_zeroed(); let sr1 = self.read_reg::(); if sr1.e_err() { println!("E_ERR"); } else if sr1.p_err() { println!("P_ERR"); } else if sr1.wip() { println!("Program in progress"); while self.read_reg::().wip() { print!("."); } println!(""); } else { println!("programmed? sr1={:02X}", sr1.inner); } } pub fn write_enabled R, R>(&mut self, f: F) -> R { // Write Enable let args = Some(INST_WREN); self.transfer(args.into_iter(), 1); self.regs.gpio.modify(|_, w| w.wp_n(true)); let sr1 = self.wait_while_sr1_zeroed(); if !sr1.wel() { panic!("Cannot write-enable flash"); } let result = f(self); // Write Disable let args = Some(INST_WRDI); self.transfer(args.into_iter(), 1); self.regs.gpio.modify(|_, w| w.wp_n(false)); result } pub fn transfer<'s: 't, 't, Args, W>(&'s mut self, args: Args, len: usize) -> Transfer<'t, Args, W> where Args: Iterator, W: Into, { Transfer::new(self, args, len) } pub fn dump(&mut self, label: &'_ str, inst_code: u8) { print!("{}:", label); let args = Some(u32::from(inst_code) << 24); for b in self.transfer(args.into_iter(), 32).bytes_transfer() { print!(" {:02X}", b); } println!(""); } }