//! Quad-SPI Flash Controller use core::marker::PhantomData; use crate::regs::{RegisterW, RegisterRW}; use super::slcr; use super::clocks::CpuClocks; pub mod regs; const FLASH_BAUD_RATE: u32 = 50_000_000; pub struct LinearAddressing; /// Flash Interface Driver /// /// For 2x Spansion S25FL128SAGMFIR01 pub struct Flash { regs: &'static mut regs::RegisterBlock, _mode: PhantomData, } impl Flash<()> { pub fn new(clock: u32) -> Self { Self::enable_clocks(clock); Self::setup_signals(); Self::reset(); let regs = regs::RegisterBlock::qspi(); let mut flash = Flash { regs, _mode: PhantomData }; flash.configure((FLASH_BAUD_RATE - 1 + clock) / FLASH_BAUD_RATE); flash } fn enable_clocks(clock: u32) { let io_pll = CpuClocks::get().io; let divisor = ((clock - 1 + io_pll) / clock) .max(1).min(63) as u8; slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_clk_ctrl.write( slcr::LqspiClkCtrl::zeroed() .src_sel(slcr::PllSource::IoPll) .divisor(divisor) .clkact(true) ); }); } fn setup_signals() { slcr::RegisterBlock::unlocked(|slcr| { // 1. Configure MIO pin 1 for chip select 0 output. slcr.mio_pin_01.write( slcr::MioPin01::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Configure MIO pins 2 through 5 for I/O. slcr.mio_pin_02.write( slcr::MioPin02::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_03.write( slcr::MioPin03::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_04.write( slcr::MioPin04::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_05.write( slcr::MioPin05::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // 3. Configure MIO pin 6 for serial clock 0 output. slcr.mio_pin_06.write( slcr::MioPin06::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Second Device Chip Select // 4. Configure MIO pin 0 for chip select 1 output. slcr.mio_pin_00.write( slcr::MioPin00::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Option: Add Second Serial Clock // 5. Configure MIO pin 9 for serial clock 1 output. slcr.mio_pin_09.write( slcr::MioPin09::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add 4-bit Data // 6. Configure MIO pins 10 through 13 for I/O. slcr.mio_pin_10.write( slcr::MioPin10::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_11.write( slcr::MioPin11::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_12.write( slcr::MioPin12::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); slcr.mio_pin_13.write( slcr::MioPin13::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); // Option: Add Feedback Output Clock // 7. Configure MIO pin 8 for feedback clock. slcr.mio_pin_08.write( slcr::MioPin08::zeroed() .l0_sel(true) .io_type(slcr::IoBufferType::Lvcmos18) ); }); } fn reset() { slcr::RegisterBlock::unlocked(|slcr| { slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() .ref_rst(true) .cpu1x_rst(true) ); slcr.lqspi_rst_ctrl.write( slcr::LqspiRstCtrl::zeroed() ); }); } fn configure(&mut self, divider: u32) { // for a baud_rate_div=1 LPBK_DLY_ADJ would be required let mut baud_rate_div = 2u32; while baud_rate_div < 7 && 2u32.pow(1 + baud_rate_div) < divider { baud_rate_div += 1; } self.regs.config.write(regs::Config::zeroed() .baud_rate_div(baud_rate_div as u8) .mode_sel(true) .leg_flsh(true) .fifo_width(0b11) ); } pub fn linear_addressing_mode(self) -> Flash { // Set manual start enable to auto mode. // Assert the chip select. self.regs.config.modify(|_, w| w .man_start_en(false) .pcs(false) ); self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed() .inst_code(0x3) .u_page(false) .sep_bus(false) .two_mem(false) .lq_mode(true) ); self.regs.enable.modify(|_, w| w.spi_en(true)); Flash { regs: self.regs, _mode: PhantomData, } } } impl Flash { pub fn ptr(&mut self) -> *mut T { 0xFC00_0000 as *mut _ } }