\input{preamble.tex} \input{shared/coredevice.tex} \graphicspath{{images/1124}{images}} \title{1124 Carrier Kasli 2.0} \author{M-Labs Limited} \date{October 2024} \revision{Revision 2} \companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}} \begin{document} \maketitle \section{Features} \begin{itemize} \item{4 SFP 6Gb/s slots for Ethernet and DRTIO} \item{12 EEM ports for daughtercards} \item{4 MMCX clock outputs} \item{Xilinx Artix-7 FPGA core} \item{DDR3 SDRAM} \end{itemize} \section{Applications} \begin{itemize} \item{Run ARTIQ kernels} \item{Communicate with the host} \item{Control other Sinara EEM cards} \item{Distributed Real-Time I/O} \end{itemize} \section{General Description} The 1124 Kasli 2.0 Carrier card is an 8hp EEM module, designed to run ARTIQ kernels sent from a host machine over the network. It supports up to 12 EEM connections to other EEM cards in the ARTIQ/Sinara family and up four SFP connections, used for comunications with other carriers and/or Ethernet. Real-time control of EEM daughtercards is implemented using the ARTIQ RTIO system. 1ns temporal resolution can be achieved for TTL events. 4 SFP 6Gb/s slots are provided. One may be used for Ethernet, which supports communication with a host machine. Remaining slots can be used by the ARTIQ Distributed Real-Time Input/Output (DRTIO) system, which allows for the use of additional core devices (e.g. Kasli 2.0, Kasli-SoC) as satellite cards, capable of running subkernels or distributing commands from the \mbox{DRTIO} master. % Switch to next column \vfill\break \begin{figure}[h] \centering \scalebox{1.15}{ \begin{circuitikz}[european, every label/.append style={align=center}] \begin{scope}[] % Draw the FPGA \draw (0, 0) node[twoportshape, t={FPGA}, circuitikz/bipoles/twoport/height=1.5, circuitikz/bipoles/twoport/width=1.2, scale=1] (fpga) {}; % External clock for RTIO, west of the FPGA \draw [color=white, text=black] (-3.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (ext_clk) {}; \node [label=left:\tiny{EXT CLK}] at (-2.65, 0) {}; \begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=-40cm] \draw (0,0.65) -- (0,3); \clip (-1.5,0) rectangle (1.5,1.5); \draw (0,0) circle(1.5); \clip (-0.8,0) rectangle (0.8,0.8); \draw (0,0) circle(0.8); \end{scope} \draw [-latexslim] (ext_clk) -- (fpga.west); % USB Mirco B port with USB-UART converter, north west of the FPGA \draw (-3.2, 1.2) node[twoportshape, t={USB Micro B}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (usb) {}; \draw (-2, 1.2) node[twoportshape, t={\fourcm{USB-UART}{Converter}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (uart) {}; \draw [latexslim-latexslim] (usb.north) -- (uart.south); \draw [latexslim-latexslim] (uart.north) -- (-1.3, 1.2) -- (-1.3, 0.4) -- (-0.85, 0.4); % 4-SFP cage, south west of the FPGA \draw (-3.4, -0.8) node[twoportshape, t={SFP 0}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp0) {}; \draw (-3, -0.8) node[twoportshape, t={SFP 1}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp1) {}; \draw (-3.4, -1.5) node[twoportshape, t={SFP 2}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp2) {}; \draw (-3, -1.5) node[twoportshape, t={SFP 3}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp3) {}; \draw [latexslim-latexslim] (-2.8, -1.15) -- (-2.2, -1.15) -- (-2.2, -0.4) -- (-0.85, -0.4); % Clock signal cleaning path, south of the FPGA, % clock signal loop from the south west to the south east \draw (-0.8, -2.1) node[twoportshape, t={\fourcm{Clock}{Multiplier}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (clk_mul) {}; \draw (0.8, -2.1) node[twoportshape, t={\fourcm{Clock}{Buffer}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (clk_buf) {}; \draw [-latexslim] (-0.85, -0.8) -- (-1.6, -0.8) -- (-1.6, -1.9) -- (-1.05, -1.9); % % A dashed path from EXT CLK to CDR CLK \draw [dashed, -latexslim] (fpga.west) -- (-0.6, 0) -- (-0.6, -0.8) -- (-0.85, -0.8); % % Internal oscillator for the RTIO clock \draw (-2.2, -2.3) node[twoportshape, t={OSC}, circuitikz/bipoles/twoport/width=1, scale=0.5] (rtio_osc) {}; \draw [-latexslim] (rtio_osc.east) -- (-1.05, -2.3); \draw [-latexslim] (clk_mul.north) -- (clk_buf.south); \draw [-latexslim] (clk_buf.north) -- (1.6, -2.1) -- (1.6, -0.4) -- (0.85, -0.4); % % MMCX output \draw [color=white, text=black] (2.75, -1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx0) {}; \draw [color=white, text=black] (2.75, -1.4) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx1) {}; \draw [color=white, text=black] (2.75, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx2) {}; \draw [color=white, text=black] (2.75, -2.1) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx3) {}; \node [label=right:\tiny{MMCX 0}] at (2.3, -1.05) {}; \node [label=right:\tiny{MMCX 1}] at (2.3, -1.4) {}; \node [label=right:\tiny{MMCX 2}] at (2.3, -1.75) {}; \node [label=right:\tiny{MMCX 3}] at (2.3, -2.1) {}; \begin{scope}[scale=0.07 , rotate=90, xshift=-30cm, yshift=-35cm] \draw (0,0.65) -- (0,3); \clip (-1.5,0) rectangle (1.5,1.5); \draw (0,0) circle(1.5); \clip (-0.8,0) rectangle (0.8,0.8); \draw (0,0) circle(0.8); \end{scope} \begin{scope}[scale=0.07 , rotate=90, xshift=-25cm, yshift=-35cm] \draw (0,0.65) -- (0,3); \clip (-1.5,0) rectangle (1.5,1.5); \draw (0,0) circle(1.5); \clip (-0.8,0) rectangle (0.8,0.8); \draw (0,0) circle(0.8); \end{scope} \begin{scope}[scale=0.07 , rotate=90, xshift=-20cm, yshift=-35cm] \draw (0,0.65) -- (0,3); \clip (-1.5,0) rectangle (1.5,1.5); \draw (0,0) circle(1.5); \clip (-0.8,0) rectangle (0.8,0.8); \draw (0,0) circle(0.8); \end{scope} \begin{scope}[scale=0.07 , rotate=90, xshift=-15cm, yshift=-35cm] \draw (0,0.65) -- (0,3); \clip (-1.5,0) rectangle (1.5,1.5); \draw (0,0) circle(1.5); \clip (-0.8,0) rectangle (0.8,0.8); \draw (0,0) circle(0.8); \end{scope} \draw [-latexslim] (1.6, -1.05) -- (mmcx0); \draw [-latexslim] (1.6, -1.4) -- (mmcx1); \draw [-latexslim] (1.6, -1.75) -- (mmcx2); \draw [-latexslim] (1.6, -2.1) -- (mmcx3); % Memory modules, north of the FPGA \draw (-0.55, 2.4) node[twoportshape, t={\fourcm{SPI}{Flash}}, circuitikz/bipoles/twoport/width=1.3, scale=0.5] (spi_flash) {}; \draw (0.55, 2.4) node[twoportshape, t={SDRAM}, circuitikz/bipoles/twoport/width=1.3, scale=0.5] (sdram) {}; \draw [latexslim-latexslim] (spi_flash.south) -- (-0.55, 1.05); \draw [latexslim-latexslim] (sdram.south) -- (0.55, 1.05); % EEM connectors x12, horizontally located at y=0.4 \draw (2, 1.8) node[twoportshape, t={EEM Port 0}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (eem0) {}; \node at (2.4, 1.8)[circle,fill,inner sep=0.7pt]{}; \node at (2.6, 1.8)[circle,fill,inner sep=0.7pt]{}; \node at (2.8, 1.8)[circle,fill,inner sep=0.7pt]{}; \draw (3.2, 1.8) node[twoportshape, t={EEM Port 11}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (eem11) {}; \draw [decorate, decoration = {brace}] (3.4, 1.1) -- (1.8, 1.1); \draw [latexslim-latexslim] (2.6, 1) -- (2.6, 0.4) -- (0.85, 0.4); \end{scope} \end{circuitikz} } \caption{Simplified Block Diagram} \end{figure} \begin{figure}[hbt!] \centering \includegraphics[height=2in]{photo1124.jpg} \caption{Kasli 2.0 card} \end{figure} \begin{figure}[hbt!] \centering \includegraphics[angle=90,height=0.9in]{Kasli_FP.pdf} \caption{Kasli 2.0 front panel} \end{figure} % END PAGE ONE (for wide pages a single-column layout is preferable) \onecolumn \sourcesection{Kasli 2.0}{https://github.com/sinara-hw/Kasli} \section{Electrical Specifications} External clock parameters are derived based on the internal termination specified in UG471\footnote{\label{ug471}\url{https://docs.xilinx.com/v/u/en-US/ug471\_7Series\_SelectIO}} and the voltage range specified in DS181\footnote{\label{ds181}\url{https://docs.xilinx.com/v/u/en-US/ds181\_Artix\_7\_Data\_Sheet}}. These figures account for the insertion loss of the RF transformer (TC2-1TX+\footnote{\label{rf_trans}\url{https://www.minicircuits.com/pdfs/TC2-1TX+.pdf}}). \begin{table}[h] \centering \begin{threeparttable} \caption{Recommended Operating Conditions} \begin{tabularx}{0.85\textwidth}{l | c c c | c | X} \thickhline \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Unit} & \textbf{Conditions} \\ \hline Clock input & & & & &\\ \hspace{3mm} Input frequency & & 125 & & MHz & Si5324 synthesizer bypassed \\ \cline{2-6} % 100R termination & 100/350/600 mV differential input after the transformer. & \multicolumn{3} {c|}{10/100/125} & MHz & RTIO clock synthesized from input \\ \cline{2-6} \hspace{3mm} Power & -9 & 1.5 & 5.5 & dBm & \\ \hline Power supply rating & \multicolumn{4}{c|}{12V, 5A} & \\ \thickhline \end{tabularx} \end{threeparttable} \end{table} Power is to be supplied through the barrel connector in the front panel, size 5.5 mm OD, 2.5 mm ID, and is passed on to daughtercards through the EEM connections. Locking barrel connectors are supported. \section{FPGA} Kasli 2.0 features an XC7A100T-3FGG484E Xilinx Artix-7 FPGA to facilitate reconfigurable high-speed real-time control of inputs and outputs. Most commonly, this FPGA is flashed with binaries compiled from the ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) control system, which equips the carrier board with specialized gateware for handling other Sinara EEMs and an on-FPGA CPU for running ARTIQ experiment \mbox{kernels}. A micro-USB located on the front panel is equipped for JTAG, I2C, and UART serial output. The serial interface runs at 115200bps 8-N-1. \artiqsection \noteondrtio{Kasli 2.0} \section{Communication Interfaces} Communication between devices is implemented using 1000Base-T small form-factor pluggable (SFP) interfaces. Four are available on the Kasli 2.0. Appropriate SFP transceivers must be plugged inside the corresponding SFP cages. Each SFP connector possesses an indicator LED. \subsection{Upstream connection} A Kasli 2.0 board must acquire an upstream connection through the \texttt{SFP0} slot. \begin{itemize} \item \textbf{Standalone/Master} \\ An Ethernet-capable SFP transceiver should be inserted into the \texttt{SFP0} slot. Typically, a 10000Base-X RJ45 SFP module is used, with an network-connected Ethernet cable attached to the module. \item \textbf{Satellite} \\ The \texttt{SFP0} port should be connected to one of the free SFP slots on an upstream core device, using a cable connection with SFP transceivers. \end{itemize} \subsection{Downstream connection} Kasli 2.0 supports up to 3 DRTIO satellite connections per device. Any of the 3 downstream SFP ports (i.e. \texttt{SFP1}, \texttt{SFP2}, \texttt{SFP3}) may be used. \clockingsection{Kasli 2.0}{FPGA} \section{User LEDs} Kasli 2.0 supplies three user LEDs for debugging purposes. Two are located on the front panel. The third is located on the PCB itself, beside the SFP cage. An additional ERR LED on the front panel is used by ARTIQ firmware to indicate a runtime panic. \sysdescsection An example description file for a system using 1124 Kasli 2.0 as a master core device might begin: \begin{tcolorbox}[colback=white] \begin{minted}{json} "target": "kasli", "variant": "my_variant", "hw_rev": "v2.0", "base": "master", "peripherals": [ ] \end{minted} \end{tcolorbox} \coresysdesc \newpage \coredevicecode{Kasli 2.0 1124 carrier} \ordersection{1124 Carrier Kasli 2.0} \finalfootnote \end{document}