4456 -> 4456-4457: add almazny #76

Open
architeuthis wants to merge 3 commits from architeuthis/datasheets:mirny into master
7 changed files with 205 additions and 135 deletions

View File

@ -1,10 +1,10 @@
\input{preamble.tex} \input{preamble.tex}
\graphicspath{{images/4456}{images}} \graphicspath{{images/4456-4457}{images}}
\title{4456 Synthesizer Mirny} \title{4456 Synthesizer Mirny / 4457 HF Synthesizer Mirny + Almazny}
\author{M-Labs Limited} \author{M-Labs Limited}
\date{January 2022} \date{January 2025}
\revision{Revision 1} \revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}} \companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document} \begin{document}
@ -13,29 +13,27 @@
\section{Features} \section{Features}
\begin{itemize} \begin{itemize}
\item{4-channel VCO/PLL} \item{4-channel wide-band PLL/VCO-based microwave frequency synthesiser}
architeuthis marked this conversation as resolved Outdated

"4-channel Wide-band PLL/VCO-based microwave frequency synthesiser" like on our ordering site is better than just "VCO/PLL"

"4-channel Wide-band PLL/VCO-based microwave frequency synthesiser" like on our ordering site is better than just "VCO/PLL"
\item{Output frequency ranges from 53 MHz to \textgreater 4 GHz} \item{Output frequency ranges from 53 MHz to \textgreater 4 GHz for 4456 Mirny only}
\item{Up to 13.6 GHz with Almazny mezzanine} \item{Up to 12 GHz with 4457 Almazny}
\item{Higher frequency resolution than Urukul} \item{Higher frequency resolution than 4410/4412 Urukul}
architeuthis marked this conversation as resolved Outdated

use "4410/4412 DDS Urukul" instead of just "Urukul", since most of our datasheet has the part number prefix

use "4410/4412 DDS Urukul" instead of just "Urukul", since most of our datasheet has the part number prefix
\item{Lower jitter and phase noise} \item{Lower jitter, phase noise than 4410/4412 Urukul}
architeuthis marked this conversation as resolved Outdated

Lower jitter and phase noise "than 4410/4412 DDS Urukul" (I think this is copied from the wiki)

Lower jitter and phase noise "than 4410/4412 DDS Urukul" (I think this is copied from the [wiki](https://github.com/sinara-hw/mirny/wiki))
\item{Large frequency changes take several milliseconds}
\end{itemize} \end{itemize}
architeuthis marked this conversation as resolved Outdated

Perhaps this should be moved to "Electrical Specifications" section as "lock time". Last time I checked, the lock time for ADF5355 and ADF5356 are 3.5ms and 1.7ms respectively

Perhaps this should be moved to "Electrical Specifications" section as "lock time". Last time I checked, the lock time for ADF5355 and ADF5356 are 3.5ms and 1.7ms respectively
\section{Applications} \section{Applications}
\begin{itemize} \begin{itemize}
\item{Low-noise microwave source} \item{Low-noise microwave source}
\item{Quantum state control} \item{Quantum state control}
\item{Driving acousto/electro-optic modulators} \item{Driving acousto/electro-optic modulators}
\end{itemize} \end{itemize}
\section{General Description} \section{General Description}
The 4456 Synthesizer Mirny card is a 4hp EEM module, part of the ARTIQ/Sinara family. It adds microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC. The 4456 Synthesizer Mirny card is a 4hp EEM module; the 4457 HF Synthesizer Mirny + Almazny card, consisting of 4456 Mirny plus the 4-channel Almazny HF mezzanine, is a 8hp EEM module. Both Synthesizer cards add microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 channels of PLL frequency synthesis. Output frequencies from 53 MHz to \textgreater 4 GHz are supported.The range can be expanded up to 13.6 GHz with the Almazny mezzanine (4467 HF Synthesizer). Both cards provide 4 channels of PLL frequency synthesis. 4456 Synthesizer Mirny supports output frequencies from 53 MHz to \textgreater 4GHz. As 4457 HF Synthesizer with Almazny mezzanine this range is expanded up to 12 GHz.
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches on each channel provides at least 50 dB isolation.
architeuthis marked this conversation as resolved Outdated

12GHz for Almazny as per hardware specs. 13.8 is theoretical max for ADF5356 but the whole RF path would have to support it, and it doesn't.

12GHz for Almazny as per [hardware specs](https://github.com/sinara-hw/Almazny/). 13.8 is theoretical max for ADF5356 but the whole RF path would have to support it, and it doesn't.

hmmm, should we also mention mirny max frequency is 6GHz? (12GHz/2) but the loop filter for ADF5356 mirny said it only supports up to 4.4GHz
image

hmmm, should we also mention mirny max frequency is 6GHz? (12GHz/2) but the loop filter for ADF5356 mirny said it only supports up to 4.4GHz ![image](/attachments/0db4f791-7e40-434e-9b66-4b2a89507d35)

4.4GHz is the safe config w/ the loop filter, but with Almazny you can go higher

also max max on Mirny output (regardless of the rest of the path) is 6.8

4.4GHz is the safe config w/ the loop filter, but with Almazny you can go higher also max max on Mirny output (regardless of the rest of the path) is 6.8
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches on each channel provide at least 50 dB isolation.
% Switch to next column % Switch to next column
\vfill\break \vfill\break
@ -275,30 +273,44 @@ Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF sw
\begin{figure}[hbt!] \begin{figure}[hbt!]
\centering \centering
\includegraphics[height=2in]{photo4456.jpg} \includegraphics[height=2in]{photo4457.jpg}
\includegraphics[height=3in, angle=90]{Mirny_FP.pdf} \caption{Mirny + Almazny card}
\caption{Mirny card and front panel}
\end{figure} \end{figure}
% For wide tables, a single column layout is better. It can be switched % For wide tables, a single column layout is better. It can be switched
% page-by-page. % page-by-page.
\onecolumn \onecolumn
\sourcesection{4456 Synthesizer Mirny}{https://github.com/sinara-hw/mirny} \begin{figure}[hbt!]
\subfloat[\centering Mirny and Almazny front panels]{{
\begin{minipage}[b]{0.5\linewidth}
\centering
\includegraphics[height=3in, angle=90]{fp4456.pdf} \\
\vspace{0.2in}
\includegraphics[height=3in, angle=90]{fp4457.pdf}
\vspace{0.25in}
\end{minipage}
}}
\subfloat[\centering Mirny, top-down view]{{
\includegraphics[height=2.5in]{photo4456.jpg}
}}
\end{figure}
\sourcesectiond{4456 Synthesizer Mirny}{the 4457 Almazny mezzanine}{https://github.com/sinara-hw/mirny}{https://github.com/sinara-hw/Almazny}
\section{Electrical Specifications} \section{Electrical Specifications}
Specifications of parameters are based on the datasheets of the PLL IC Specifications of parameters are based on the datasheets of the PLL IC
(ADF5356\footnote{\label{adf5356}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}}), (ADF5356\footnote{\label{adf5356}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}} for 4456 Mirny, ADF5355\footnote{\label{adf5355}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5355.pdf}}) for 4457 Almazny),
clock buffer IC (Si53340-B-GM\footnote{\label{clock_buffer}\url{https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si5334x-datasheet.pdf}}), clock buffer IC (Si53340-B-GM\footnote{\label{clock_buffer}\url{https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si5334x-datasheet.pdf}}),
and digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}}). and digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}}).
Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for driving ion traps in quantum computing"\footnote{\label{mirny_thesis}\url{https://m-labs.hk/Krzysztof\_Belewicz\_V1.1.pdf}}. Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for driving ion traps in quantum computing"\footnote{\label{mirny_thesis}\url{https://m-labs.hk/Krzysztof\_Belewicz\_V1.1.pdf}}.
\begin{table}[h] \begin{table}[h]
\centering \centering
\begin{threeparttable} \begin{threeparttable}
\caption{Recommended Operating Conditions} \caption{Recommended Operating Conditions}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X} \begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline \thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\ \textbf{Unit} & \textbf{Conditions} \\
@ -313,57 +325,77 @@ Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for dr
\hspace{3mm}Differential input swing\repeatfootnote{clock_buffer} \hspace{3mm}Differential input swing\repeatfootnote{clock_buffer}
& 0.11 & & 1.55 & V\textsubscript{p-p} & \\ & 0.11 & & 1.55 & V\textsubscript{p-p} & \\
\thickhline \thickhline
\end{tabularx} \end{tabularx}
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\begin{table}[h] \begin{table}[h]
\centering \centering
\begin{threeparttable} \begin{threeparttable}
\caption{Output Specifications} \caption{Output Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X} \begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline \thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\ \textbf{Unit} & \textbf{Conditions} \\
\hline \hline
Frequency & 53.125 & & 4000 & MHz & \\ Frequency & 53.125 & & 4000 & MHz & 4456 Mirny only \\
& & & 12000 & MHz & With Almazny mezzanine \\
\hline \hline
Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\ Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\
\hline \hline
Resolution & \multicolumn{4}{c|}{} & \\ \end{tabularx}
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{4}{c|}{52 bits} & \\ \end{threeparttable}
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{4}{c|}{24 bits} & \\ \end{table}
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{4}{c|}{0.5 dB} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage \newpage
Phase noise performance of Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}. The SPI signal was driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card. Mirny was then connected to the RSA5100A spectrum analyzer for measurement. \begin{table}[h]
\centering
\begin{threeparttable}
\caption{Output Specifications, cont.}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Lock time & & 1.7 & & ms & 4456 Mirny channels \\
& & 3.5 & & ms & 4457 Almazny channels \\
Review

the mirny & almazny are using the same ADF535X chips, so their lock time should be the same i.e. 1.7 ms when using ADF5356

the mirny & almazny are using the same ADF535X chips, so their lock time should be the same i.e. 1.7 ms when using ADF5356
Review

to be slightly more precise, Almazny is taking the output B (2x) of the ADF535X, there's no extra/duplicate chip on the mezzanine

to be slightly more precise, Almazny is taking the output B (2x) of the ADF535X, there's no extra/duplicate chip on the mezzanine
\hline
Resolution & & & & \\
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{3}{c|}{52} & bits & \\
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{3}{c|}{24} & bits & \\
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{3}{c|}{0.5} & dB & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
Noise response spike can be improved by inserting an additional common-mode choke between the power supply and Mirny; note that this common-mode choke is not present on the card itself. The following is a comparison between the two setups at 1 GHz output: Phase noise performance of 4456 Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}. The SPI signal was driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card. 4456 Mirny was then connected to the RSA5100A spectrum analyzer for measurement.
\begin{itemize}
\item Red: Before any modifications
\item Blue: CM choke added with an 100 \textmu F capacitor after the CM choke
\end{itemize}
\begin{figure}[H] Noise response spike can be improved by inserting an additional common-mode choke between the power supply and Mirny; note that this common-mode choke is not present on the card itself. The following is a comparison between the two setups at 1 GHz output:
\begin{figure}[H]
\centering \centering
\includegraphics[height=3in]{mirny_phase_noise_cm_choke.png} \includegraphics[height=3in]{mirny_phase_noise_cm_choke.png}
\caption{Phase noise measurement at 1 GHz} \caption{Phase noise measurement at 1 GHz}
\end{figure} \end{figure}
Phase noise at different output frequencies is then measured: \begin{itemize}
\item Red: Before any modifications
\item Blue: CM choke added with an 100 \textmu F capacitor after the CM choke
\end{itemize}
\newcolumntype{Y}{>{\centering\arraybackslash}X} \newpage
\begin{table}[hbt!] Phase noise at different output frequencies is then measured:
\centering
\begin{threeparttable} \newcolumntype{Y}{>{\centering\arraybackslash}X}
\caption{Phase noise performance}
\begin{tabularx}{0.8\textwidth}{| c | Y | Y | Y | Y | Y |} \begin{table}[hbt!]
\centering
\begin{threeparttable}
\caption{Phase noise performance}
\begin{tabularx}{0.8\textwidth}{| c | Y | Y | Y | Y | Y |}
\thickhline \thickhline
\multirow{2}{*}{\textbf{Output frequency}} & \multirow{2}{*}{\textbf{Output frequency}} &
\multicolumn{5}{c|}{\textbf{Phase noise (dBc/Hz) at carrier offset}}\\ \multicolumn{5}{c|}{\textbf{Phase noise (dBc/Hz) at carrier offset}}\\
@ -379,33 +411,71 @@ Phase noise at different output frequencies is then measured:
\hline \hline
3.5 GHz & -96 & -101 & -103 & -127 & -128 \\ 3.5 GHz & -96 & -101 & -103 & -127 & -128 \\
\thickhline \thickhline
\end{tabularx} \end{tabularx}
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\newpage \begin{figure}[H]
\begin{figure}[H]
\centering \centering
\includegraphics[height=3in]{mirny_phase_noise_frequency.png} \includegraphics[height=3in]{mirny_phase_noise_frequency.png}
\caption{Phase noise measurement} \caption{Phase noise measurement}
\end{figure} \end{figure}
\codesection{4456 Synthesizer Mirny} \section{Programmable LEDs}
\subsection{1 GHz sinusoidal wave} 4456 Mirny features several status LEDs, including a two per output channel. One per channel displays RF switch status.
Generates a 1 GHz sinusoid from RF0 with full scale amplitude, attenuated by 12 dB. Both the CPLD and the PLL channels should be initialized.
\inputcolorboxminted{firstline=10,lastline=17}{examples/pll.py} The 4457 Almazny mezzanine features an additional row of LEDs, one per output channel, without a fixed purpose. The associated ARTIQ module allows programming these directly through the channel \texttt{set} method.
\subsection{ADF5356 power control} \newpage
Output power can be controlled be configuring the PLL channels individually in addition to the digital attenuators. After initialization of the PLL channel (ADF5356), the following line of code can change the output power level: \sysdescsection
\inputcolorboxminted{firstline=28,lastline=28}{examples/pll.py} 4456 Synthesizer Mirny must be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
The parameter corresponds to a specific change of output power according to the following table\repeatfootnote{adf5356}. \begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "mirny",
"ports": 0,
"clk_sel": "mmcx", // optional
"refclk": 125e6 // optional
}
\end{minted}
\end{tcolorbox}
\begin{center} Replace 0 with the EEM port number used on the core device. Any port can be used. The \texttt{clk\_sel} field is optional and may be specified as one of either \texttt{xo}, \texttt{mmcx}, or \texttt{sma}. The default is \texttt{xo}. The \texttt{refclk} field is optional and the default is \texttt{100e6}.
For 4457 Mirny + Almazny, one field must be added:
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "mirny",
"almazny": true,
"ports": 0
}
\end{minted}
\end{tcolorbox}
\codesection{4456 Synthesizer Mirny and 4457 Mirny + Almazny}
\subsection{1 GHz sinusoidal wave}
Generates a 1 GHz sinusoid from RF0 with full scale amplitude, attenuated by 12 dB. Both the CPLD and the PLL channels should be initialized.
\inputcolorboxminted{firstline=10,lastline=17}{examples/pll.py}
\subsection{Almazny paired output}
Mirny and Almazny output channels are paired, and Almazny output channels output twice the frequency of the main Mirny outputs. To set Almazny HF outputs for 4457 HF Synthesizer, set the Mirny outputs to one-half the desired frequency. The above code, run with 4457 HF Synthesizer, will also output 2GHz from Almazny HF0.
\subsection{ADF5356 power control}
Output power can be controlled be configuring the PLL channels individually in addition to the digital attenuators. After initialization of the PLL channel (ADF5356), the following line of code can change the output power level:
\inputcolorboxminted{firstline=28,lastline=28}{examples/pll.py}
The parameter corresponds to a specific change of output power according to the following table\repeatfootnote{adf5356}.
\begin{center}
\captionof{table}{Power changes from ADF5356} \captionof{table}{Power changes from ADF5356}
\begin{tabular}{|c|c|} \begin{tabular}{|c|c|}
\hline \hline
@ -415,18 +485,18 @@ The parameter corresponds to a specific change of output power according to the
2 & +2 dBm \\ \hline 2 & +2 dBm \\ \hline
3 & +5 dBm \\ \hline 3 & +5 dBm \\ \hline
\end{tabular} \end{tabular}
\end{center} \end{center}
ADF5356 gives +5 dBm by default. The stored parameter in ADF5356 can be read using the following line" ADF5356 gives +5 dBm by default. The stored parameter in ADF5356 can be read using the following line"
\inputcolorboxminted{firstline=29,lastline=29}{examples/pll.py} \inputcolorboxminted{firstline=29,lastline=29}{examples/pll.py}
\subsection{Periodic 100\textmu s pulses} \subsection{Periodic 100\textmu s pulses}
The output can be toggled on and off periodically using the RF switches. The following code emits a 100\textmu s pulse in every millisecond. A microwave signal should be programmed in prior (such as the 1 GHz wave example). The output can be toggled on and off periodically using the RF switches. The following code emits a 100\textmu s pulse in every millisecond. A microwave signal should be programmed in prior (such as the 1 GHz wave example).
\inputcolorboxminted{firstline=42,lastline=44}{examples/pll.py} \inputcolorboxminted{firstline=42,lastline=44}{examples/pll.py}
\ordersection{4456 Synthesizer Mirny} \ordersection{4456 Synthesizer Mirny or 4457 HF Synthesizer Mirny + Almazny}
\finalfootnote \finalfootnote

BIN
images/4456-4457/fp4457.pdf Normal file

Binary file not shown.

View File

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 62 KiB

View File

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 98 KiB

View File

Before

Width:  |  Height:  |  Size: 140 KiB

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 179 KiB