5108: spellcheck, remove noise density graph #69

Merged
sb10q merged 2 commits from architeuthis/datasheets:sampler into master 2024-12-15 21:37:18 +08:00
5 changed files with 79 additions and 176 deletions
Showing only changes of commit 307553067c - Show all commits

253
5108.tex
View File

@ -1,4 +1,4 @@
\include{preamble.tex} \input{preamble.tex}
\graphicspath{{images/5108}{images}} \graphicspath{{images/5108}{images}}
\title{5108 ADC Sampler} \title{5108 ADC Sampler}
@ -13,34 +13,29 @@
\section{Features} \section{Features}
\begin{itemize} \begin{itemize}
\item{8-channel ADC.} \item{8-channel ADC}
\item{16-bits resolution.} \item{16-bits resolution}
\item{1.5 MSPS simultaneously on all channels.} \item{1.5 MSPS simultaneously on all channels}
\item{Full scale input voltage $\pm$10mV to $\pm$10V.} \item{Full scale input voltage, $\pm$10mV to $\pm$10V}
\item{BNC connector.} \item{BNC connector}
\item{SMA breakout with 5528 SMA-IDC adapter.} \item{SMA breakout with 5528 SMA-IDC adapter}
\end{itemize} \end{itemize}
\section{Applications} \section{Applications}
\begin{itemize} \begin{itemize}
\item{Sample intermediate-frequency (IF) waveform.} \item{Sample intermediate-frequency (IF) waveform}
Review

Not really sure what this means...

Not really sure what this means...
\item{Monitor laser power with a photodiode.} \item{Monitor laser power with a photodiode}
\item{Synchronize laser frequencies with a phase frequency detector.} \item{Synchronize laser frequencies with a phase frequency detector}
Review

Has this ever been done?

Has this ever been done?
\item{Form a laser intensity servo with 4410 Urukul.} \item{Form a laser intensity servo with 4410 Urukul}
\end{itemize} \end{itemize}
\section{General Description} \section{General Description}
The 5108 ADC Sampler is a 8hp EEM module part of the ARTIQ Sinara family. The 5108 ADC Sampler is a 8hp EEM module, part of the ARTIQ/Sinara family. It adds analog-digital converting capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It adds analog-digital converting capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 8 analog-to-digital channels, each exposed by a BNC connector. It provides eight analog-to-digital channels, exposed by eight BNC connectors. Each channel supports input voltage ranges from \textpm 10mV to \textpm 10V. All channels can be sampled simultaneously. Channels can broken out to SMA by adding a 5528 SMA-IDC card.
Each channel supports input voltage ranges from \textpm 10mV to \textpm 10V.
All channels can be sampled simultaneously.
Channels can broken out to SMA by adding a 5528 SMA-IDC card.
5108 ADC Sampler provides a sample rate of 1.5 MSPS. 5108 ADC Sampler provides a sample rate of 1.5 MSPS. However, the sample rate in practice is typically limited by the use of ARTIQ-Python kernel code.
However, the sample rate in practice is typically limited by the use of ARTIQ-Python kernel code.
% Switch to next column % Switch to next column
\vfill\break \vfill\break
@ -254,17 +249,19 @@ However, the sample rate in practice is typically limited by the use of ARTIQ-Py
\caption{Simplified Block Diagram} \caption{Simplified Block Diagram}
\end{figure} \end{figure}
\begin{figure}[h] \begin{figure}[hbt!]
\centering \centering
\includegraphics[height=1.9in]{Sampler_FP.jpg} \includegraphics[height=2.3in]{photo5108.jpg}
\includegraphics[height=1.9in]{photo5108.jpg} \includegraphics[height=2.5in, angle=90]{Sampler_FP.jpg}
\caption{Sampler Card photo} \caption{Sampler card and front panel}
\end{figure} \end{figure}
% For wide tables, a single column layout is better. It can be switched % For wide tables, a single column layout is better. It can be switched
% page-by-page. % page-by-page.
\onecolumn \onecolumn
\sourcesection{5108 ADC Sampler}{https://github.com/sinara-hw/Sampler}
\section{Electrical Specifications} \section{Electrical Specifications}
\begin{table}[h] \begin{table}[h]
@ -292,9 +289,9 @@ However, the sample rate in practice is typically limited by the use of ARTIQ-Py
\end{table} \end{table}
The electrical characteristics are based on various test results\footnote{\label{sinara226}https://github.com/sinara-hw/sinara/issues/226}\textsuperscript{,} The electrical characteristics are based on various test results\footnote{\label{sinara226}\url{https://github.com/sinara-hw/sinara/issues/226}}\textsuperscript{,}
\footnote{\label{sinara489}https://github.com/sinara-hw/sinara/issues/489}\textsuperscript{,} \footnote{\label{sinara489}\url{https://github.com/sinara-hw/sinara/issues/489}}\textsuperscript{,}
\footnote{\label{sampler2}https://github.com/sinara-hw/Sampler/issues/2}. \footnote{\label{sampler2}\url{https://github.com/sinara-hw/Sampler/issues/2}}.
\begin{table}[hbt!] \begin{table}[hbt!]
\centering \centering
@ -322,6 +319,18 @@ The electrical characteristics are based on various test results\footnote{\label
& & 206.3 & & LSB RMS & Termination off \\ & & 206.3 & & LSB RMS & Termination off \\
% \hline % \hline
DC cross-talk\repeatfootnote{sinara226} & & & -96 & dB & 1x gain\\ DC cross-talk\repeatfootnote{sinara226} & & & -96 & dB & 1x gain\\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\begin{threeparttable}
\caption{Electrical Characteristics (cont.)}
\begin{tabularx}{\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline \hline
% AC cross-talk data on wiki is also outdated (when it was still novo) % AC cross-talk data on wiki is also outdated (when it was still novo)
% sinara-hw/sinara #489 is a better source of info % sinara-hw/sinara #489 is a better source of info
@ -331,49 +340,33 @@ The electrical characteristics are based on various test results\footnote{\label
& & -51 & & dBc & 0.1 V\textsubscript{pp} (-48dBFS), limited by ADC (-100dBFS) \\ & & -51 & & dBc & 0.1 V\textsubscript{pp} (-48dBFS), limited by ADC (-100dBFS) \\
& & -69 & & dBc & 1 V\textsubscript{pp} (-28dBFS) \\ & & -69 & & dBc & 1 V\textsubscript{pp} (-28dBFS) \\
& & -58.8 & & dBc & 10 V\textsubscript{pp} (-8dBFS) \\ & & -58.8 & & dBc & 10 V\textsubscript{pp} (-8dBFS) \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{table}[h]
\begin{threeparttable}
\caption{Electrical Characteristics (cont.)}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline \hline
Common-mode rejection ratio\repeatfootnote{sinara226} & CMRR & & & & & 2 V\textsubscript{pp} sine wave as CM input, termination on\\ Common-mode rejection ratio\repeatfootnote{sinara226} & & & & & 2 V\textsubscript{pp} sine wave as CM input, termination on\\
\hspace{12mm} 1x gain & & & & -98 & dB & $f=0.01,0.1,1$ kHz \\ \hspace{12mm} 1x gain & & & -98 & dB & $f=0.01,0.1,1$ kHz \\
& & & -87 & & dB & $f=10$ kHz \\ & & -87 & & dB & $f=10$ kHz \\
& & & -55 & & dB & $f=100$ kHz \\ & & -55 & & dB & $f=100$ kHz \\
& & & -83 & & dB & $f=1$ MHz \\ & & -83 & & dB & $f=1$ MHz \\
& & & -85 & & dB & $f=10$ MHz \\ & & -85 & & dB & $f=10$ MHz \\
\cline{3-7} \cline{2-6}
\hspace{12mm} 100x gain & & & & -118 & dB & $f=0.01$ kHz \\ \hspace{12mm} 100x gain & & & -118 & dB & $f=0.01$ kHz \\
& & & -98 & & dB & $f=0.1$ kHz \\ & & -98 & & dB & $f=0.1$ kHz \\
& & & -88 & & dB & $f=1$ kHz \\ & & -88 & & dB & $f=1$ kHz \\
& & & -70 & & dB & $f=10$ kHz \\ & & -70 & & dB & $f=10$ kHz \\
& & & -50 & & dB & $f=100$ kHz \\ & & -50 & & dB & $f=100$ kHz \\
& & & -80 & & dB & $f=1$ MHz \\ & & -80 & & dB & $f=1$ MHz \\
& & & & -118 & dB & $f=10$ MHz \\ & & & -118 & dB & $f=10$ MHz \\
\thickhline \thickhline
\end{tabularx} \end{tabularx}
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\newpage \subsection{Channel crosstalk}
Crosstalk between ADC channels of 5108 ADC Sampler is shown below\repeatfootnote{sinara489}. Crosstalk between ADC channels of 5108 ADC Sampler is shown below\repeatfootnote{sinara489}.
A 10 V\textsubscript{pp} signal is the input. A 10 V\textsubscript{pp} signal was used as the input. The aggressor channel always has 1x gain. All channels have 50 \textOmega~termination enabled.
The aggressor channel always has 1x gain.
All channels have 50 \textOmega~termination enabled.
Data is acquired by taking 512 samples at 80 kHz sampling rate 20 times to average out the FFT. Data was acquired by taking 512 samples at 80 kHz sampling rate 20 times to average out the FFT.
\newcolumntype{Y}{>{\centering\arraybackslash}X} \newcolumntype{Y}{>{\centering\arraybackslash}X}
@ -427,7 +420,7 @@ Data is acquired by taking 512 samples at 80 kHz sampling rate 20 times to avera
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\newpage \clearpage
% The plots are quite small given that it is 8-plots-in-1, but the numbers should give a better picture % The plots are quite small given that it is 8-plots-in-1, but the numbers should give a better picture
\begin{figure}[hbt!] \begin{figure}[hbt!]
@ -465,7 +458,7 @@ Data is acquired by taking 512 samples at 80 kHz sampling rate 20 times to avera
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\newpage \clearpage
\begin{figure}[hbt!] \begin{figure}[hbt!]
\centering \centering
@ -473,38 +466,14 @@ Data is acquired by taking 512 samples at 80 kHz sampling rate 20 times to avera
\caption{Crosstalk with 300 kHz input frequency, 1x gain on victim, channel 3 as the aggressor} \caption{Crosstalk with 300 kHz input frequency, 1x gain on victim, channel 3 as the aggressor}
\end{figure} \end{figure}
Noise density is measured using the following configuration\repeatfootnote{sampler2}: \subsection{Bandwidth}
\begin{enumerate}
\item 1/12\textmu s sampling rate
\item 10k samples per measurement, averaging over 100 measurements
\item Measured at channels 6 \& 7. Channel 6 has the 50\textOmega~termination on, channel 7 has it off
\end{enumerate}
Noise density with respect to different gain settings with termination on/off are plotted below.
\begin{multicols}{2} Bandwidth of small signal and large signal input is shown below\repeatfootnote{sampler2}. The setup is as follows:
\begin{figure}[H]
\includegraphics[width=3.3in]{sampler_noise_term.png}
\caption{Noise density with termination enabled}
\end{figure}
\columnbreak
\begin{figure}[H]
\includegraphics[width=3.3in]{sampler_noise_no_term.png}
\caption{Noise density with termination disabled}
\end{figure}
\end{multicols}
\newpage
Bandwidth of small signal and large signal input is shown below\repeatfootnote{sampler2}. The setup is as the following:
\begin{enumerate} \begin{enumerate}
\itemsep0em \itemsep0em
\item 10k samples, sampled at 79.37 kHz \item 10k samples, sampled at 79.37 kHz
\item Driven by sinusoid from Keysight 33500B generator; Sampled using channel 7 without termination \item Driven by sinusoid from Keysight 33500B generator; sampled using channel 7 without termination
\item Small signal measured using 2V\textsubscript{pp}/gain; Large signal measured using 15V\textsubscript{pp}/gain \item Small signal measured using 2V\textsubscript{pp}/gain; large signal measured using 15V\textsubscript{pp}/gain
\end{enumerate} \end{enumerate}
\begin{multicols}{2} \begin{multicols}{2}
@ -524,66 +493,13 @@ Bandwidth of small signal and large signal input is shown below\repeatfootnote{s
\newpage \newpage
\section{Front Panel Drawings}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=2.7in]{sampler_drawings.pdf}
\captionof{figure}{5108 ADC Sampler front panel drawings}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=2.7in]{sampler_assembly.pdf}
\captionof{figure}{5108 ADC Sampler front panel assembly}
\end{center}
\end{multicols}
\begin{multicols}{2}
\begin{center}
\captionof{table}{Bill of Material (Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90504202 & 1 & FP-FRONT PANEL, EXTRUDED, TYPE 2, STATIC, 3Ux8HP \\ \hline
2 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
3 & 3020716 & 0.04 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\captionof{table}{Bill of Material (Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90504202 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
2 & 3033098 & 0.04 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
3 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
4 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
5 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
6 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
7 & 3040005 & 1 & HANDLE 8HP GREY PLASTIC \\ \hline
8 & 3207076 & 0.01 & SCR M2.5*12 PAN 100 21101-222 \\ \hline
9 & 3201130 & 0.01 & NUT M2.5 HEX ST NI KIT (100PCS) \\ \hline
10 & 3211232 & 1 & SCR M2.5*14 PAN PHL SS \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\section{Configuring Termination} \section{Configuring Termination}
\begin{multicols}{2} \begin{multicols}{2}
The input termination can be configured by switches. The input termination must be configured by setting physical switches on the board. The termination switches are found at the middle left part of the card are by-channel. Switching the termination switches on adds a 50\textOmega~termination between the differential input signals.
The per-channel termination switches are found at the middle left part of the card.
Switching on the termination switch adds a 50\textOmega~termination between the differential input signals. Regardless of switch configurations, the differential input signals are separately terminated with 100k\textOmega~to the PCB ground.
Regardless of the switch configurations, the differential input signals are separately terminated with 100k\textOmega~to the PCB ground. \vspace*{\fill}
\columnbreak \columnbreak
\begin{center} \begin{center}
\centering \centering
@ -592,48 +508,41 @@ Regardless of the switch configurations, the differential input signals are sepa
\end{center} \end{center}
\end{multicols} \end{multicols}
\newpage \codesection{5108 ADC Sampler}
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 5108 ADC Sampler card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{Get input voltage} \subsection{Get input voltage}
The following example initializes the Sampler card with 1x gain on all ADC channels. The following example initializes the Sampler card with 1x gain on all ADC channels. At the end all ADC channels are sampled.
Sample all ADC channels at the end.
\inputcolorboxminted{firstline=9,lastline=21}{examples/sampler.py} \inputcolorboxminted{firstline=9,lastline=21}{examples/sampler.py}
\subsection{Voltage-controlled DDS Amplitude (SU-Servo Only)} \newpage
The SU-Servo feature can be enabled by integrating the 5108 ADC Sampler with 4410 DDS Urukuls.
Amplitude of the DDS output can be controlled by the ADC input of the Sampler through PI control, characterised by the following transfer function. \subsection{Voltage-controlled DDS amplitude (SU-Servo only)}
SU-Servo configuration can be enabled by integrating the 5108 ADC Sampler with 4410 DDS Urukul. Amplitude of the DDS output can be controlled by the ADC input of the Sampler through PI control, characterised by the following transfer function:
\[H(s)=k_p+\frac{k_i}{s+\frac{k_i}{g}}\] \[H(s)=k_p+\frac{k_i}{s+\frac{k_i}{g}}\]
In the following example, the amplitude of DDS is proportional to the ADC input from Sampler. In the following example, the amplitude of DDS is proportional to the ADC input from Sampler.
First, initialize the RTIO, SU-Servo and its channel with 1x gain. First, initialize the RTIO, SU-Servo and its channel with 1x gain.
\inputcolorboxminted{firstline=10,lastline=17}{examples/suservo.py} \inputcolorboxminted{firstline=10,lastline=17}{examples/suservo.py}
Next, setup the PI control as an IIR filter. It has -1 proportional gain $k_p$ and no integrator gain $k_i$. Next, set up the PI control as an IIR filter. It has -1 proportional gain $k_p$ and no integrator gain $k_i$.
\inputcolorboxminted{firstline=18,lastline=25}{examples/suservo.py} \inputcolorboxminted{firstline=18,lastline=25}{examples/suservo.py}
Then, configure the DDS frequency to 10 MHz with 3V input offset. Then, configure the DDS frequency to 10 MHz with 3V input offset. When input voltage $\geq$ offset voltage, the DDS output amplitude is 0.
When input voltage $\geq$ offset voltage, the DDS output amplitude is 0.
\inputcolorboxminted{firstline=26,lastline=30}{examples/suservo.py} \inputcolorboxminted{firstline=26,lastline=30}{examples/suservo.py}
SU-Servo encodes the ADC voltage in a linear scale [-1, 1]. SU-Servo encodes the ADC voltage in a linear scale [-1, 1]. Therefore, 3V is converted to 0.3. Note that the ASF of all DDS channels are capped at 1.0; the amplitude clips when ADC input $\leq -7V$ with the above IIR filter.
Therefore, 3V is converted to 0.3.
Note that the ASF of all DDS channels are capped at 1.0, the amplitude clips when ADC input $\leq -7V$ with the above IIR filter.
Finally, enable the SU-Servo channel with the IIR filter programmed beforehand. Finally, enable the SU-Servo channel with the IIR filter programmed beforehand:
\inputcolorboxminted{firstline=32,lastline=33}{examples/suservo.py} \inputcolorboxminted{firstline=32,lastline=33}{examples/suservo.py}
A 10 MHz DDS signal is generated from the example above, with amplitude controllable by ADC. \newpage
The RMS voltage of the DDS channel against the ADC voltage is plotted.
The DDS channel is terminated with 50\textOmega. A 10 MHz DDS signal is generated from the example above, with amplitude controllable by ADC. The RMS voltage of the DDS channel against the ADC voltage is plotted. The DDS channel is terminated with 50\textOmega.
\begin{center} \begin{center}
\begin{tikzpicture}[ \begin{tikzpicture}[
@ -666,16 +575,10 @@ The DDS channel is terminated with 50\textOmega.
\end{tikzpicture} \end{tikzpicture}
\end{center} \end{center}
DDS signal should be attenuated. DDS signal should be attenuated. High output power affects the linearity due to the 1 dB compression point of the amplifier at 13 dBm output power. 15 dB attenuation at the digital attenuator was applied in this example.
High output power affects the linearity due to the 1 dB compression point of the amplifier at 13 dBm output power.
15 dB attenuation at the digital attenuator was applied in this example.
\section{Ordering Information} \ordersection{5108 ADC Sampler}
To order, please visit \url{https://m-labs.hk} and select the 5108 ADC Sampler in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{} \finalfootnote
\vspace*{\fill}
\input{footnote.tex}
\end{document} \end{document}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB