Compare commits

..

No commits in common. "master" and "master" have entirely different histories.

93 changed files with 114 additions and 13730 deletions

329
1124.tex
View File

@ -1,329 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usepackage{pifont}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{1124 Carrier Kasli 2.0}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{4 SFP 6Gb/s slots for Ethernet or DRTIO.}
\item{12 EEM Connectors.}
\item{4 MMCX clock outputs.}
\item{FPGA core device.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Runs ARTIQ kernels.}
\item{Control the EEMs.}
\item{Communication with the host.}
\end{itemize}
\section{General Description}
The 1124 Carrier Kasli 2.0 card is a 8hp EEM module.
It controls the EEMs by running ARTIQ kernels sent from the host.
It supports 12 EEM connections to other EEM cards in the ARTIQ Sinara family.
Real-time control of the EEMs are implemented using the RTIO system.
1ns temporal resolution can be achieved for TTL events.
4 SFP 6Gb/s slots are supported for Ethernet or DRTIO.
Communication with the host is supported by the Ethernet, while the
Distributed Real Time Input/Output (DRTIO) system allows inclusion of
additional core devices (e.g. Kasli 2.0) as DRTIO satellites,
indirectly controlled by the DRTIO Master.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{1.15}{
\begin{circuitikz}[european, every label/.append style={align=center}]
\begin{scope}[]
% Draw the FPGA
\draw (0, 0) node[twoportshape, t={FPGA}, circuitikz/bipoles/twoport/height=1.5, circuitikz/bipoles/twoport/width=1.2, scale=1] (fpga) {};
% External clock for RTIO, west of the FPGA
\draw [color=white, text=black] (-3.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (ext_clk) {};
\node [label=left:\tiny{EXT CLK}] at (-2.65, 0) {};
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=-40cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\draw [-latexslim] (ext_clk) -- (fpga.west);
% USB Mirco B port with USB-UART converter, north west of the FPGA
\draw (-3.2, 1.2) node[twoportshape, t={USB Micro B}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (usb) {};
\draw (-2, 1.2) node[twoportshape, t={\MymyLabel{USB-UART}{Converter}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (uart) {};
\draw [latexslim-latexslim] (usb.north) -- (uart.south);
\draw [latexslim-latexslim] (uart.north) -- (-1.3, 1.2) -- (-1.3, 0.4) -- (-0.85, 0.4);
% 4-SFP cage, south west of the FPGA
\draw (-3.4, -0.8) node[twoportshape, t={SFP 0}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp0) {};
\draw (-3, -0.8) node[twoportshape, t={SFP 1}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp1) {};
\draw (-3.4, -1.5) node[twoportshape, t={SFP 2}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp2) {};
\draw (-3, -1.5) node[twoportshape, t={SFP 3}, circuitikz/bipoles/twoport/height=0.6, circuitikz/bipoles/twoport/width=1, scale=0.5, rotate=-90] (sfp3) {};
\draw [latexslim-latexslim] (-2.8, -1.15) -- (-2.2, -1.15) -- (-2.2, -0.4) -- (-0.85, -0.4);
% Clock signal cleaning path, south of the FPGA,
% clock signal loop from the south west to the south east
\draw (-0.8, -2.1) node[twoportshape, t={\MymyLabel{Clock}{Multiplier}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (clk_mul) {};
\draw (0.8, -2.1) node[twoportshape, t={\MymyLabel{Clock}{Buffer}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (clk_buf) {};
\draw [-latexslim] (-0.85, -0.8) -- (-1.6, -0.8) -- (-1.6, -1.9) -- (-1.05, -1.9);
% % A dashed path from EXT CLK to CDR CLK
\draw [dashed, -latexslim] (fpga.west) -- (-0.6, 0) -- (-0.6, -0.8) -- (-0.85, -0.8);
% % Internal oscillator for the RTIO clock
\draw (-2.2, -2.3) node[twoportshape, t={OSC}, circuitikz/bipoles/twoport/width=1, scale=0.5] (rtio_osc) {};
\draw [-latexslim] (rtio_osc.east) -- (-1.05, -2.3);
\draw [-latexslim] (clk_mul.north) -- (clk_buf.south);
\draw [-latexslim] (clk_buf.north) -- (1.6, -2.1) -- (1.6, -0.4) -- (0.85, -0.4);
% % MMCX output
\draw [color=white, text=black] (2.75, -1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx0) {};
\draw [color=white, text=black] (2.75, -1.4) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx1) {};
\draw [color=white, text=black] (2.75, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx2) {};
\draw [color=white, text=black] (2.75, -2.1) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (mmcx3) {};
\node [label=right:\tiny{MMCX 0}] at (2.3, -1.05) {};
\node [label=right:\tiny{MMCX 1}] at (2.3, -1.4) {};
\node [label=right:\tiny{MMCX 2}] at (2.3, -1.75) {};
\node [label=right:\tiny{MMCX 3}] at (2.3, -2.1) {};
\begin{scope}[scale=0.07 , rotate=90, xshift=-30cm, yshift=-35cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=-25cm, yshift=-35cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=-20cm, yshift=-35cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=-15cm, yshift=-35cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\draw [-latexslim] (1.6, -1.05) -- (mmcx0);
\draw [-latexslim] (1.6, -1.4) -- (mmcx1);
\draw [-latexslim] (1.6, -1.75) -- (mmcx2);
\draw [-latexslim] (1.6, -2.1) -- (mmcx3);
% Memory modules, north of the FPGA
\draw (-0.55, 2.4) node[twoportshape, t={\MymyLabel{SPI}{Flash}}, circuitikz/bipoles/twoport/width=1.3, scale=0.5] (spi_flash) {};
\draw (0.55, 2.4) node[twoportshape, t={SDRAM}, circuitikz/bipoles/twoport/width=1.3, scale=0.5] (sdram) {};
\draw [latexslim-latexslim] (spi_flash.south) -- (-0.55, 1.05);
\draw [latexslim-latexslim] (sdram.south) -- (0.55, 1.05);
% EEM connectors x12, horizontally located at y=0.4
\draw (2, 1.8) node[twoportshape, t={EEM Port 0}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (eem0) {};
\node at (2.4, 1.8)[circle,fill,inner sep=0.7pt]{};
\node at (2.6, 1.8)[circle,fill,inner sep=0.7pt]{};
\node at (2.8, 1.8)[circle,fill,inner sep=0.7pt]{};
\draw (3.2, 1.8) node[twoportshape, t={EEM Port 11}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (eem11) {};
\draw [decorate, decoration = {brace}] (3.4, 1.1) -- (1.8, 1.1);
\draw [latexslim-latexslim] (2.6, 1) -- (2.6, 0.4) -- (0.85, 0.4);
\end{scope}
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=2in]{Kasli_FP.pdf}
\includegraphics[height=2in]{photo1124.jpg}
\caption{Kasli 2.0 Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
External clock parameters are derived based on the internal termination specified in UG471\footnote{\label{ug471}https://docs.xilinx.com/v/u/en-US/ug471\_7Series\_SelectIO},
and the voltage range specified in DS181\footnote{\label{ds181}https://docs.xilinx.com/v/u/en-US/ds181\_Artix\_7\_Data\_Sheet}.
The figure had accounted for the insertion loss of the RF transformer (TC2-1TX+\footnote{\label{rf_trans}https://www.minicircuits.com/pdfs/TC2-1TX+.pdf}).
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Recommended Operating Conditions}
\begin{tabularx}{0.85\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Clock input & & & & &\\
\hspace{3mm} Input frequency & & 125 & & MHz & Si5324 synthesizer bypassed \\
\cline{2-6}
% 100R termination & 100/350/600 mV differential input after the transformer.
& \multicolumn{4}{c|}{10/100/125 MHz} & RTIO clock synthesized from input \\
\cline{2-6}
\hspace{3mm} Power & -9 & 1.5 & 5.5 & dBm & \\
\hline
Power supply rating & \multicolumn{4}{c|}{12V, 5A} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\section{Distributed RTIO (DRTIO)}
DRTIO is a time and data transfer system that allows ARTIQ RTIO channels to be distributed among several satellite devices synchronized and controlled by a central core device.
Multiple core devices (e.g. Kasli 2.0) can be interconnected through DRTIO. All core devices in the DRTIO system are classified as 1 of the 2 roles:
\begin{enumerate}
\item DRTIO Master \\
The DRTIO master is unique in a DRTIO system. It controls the DRTIO satellites(s) and local RTIO channels.
\item DRTIO Satellite \\
The rest of the core devices are DRTIO satellites. DRTIO satellites need an upstream connection to one other core devices (master or satellite).
It may provide downstream conenction to other DRTIO satellties.
\end{enumerate}
\section{Network Interface}
Communication between the host and the core device(s) is implemented using small form-factor pluggable (SFP) interfaces.
Approprate SFP transceivers must be plugged inside the corresponding SFP cages to enable communication between core devices.
\subsection{Upstream Connection}
A core device (e.g. Kasli 2.0) must acquire an upstream network connection through the \texttt{SFP0} slot.
\begin{itemize}
\item Standalone/DRTIO master \\
An Ethernet capable SFP transceiver must be inserted to the \texttt{SFP0} slot.
Typically, a RJ45 SFP module is inserted to the slot with an Ethernet cable with network connection attached to the module.
\item DRTIO Satellite \\
The \texttt{SFP0} port of DRTIO satellite should be connected to an appropriate SFP slot of the upstream core device (DRTIO master or satellite) with cable connection with SFP transceivers.
\end{itemize}
\subsection{Downstream Connection}
The 1124 Carrier Kasli 2.0 supports up to 3 DRTIO satellite connections per device.
DRTIO satellites can be connected using any of the 3 downstream SFP ports (i.e. \texttt{SFP1}, \texttt{SFP2}, \texttt{SFP3}) through cable connections with SFP transceivers.
\section{Clock Routing}
\subsection{DRTIO Master/Standalone}
The RTIO clock is typically synthesized by the Si5324 clock multiplier, and distributed by the ADCLK948 clock fanout buffer to both the FPGA and the MMCX connectors.
An external reference can be supplied to synthesize the clock, which is supplied to the SMA connector. It is then buffered in the FPGA and sent to the Si5324 for clock synthesis.
Kasli 2.0 supports a set of clock systhesizing options for the (D)RTIO system:
\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|}
\hline
RTIO frequency & Configuration & Clock generation \\ \hline
100 MHz & \texttt{int\char`_100} & internal crystal oscillator using PLL, 100 MHz output \\ \hline
\multirow{4}{*}{125 MHz} & \texttt{int\char`_125} & internal crystal oscillator using PLL, 125 MHz output (default) \\ \cline{2-3}
& \texttt{ext0\char`_synth0\char`_10to125} & external 10 MHz reference using PLL, 125 MHz output \\ \cline{2-3}
& \texttt{ext0\char`_synth0\char`_100to125} & external 100 MHz reference using PLL, 125 MHz output \\ \cline{2-3}
& \texttt{ext0\char`_synth0\char`_125to125} & external 125 MHz reference using PLL, 125 MHz output \\ \hline
150 MHz & \texttt{int\char`_150} & internal crystal oscillator using PLL, 150 MHz output \\ \hline
\end{tabular}
\end{table}
Alternatively, the clock synthesizer can be bypassed using the \texttt{ext0\char`_bypass} clocking option, where the RTIO clock is directly supplied to the SMA connector.
The resulting clock signal is then routed to both the RTIO system and downstream DRTIO satellites.
Clocking options should be configured by setting the value of the \texttt{rtio} key to the desired configuration through \texttt{artiq\char`_coremgmt}.
For example, the RTIO frequency is synthesized from the external 10 MHz from the SMA connector after issuing the following command.
\begin{minted}{bash}
artiq_coremgmt config write -s rtio ext0_synth0_10to125
\end{minted}
\subsection{DRTIO Satellite}
The RTIO clock is first recovered from the SFP transceiver connected to the upstream device. The signal is then cleaned by Si5324 clock synthesizer.
The resulting clock signal is then routed to the RTIO system and downstream DRTIO satellties.
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the system extensions of the ARTIQ control system.
These extensions make use of the resources on 1124 Carrier Kasli 2.0.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{Direct Memory Access (DMA)}
Instead of directly emitting RTIO events, a sequence of RTIO events can be recorded in advance and stored in the local SDRAM.
The event sequence can be replayed at another specified timestamp at a higher speed compared to the CPU alone.
The following example records an LED blinking sequence, and replayed twice consecutively using \texttt{CoreDMA}.
\texttt{led0} blinked twice in this example.
\inputcolorboxminted{firstline=10,lastline=29}{examples/dma.py}
The stored waveform can be referenced and replayed in different kernels.
However, the waveform is no longer retrievable once core device is rebooted.
\newpage
\subsection{Dataset Manipulation with Core Device Cache}
Experiments may require values computed/found in previously executed kernels.
To avoid invoking an RPC/sacrificing the pre-computation in \texttt{prepare()} stage, data can be cached in the core device cache.
The following code snippets consists of 2 experiments, where the data from the first experiement is cached.
The same data is retrieved and printed as hexadecimal in the second experiment.
\inputcolorboxminted{firstline=9,lastline=16}{examples/cache.py}
\inputcolorboxminted{firstline=24,lastline=35}{examples/cache.py}
Similar to DMA, the cached data is no longer retrievable once the core device is rebooted.
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 1124 Carrier Kasli 2.0 in the ARTIQ Sinara crate configuration tool.
The cards may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

View File

@ -4,6 +4,8 @@
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\BeforeBeginEnvironment{minted}{\begin{tcolorbox}[colback=white]}%
\AfterEndEnvironment{minted}{\end{tcolorbox}}%
\usepackage[justification=centering]{caption}
@ -12,19 +14,18 @@
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usepackage{pifont}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{2118 BNC-TTL / 2128 SMA-TTL}
\title{2128 SMA-TTL}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 2}
\date{July 2021}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
@ -37,7 +38,7 @@
\item{Input and output capable.}
\item{Galvanically isolated.}
\item{3ns minimum pulse width.}
\item{BNC or SMA connectors.}
\item{SMA connectors.}
\end{itemize}
\section{Applications}
@ -49,10 +50,10 @@
\end{itemize}
\section{General Description}
The 2118 BNC-TTL card is a 8hp EEM module, while the 2128 SMA-TTL card is a 4hp EEM module.
Both TTL cards add general-purpose digital I/O capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
The 2128 SMA-TTL card is a 4hp EEM module part of the ARTIQ Sinara family.
It adds general-purpose digital I/O capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
Each card provides two banks of four digital channels each, with BNC (2118) or SMA (2128) connectors.
It provides two banks of four digital channels each, with SMA connectors.
Each bank has individual ground isolation.
The direction (input or output) of each bank can be selected using DIP switches.
Each channel supports 50\textOmega~terminations individually controllable using DIP switches.
@ -65,12 +66,6 @@ The card support a minimum pulse width of 3ns.
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
@ -79,15 +74,15 @@ The card support a minimum pulse width of 3ns.
\begin{scope}[yshift=1.3cm]
\draw[color=white, text=black] (-0.1,0) node[twoportshape,t={IO 0}, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (io0) {};
\draw[color=white, text=black] (-0.1,-0.7) node[twoportshape,t={IO 1}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io1) {};
\draw[color=white, text=black] (-0.1,-1.4) node[twoportshape,t={IO 2}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io2) {};
\draw[color=white, text=black] (-0.1,-2.1) node[twoportshape,t={IO 3}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io3) {};
\draw[color=white, text=black] (-0.1,0) node[twoportshape,t={SMA 0}, circuitikz/bipoles/twoport/width=1.2, scale=0.4] (sma0) {};
\draw[color=white, text=black] (-0.1,-0.7) node[twoportshape,t={SMA 1}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma1) {};
\draw[color=white, text=black] (-0.1,-1.4) node[twoportshape,t={SMA 2}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma2) {};
\draw[color=white, text=black] (-0.1,-2.1) node[twoportshape,t={SMA 3}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma3) {};
\node [label={[xshift=-0.18cm, yshift=-0.305cm]\tiny{IO 0}}] {};
\node [label={[xshift=-0.18cm, yshift=-0.97cm]\tiny{IO 1}}] {};
\node [label={[xshift=-0.18cm, yshift=-1.64cm]\tiny{IO 2}}] {};
\node [label={[xshift=-0.18cm, yshift=-2.302cm]\tiny{IO 3}}] {};
\node [label={[xshift=-0.18cm, yshift=-0.305cm]\tiny{SMA 0}}] {};
\node [label={[xshift=-0.18cm, yshift=-0.97cm]\tiny{SMA 1}}] {};
\node [label={[xshift=-0.18cm, yshift=-1.64cm]\tiny{SMA 2}}] {};
\node [label={[xshift=-0.18cm, yshift=-2.302cm]\tiny{SMA 3}}] {};
% draw female SMA_0,1,2,3
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
@ -121,7 +116,7 @@ The card support a minimum pulse width of 3ns.
\draw (1.6,-1.05) node[twoportshape,t={IO Bus Transceiver}, circuitikz/bipoles/twoport/width=2.5, scale=0.7, rotate=-90 ] (bus1) {};
\draw (1.6,-1.05) node[twoportshape,t={Octal Bus Transceiver}, circuitikz/bipoles/twoport/width=2.5, scale=0.7, rotate=-90 ] (bus1) {};
\draw (3.05,-0) node[twoportshape,t={Isolator}, circuitikz/bipoles/twoport/width=1.3, scale=0.4] (iso1) {};
\draw (3.05,-0.7) node[twoportshape,t={Isolator}, circuitikz/bipoles/twoport/width=1.3, scale=0.4] (iso2) {};
@ -201,15 +196,15 @@ The card support a minimum pulse width of 3ns.
% channel 5,6,7,8
\begin{scope}[yshift=-3.6cm]
\draw[color=white, text=black] (-0.1,0) node[twoportshape,t={IO 4}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io4) {};
\draw[color=white, text=black] (-0.1,-0.7) node[twoportshape,t={IO 5}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io5) {};
\draw[color=white, text=black] (-0.1,-1.4) node[twoportshape,t={IO 6}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io6) {};
\draw[color=white, text=black] (-0.1,-2.1) node[twoportshape,t={IO 7}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io7) {};
\draw[color=white, text=black] (-0.1,0) node[twoportshape,t={SMA 4}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma4) {};
\draw[color=white, text=black] (-0.1,-0.7) node[twoportshape,t={SMA 5}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma5) {};
\draw[color=white, text=black] (-0.1,-1.4) node[twoportshape,t={SMA 6}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma6) {};
\draw[color=white, text=black] (-0.1,-2.1) node[twoportshape,t={SMA 7}, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma7) {};
\node [label={[xshift=-0.18cm, yshift=-0.305cm]\tiny{IO 4}}] {};
\node [label={[xshift=-0.18cm, yshift=-0.97cm]\tiny{IO 5}}] {};
\node [label={[xshift=-0.18cm, yshift=-1.64cm]\tiny{IO 6}}] {};
\node [label={[xshift=-0.18cm, yshift=-2.302cm]\tiny{IO 7}}] {};
\node [label={[xshift=-0.18cm, yshift=-0.305cm]\tiny{SMA 4}}] {};
\node [label={[xshift=-0.18cm, yshift=-0.97cm]\tiny{SMA 5}}] {};
\node [label={[xshift=-0.18cm, yshift=-1.64cm]\tiny{SMA 6}}] {};
\node [label={[xshift=-0.18cm, yshift=-2.302cm]\tiny{SMA 7}}] {};
% draw female SMA 4,5,6,7
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
@ -242,7 +237,7 @@ The card support a minimum pulse width of 3ns.
\end{scope}
\draw (1.6,-1.05) node[twoportshape,t={IO Bus Transceiver}, circuitikz/bipoles/twoport/width=2.5, scale=0.7, rotate=-90 ] (bus2) {};
\draw (1.6,-1.05) node[twoportshape,t={Octal Bus Transceiver}, circuitikz/bipoles/twoport/width=2.5, scale=0.7, rotate=-90 ] (bus2) {};
\draw (3.05,-0) node[twoportshape,t={Isolator}, circuitikz/bipoles/twoport/width=1.3, scale=0.4] (iso5) {};
\draw (3.05,-0.7) node[twoportshape,t={Isolator}, circuitikz/bipoles/twoport/width=1.3, scale=0.4] (iso6) {};
@ -255,14 +250,14 @@ The card support a minimum pulse width of 3ns.
\end{scope}
% Drawing Connections
\draw [latexslim-latexslim] (io0.east) -- ++(1,0);
\draw [latexslim-latexslim] (io1.east) -- ++(1,0);
\draw [latexslim-latexslim] (io2.east) -- ++(1,0);
\draw [latexslim-latexslim] (io3.east) -- ++(1,0);
\draw [latexslim-latexslim] (io4.east) -- ++(1,0);
\draw [latexslim-latexslim] (io5.east) -- ++(1,0);
\draw [latexslim-latexslim] (io6.east) -- ++(1,0);
\draw [latexslim-latexslim] (io7.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma0.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma1.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma2.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma3.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma4.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma5.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma6.east) -- ++(1,0);
\draw [latexslim-latexslim] (sma7.east) -- ++(1,0);
\draw [latexslim-latexslim] (iso1.west) -- ++(-0.72,0) ;
\draw [latexslim-latexslim] (iso2.west) -- ++(-0.72,0) ;
@ -310,12 +305,12 @@ The card support a minimum pulse width of 3ns.
\draw (0.85,-3.25) -- ++(0,-1.05) ;
\draw (0.95,-3.25) -- ++(0,-0.35) ;
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(io0) (i2ciso1.south west)] (box1) {};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(sma0) (i2ciso1.south west)] (box1) {};
\node[fill=white, rotate=-90] at (box1.west) {GND BANK 1};
\node[fill=white,above] at (box1.north) {\tiny{Either all 4 channels are inputs or all 4 channels are outputs }};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(io4)(termswitch2) (iso8.south west)] (box2) {};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(sma4)(termswitch2) (iso8.south west)] (box2) {};
\node[fill=white, rotate=-90] at (box2.west) {GND BANK 2};
\node[fill=white,below] at (box2.south) {\tiny{Either all 4 channels are inputs or all 4 channels are outputs }};
@ -325,18 +320,10 @@ The card support a minimum pulse width of 3ns.
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[hbt!]
\begin{figure}[h]
\centering
\subfloat[\centering BNC-TTL]{{
\includegraphics[height=1.8in]{DIO_BNC_FP.jpg}
\includegraphics[height=1.8in]{photo2118.jpg}
}}%
\subfloat[\centering SMA-TTL]{{
\includegraphics[height=1.8in]{DIO_SMA_FP.jpg}
\includegraphics[height=1.8in]{photo2128.jpg}
}}%
\caption{BNC-TTL/SMA-TTL Card photos}%
\label{fig:example}%
\includegraphics[width=1.18in]{photo2128.jpg}
\caption{SMA-TTL Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
@ -345,9 +332,6 @@ The card support a minimum pulse width of 3ns.
\section{Electrical Specifications}
All specifications are in $0\degree C \leq T_A \leq 70\degree C$ unless otherwise noted.
Specifications are based on the bus transceivers IC (SN74BCT25245DW\footnote{\label{transceiver}https://www.ti.com/lit/ds/symlink/sn74bct25245.pdf})
and the isolator IC (SI8651BB-B-IS1\footnote{\label{isolator}https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si865x-datasheet.pdf}).
The typical value of minimum pulse width is based on test results\footnote{\label{sinara187}https://github.com/sinara-hw/sinara/issues/187}.
\begin{table}[h]
\begin{threeparttable}
@ -357,17 +341,16 @@ The typical value of minimum pulse width is based on test results\footnote{\labe
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
High-level input voltage\repeatfootnote{transceiver} & $V_{IH}$ & 2 & & 5.5* & V & \\
High-level input voltage & $V_{IH}$ & 2 & & & V & \\
\hline
Low-level input voltage\repeatfootnote{transceiver} & $V_{IL}$ & -0.5 & & 0.8 & V & \\
Low-level input voltage & $V_{IL}$ & & & 0.8 & V & \\
\hline
Input clamp current\repeatfootnote{transceiver} & $I_{OH}$ & & & -18 & mA & termination disabled \\
Input clamp current & $I_{OH}$ & & & -18 & mA & termination disabled \\
\hline
High-level output current\repeatfootnote{transceiver} & $I_{OH}$ & & & -160 & mA & \\
High-level output current & $I_{OH}$ & & & -160 & mA & \\
\hline
Low-level output current\repeatfootnote{transceiver} & $I_{OL}$ & & & 376 & mA & \\
Low-level output current & $I_{OL}$ & & & 376 & mA & \\
\thickhline
\multicolumn{7}{l}{*With the 50\textOmega~termination enabled, the input voltage should not exceed 5V.}
\end{tabularx}
\end{threeparttable}
\end{table}
@ -380,176 +363,22 @@ The typical value of minimum pulse width is based on test results\footnote{\labe
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
High-level output voltage\repeatfootnote{transceiver} & $V_{OH}$ & 2 & & & V & $I_{OH}$=-160mA \\
High-level output voltage & $V_{OH}$ & 2 & & & V & $I_{OH}$=-160mA \\
& & 2.7 & & & V & $I_{OH}$=-6mA \\
\hline
Low-level output voltage\repeatfootnote{transceiver} & $V_{OL}$ & & 0.42 & 0.55 & V & $I_{OL}$=188mA \\
Low-level output voltage & $V_{OL}$ & & 0.42 & 0.55 & V & $I_{OL}$=188mA \\
& & & & 0.7 & V & $I_{OL}$=376mA \\
\hline
Minimum pulse width\repeatfootnote{isolator}\textsuperscript{,}\repeatfootnote{sinara187} & & & 3 & 5 & ns & \\
Pulse width distortion & $PWD$ & & 0.2 & 4.5 & ns & \\
\hline
Pulse width distortion\repeatfootnote{isolator} & $PWD$ & & 0.2 & 4.5 & ns & \\
\hline
Peak jitter\repeatfootnote{isolator} & $T_{JIT(PK)}$ & & 350 & & ps & \\
\hline
Data rate\repeatfootnote{isolator} & & 0 & & 150 & Mbps & \\
Peak jitter & $T_{JIT(PK)}$ & & 350 & & ps & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Minimum pulse width was measured\repeatfootnote{sinara187}.
Pulses were generated from a DDS generator as an input of a BNC-TTL card.
The input BNC-TTL card is connected to another BNC-TTL card as an output.
The output signal is measured and shown.
\begin{figure}[h]
\centering
\includegraphics[height=3in]{bnc_ttl_min_pulse_width.png}
\caption{Minimum pulse width required for BNC-TTL card}
\end{figure}
The red trace refers to the input pulses from the DDS generator, while the blue trace is the measured signal from the output BNC-TTL card.
Note that the first input (red) pulse could not propagate through the signal chain.
The first output (blue) pulse is the result of the second input (red, 3ns width) pulse.
\newpage
\section{Front Panel Drawings}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=2.8in]{bnc_ttl_drawings.pdf}
\captionof{figure}{2118 BNC-TTL front panel drawings}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=2.8in]{bnc_ttl_assembly.pdf}
\captionof{figure}{2118 BNC-TTL front panel assembly}
\end{center}
\end{multicols}
\begin{multicols}{2}
\begin{center}
\captionof{table}{Bill of Material (2118 Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90560220 & 1 & FP-FRONT PANEL, EXTRUDED, TYPE 2, STATIC, 3Ux8HP \\ \hline
2 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
3 & 3020716 & 0.04 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\captionof{table}{Bill of Material (2118 Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90457987 & 4 & CSCR M2.5*12.3 PAN PHL SS \\ \hline
2 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
3 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
4 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
5 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
6 & 3040005 & 1 & HANDLE 8HP GREY PLASTIC \\ \hline
7 & 3207076 & 0.01 & SCR M2.5*16 PAN 100 21101-222 \\ \hline
8 & 3207075 & 0.01 & SCR M2.5*12 PAN 100 21101-221 \\ \hline
9 & 3010124 & 0.1 & EMC GASKET FABRIC 3U (10PCS) \\ \hline
10 & 3201130 & 0.01 & NUT M2.5 HEX ST NI KIT(100PCS) \\ \hline
11 & 90560220 & 1 & FP-LYKJ 3U8HP PANEL \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=3in]{sma_ttl_drawings.pdf}
\captionof{figure}{2128 SMA-TTL front panel drawings}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=3in]{sma_ttl_assembly.pdf}
\captionof{figure}{2128 SMA-TTL front panel assembly}
\end{center}
\end{multicols}
\begin{multicols}{2}
\begin{center}
\captionof{table}{Bill of Material (2128 Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90531967 & 1 & FRONT PANEL 3U 4HP PIU TYPE2 \\ \hline
2 & 3020716 & 0.02 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
3 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\captionof{table}{Bill of Material (2128 Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90531967 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
2 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
3 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
4 & 3010124 & 0.1 & EMC GASKET FABRIC 3U (10PCS) \\ \hline
5 & 3001012 & 1 & HANDLE 4HP GREY PLASTIC \\ \hline
6 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
7 & 3207075 & 0.01 & SCR M2.5*12 PAN 100 21101-221 \\ \hline
8 & 3033098 & 0.02 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
9 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\section{Configuring IO Direction \& Termination}
The termination and IO direction can be configured by switches.
The per-channel termination and per-bank IO direction switches are found at the middle-left and middle-right of both cards respectively.
Termination switches selects the termination of each channel, between high impedence (OFF) and 50\textOmega~(ON).
IO direction switches partly decides the IO direction of each bank.
\begin{itemize}
\itemsep0em
\item Closed switch (ON) \\
Fix the corresponding bank to output. The direction cannot be changed by I\textsuperscript{2}C.
\item Opened switch (OFF) \\
Switch to input mode. The direction is input by default. Configurable by I\textsuperscript{2}C.
\end{itemize}
\begin{figure}[hbt!]
\centering
\subfloat[\centering BNC-TTL]{{
\includegraphics[height=1.5in]{bnc_ttl_switches.jpg}
}}%
\subfloat[\centering SMA-TTL]{{
\includegraphics[height=1.5in]{sma_ttl_switches.jpg}
}}%
\caption{Position of switches}%
\end{figure}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 2118 BNC-TTL/2128 SMA-TTL card with the ARTIQ control system.
The sections below demonstrate simple usage scenarios of the 2128 SMA-TTL card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
@ -557,82 +386,88 @@ Timing accuracy in the examples below is well under 1 nanosecond thanks to the A
\subsection{One pulse per second}
The channel should be configured as output in both the gateware and hardware.
\inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py}
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
while True:
self.ttl0.pulse(500*ms)
delay(500*ms)
\end{minted}
\newpage
\subsection{Morse code}
This example demonstrates some basic algorithmic features of the ARTIQ-Python language.
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
\begin{minted}{python}
def prepare(self):
# As of ARTIQ-6, the ARTIQ compiler has limited string handling
# capabilities, so we pass a list of integers instead.
message = ".- .-. - .. --.-"
self.commands = [{".": 1, "-": 2, " ": 3}[c] for c in message]
\newpage
\subsection{Sub-coarse-RTIO-cycle pulse}
With the use of the ARTIQ RTIO, only 1 event can be enqueued per coarse RTIO cycle, which is typically 8ns.
Therefore, to emit a pulse that is less than 8ns, additional delay is needed such that the \texttt{ttl.on()} \& \texttt{ttl.off()} event are submitted at different coarse RTIO cycles.
The TTL pulse must satisfy the minimum pulse width stated in the electircal specifications.
@kernel
def run(self):
self.core.reset()
for cmd in self.commands:
if cmd == 1:
self.led.pulse(100*ms)
delay(100*ms)
if cmd == 2:
self.led.pulse(300*ms)
delay(100*ms)
if cmd == 3:
delay(700*ms)
\end{minted}
\inputcolorboxminted{firstline=60,lastline=64}{examples/ttl.py}
\subsection{Counting rising edges in a 1ms window}
The channel should be configured as input in both the gateware and hardware.
\subsection{Edge counting in a 1ms window}
The \texttt{TTLInOut} class implements \texttt{gate\char`_rising()}, \texttt{gate\char`_falling()} \& \texttt{gate\char`_both()} for rising edge, falling edge, both rising edge \& falling edge detection respectively.
The channel should be configured as input in both the gateware and hardware. Invoke one of the 3 methods to start edge detection.
\inputcolorboxminted{firstline=14,lastline=15}{examples/ttl_in.py}
Input signal can generated from another TTL channel or from other sources. Manipulate the timeline cursor to generate TTL pulses using the same kernel.
\inputcolorboxminted{firstline=10,lastline=22}{examples/ttl_in.py}
The detected edges are registered to the RTIO input FIFO. By default, the FIFO can hold 64 events. The FIFO depth is defined by the \texttt{ififo\char`_depth} parameter for \texttt{Channel} class in \texttt{rtio/channel.py}.
Once the threshold is exceeded, an \texttt{RTIOOverflow} exception will be triggered when the input events are read by the kernel CPU.
Finally, invoke \texttt{count()} to retrieve the edge count from the input gate.
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
gate_end_mu = self.ttl0.gate_rising(1*ms)
counts = self.ttl0.count()
print(counts)
\end{minted}
The RTIO system can report at most 1 edge detection event for every coarse RTIO cycle.
For example, to guarantee all rising edges are counted (with \texttt{gate\char`_rising()} invoked), the theoretical minimum separation between rising edges is 1 coarse RTIO cycle (typically 8 ns) with consideration of the RTIO specification alone.
However, both the electircal specifications and the possibility of triggering \texttt{RTIOOverflow} should be considered.
\newpage
\subsection{Edge counting using \texttt{EdgeCounter}}
This example code uses the gateware counter to substitute the software counter, which has a maximum count rate of approximately 1 million events per second.
This example code uses the software counter, which has a maximum count rate of approximately 1 million events per second.
If the gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second:
\inputcolorboxminted{firstline=31,lastline=36}{examples/ttl_in.py}
Edges are detected by comparing the current input state and that of the previous coarse RTIO cycle.
Therefore, the theoretical minimum separation between 2 opposite edges is 1 coarse RTIO cycle (typically 8 ns).
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
self.edgecounter0.gate_rising(1*ms)
counts = self.edgecounter0.fetch_count()
print(counts)
\end{minted}
\newpage
\subsection{Responding to an external trigger}
One channel needs to be configured as input, and the other as output.
\inputcolorboxminted{firstline=45,lastline=51}{examples/ttl_in.py}
\subsection{62.5 MHz clock signal generation}
A TTL channel can be configured as a \texttt{ClockGen} channel, which generates a periodic clock signal.
Each channel has a phase accumulator operating on the RTIO clock, where it is incremented by the frequency tuning word at each coarse RTIO cycle.
Therefore, jitter should be expected when the desired frequency cannot be obtained by dividing the coarse RTIO clock frequency with a power of 2. \\
Typically, with the coarse RTIO clock at 125 MHz, a \texttt{ClockGen} channel can generate up to 62.5 MHz.
\inputcolorboxminted{firstline=72,lastline=75}{examples/ttl.py}
\newpage
\subsection{Minimum Sustained Event Separation}
The minimum sustained event separation is the least amount of time separation between input gated events, in which all gated edges can be continuously \& reliabily timestamped by the RTIO system without causing \texttt{RTIOOverflow} exceptions.
The following \texttt{run()} function finds the separation by approximating the time of running \texttt{timestamp\char`_mu()} as a constant. Import the \texttt{time} library to use \texttt{time.sleep()}.
\inputcolorboxminted{firstline=63,lastline=98}{examples/ttl_in.py}
\begin{center}
\begin{table}[H]
\captionof{table}{Minimum sustained event separation of different carrier}
\centering
\begin{tabular}{|c|c|c|}
\hline
Carrier & Kasli v1.1 & Kasli-SoC \\ \hline
Duration & 650 ns & 600 ns \\ \hline
\end{tabular}
\end{table}
\end{center}
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
self.ttlin.gate_rising(5*ms)
timestamp_mu = self.ttlin.timestamp_mu()
at_mu(timestamp_mu + self.core.seconds_to_mu(10*ms))
self.ttlout.pulse(1*us)
\end{minted}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 2118 BNC-TTL/2128 SMA-TTL in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
To order, please visit \url{https://m-labs.hk} and select the 2128 SMA-TTL in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
Information furnished by M-Labs Limited is believed to be accurate and reliable. However, no responsibility is assumed by M-Labs Limited for its use, nor for any infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice.
\end{footnotesize}
\end{document}

597
2238.tex
View File

@ -1,597 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{2238 MCX-TTL}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{16 channels.}
\item{Input and output capable.}
\item{No galvanic isolation.}
\item{High speed and low jitter.}
\item{MCX connectors.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Photon counting.}
\item{External equipment trigger.}
\item{Optical shutter control.}
\end{itemize}
\section{General Description}
The 2238 MCX-TTL card is a 4hp EEM module.
It adds general-purpose digital I/O capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
Each card provides four banks of four digital channels each, with MCX connectors, controlled through 2 EEM connectors.
Each EEM connector controls two banks independently.
Single EEM operation is possible.
The direction (input or output) of each bank can be selected using DIP switches.
Each channel supports 50\textOmega~terminations individually controllable using DIP switches.
This card can achieve higher speed and lower jitter than the isolated 2118/2128 BNC/SMA-TTL cards.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% Node to pin-point the locations of MCX symbols
\draw[color=white, text=black] (-0.1, 0.7) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx0) {};
\draw[color=white, text=black] (-0.1, 0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx1) {};
\draw[color=white, text=black] (-0.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx2) {};
\draw[color=white, text=black] (-0.1, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx3) {};
\draw[color=white, text=black] (-0.1, -1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx4) {};
\draw[color=white, text=black] (-0.1, -1.4) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx5) {};
\draw[color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx6) {};
\draw[color=white, text=black] (-0.1, -2.1) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx7) {};
\draw[color=white, text=black] (-0.1, -4.2) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx8) {};
\draw[color=white, text=black] (-0.1, -4.55) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx9) {};
\draw[color=white, text=black] (-0.1, -4.9) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx10) {};
\draw[color=white, text=black] (-0.1, -5.25) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx11) {};
\draw[color=white, text=black] (-0.1, -5.95) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx12) {};
\draw[color=white, text=black] (-0.1, -6.3) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx13) {};
\draw[color=white, text=black] (-0.1, -6.65) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx14) {};
\draw[color=white, text=black] (-0.1, -7) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mcx15) {};
% Labels for IO 0-15
\node [label=left:\tiny{IO 0}] at (0.35, 0.7) {};
\node [label=left:\tiny{IO 1}] at (0.35, 0.35) {};
\node [label=left:\tiny{IO 2}] at (0.35, 0) {};
\node [label=left:\tiny{IO 3}] at (0.35, -0.35) {};
\node [label=left:\tiny{IO 4}] at (0.35, -1.05) {};
\node [label=left:\tiny{IO 5}] at (0.35, -1.4) {};
\node [label=left:\tiny{IO 6}] at (0.35, -1.75) {};
\node [label=left:\tiny{IO 7}] at (0.35, -2.1) {};
\node [label=left:\tiny{IO 8}] at (0.35, -4.2) {};
\node [label=left:\tiny{IO 9}] at (0.35, -4.55) {};
\node [label=left:\tiny{IO 10}] at (0.35, -4.9) {};
\node [label=left:\tiny{IO 11}] at (0.35, -5.25) {};
\node [label=left:\tiny{IO 12}] at (0.35, -5.95) {};
\node [label=left:\tiny{IO 13}] at (0.35, -6.3) {};
\node [label=left:\tiny{IO 14}] at (0.35, -6.65) {};
\node [label=left:\tiny{IO 15}] at (0.35, -7) {};
% Draw all female MCX connectors
% Bank 1
\begin{scope}[scale=0.07 , rotate=-90, xshift=-10cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Bank 2
\begin{scope}[scale=0.07 , rotate=-90, xshift=15cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=20cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=30cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Bank 3
\begin{scope}[scale=0.07 , rotate=-90, xshift=60cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=65cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=70cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=75cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Bank 4
\begin{scope}[scale=0.07 , rotate=-90, xshift=85cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=90cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=95cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=100cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Draw bank boundaries
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.2em, fit=(mcx0)(mcx3)] (bank0) {};
\node[fill=white, scale=0.7, rotate=-90] at (bank0.west) {Bank 0};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.2em, fit=(mcx4)(mcx7)] (bank1) {};
\node[fill=white, scale=0.7, rotate=-90] at (bank1.west) {Bank 1};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.2em, fit=(mcx8)(mcx11)] (bank2) {};
\node[fill=white, scale=0.7, rotate=-90] at (bank2.west) {Bank 2};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.2em, fit=(mcx12)(mcx15)] (bank3) {};
\node[fill=white, scale=0.7, rotate=-90] at (bank3.west) {Bank 3};
% Draw bus transceivers
\draw (3.25, -0.7) node[twoportshape,t=\MymyLabel{IO Bus}{Transceivers}, circuitikz/bipoles/twoport/width=3.2, scale=0.7, rotate=-90 ] (bus0) {};
\draw (3.25, -5.6) node[twoportshape,t=\MymyLabel{IO Bus}{Transceivers}, circuitikz/bipoles/twoport/width=3.2, scale=0.7, rotate=-90 ] (bus1) {};
% Draw termination switches
% Bus transceiver 0
\draw (1.7, 1.2) node[twoportshape,t=\MymyLabel{High-Z/50\textOmega}{Switch \phantom{ssssss} }, circuitikz/bipoles/twoport/width=2, scale=0.4] (termswitch0) {};
\begin{scope}[xshift=1.8cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.9cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=2.0cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=2.1cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% Bus transceiver 1
\draw (1.5, -2.6) node[twoportshape,t=\MymyLabel{High-Z/50\textOmega}{Switch \phantom{ssssss} }, circuitikz/bipoles/twoport/width=2, scale=0.4] (termswitch1) {};
\begin{scope}[xshift=1.6cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.7cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.8cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.9cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% Bus transceiver 2
\draw (1.7, -3.7) node[twoportshape,t=\MymyLabel{High-Z/50\textOmega}{Switch \phantom{ssssss} }, circuitikz/bipoles/twoport/width=2, scale=0.4] (termswitch2) {};
\begin{scope}[xshift=1.8cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.9cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=2cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=2.1cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% Bus transceiver 3
\draw (1.5, -7.5) node[twoportshape,t=\MymyLabel{High-Z/50\textOmega}{Switch \phantom{ssssss} }, circuitikz/bipoles/twoport/width=2, scale=0.4] (termswitch3) {};
\begin{scope}[xshift=1.6cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.7cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.8cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=1.9cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% Connection termination switches to each IO line
% IO 0, 2, 4, 6
\draw [-] (1.4, 1) -- (1.4, 0.7);
\draw [-] (1.6, 1) -- (1.6, 0);
\draw [-] (1.8, 1) -- (1.8, -1.05);
\draw [-] (2, 1) -- (2, -1.75);
% IO 1, 3, 5, 7
\draw [-] (1.2, -2.4) -- (1.2, 0.35);
\draw [-] (1.4, -2.4) -- (1.4, -0.35);
\draw [-] (1.6, -2.4) -- (1.6, -1.4);
\draw [-] (1.8, -2.4) -- (1.8, -2.1);
% IO 8, 10, 12, 14
\draw [-] (1.4, -3.9) -- (1.4, -4.2);
\draw [-] (1.6, -3.9) -- (1.6, -4.9);
\draw [-] (1.8, -3.9) -- (1.8, -5.95);
\draw [-] (2, -3.9) -- (2, -6.65);
% IO 9, 11, 13, 15
\draw [-] (1.2, -7.3) -- (1.2, -4.55);
\draw [-] (1.4, -7.3) -- (1.4, -5.25);
\draw [-] (1.6, -7.3) -- (1.6, -6.3);
\draw [-] (1.8, -7.3) -- (1.8, -7);
% Connect I/Os to corresponding tranceivers
\draw [latexslim-latexslim] (mcx0) -- (2.9, 0.7);
\draw [latexslim-latexslim] (mcx1) -- (2.9, 0.35);
\draw [latexslim-latexslim] (mcx2) -- (2.9, 0);
\draw [latexslim-latexslim] (mcx3) -- (2.9, -0.35);
\draw [latexslim-latexslim] (mcx4) -- (2.9, -1.05);
\draw [latexslim-latexslim] (mcx5) -- (2.9, -1.4);
\draw [latexslim-latexslim] (mcx6) -- (2.9, -1.75);
\draw [latexslim-latexslim] (mcx7) -- (2.9, -2.1);
\draw [latexslim-latexslim] (mcx8) -- (2.9, -4.2);
\draw [latexslim-latexslim] (mcx9) -- (2.9, -4.55);
\draw [latexslim-latexslim] (mcx10) -- (2.9, -4.9);
\draw [latexslim-latexslim] (mcx11) -- (2.9, -5.25);
\draw [latexslim-latexslim] (mcx12) -- (2.9, -5.95);
\draw [latexslim-latexslim] (mcx13) -- (2.9, -6.3);
\draw [latexslim-latexslim] (mcx14) -- (2.9, -6.65);
\draw [latexslim-latexslim] (mcx15) -- (2.9, -7);
% Draw LVDS transceivers
\draw (5.05, -0.025) node[twoportshape,t={\MymyLabel{LVDS}{Transceiver}}, circuitikz/bipoles/twoport/width=2, scale=0.5, rotate=-90 ] (lvds0) {};
\draw (5.05, -1.675) node[twoportshape,t={\MymyLabel{LVDS}{Transceiver}}, circuitikz/bipoles/twoport/width=2, scale=0.5, rotate=-90 ] (lvds1) {};
\draw (5.05, -4.625) node[twoportshape,t={\MymyLabel{LVDS}{Transceiver}}, circuitikz/bipoles/twoport/width=2, scale=0.5, rotate=-90 ] (lvds2) {};
\draw (5.05, -6.275) node[twoportshape,t={\MymyLabel{LVDS}{Transceiver}}, circuitikz/bipoles/twoport/width=2, scale=0.5, rotate=-90 ] (lvds3) {};
% Aesthetic EEPROM at each end of LVDS transceivers
\draw (5.05, 1.1) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (eeprom0) {};
\draw (5.05, -7.4) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (eeprom1) {};
% I/O expander
\draw (6.65, -3.5) node[twoportshape,t=\MymyLabel{IO Expander}{for I2C Bus}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (i2c) {};
% I/O direction switches
\draw (5.05, -2.8) node[twoportshape,t=\MymyLabel{Per-bank \phantom{space} }{Input/Output Switch}, circuitikz/bipoles/twoport/width=2.7, scale=0.44] (ioswitch) {};
\begin{scope}[xshift=5.3cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=5.4cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=5.5cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
\begin{scope}[xshift=5.6cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% EEM Ports
\draw (6.65, -0.5) node[twoportshape, t={EEM Port 0}, circuitikz/bipoles/twoport/width=3.6, scale=0.7, rotate=-90] (eem0) {};
\draw (6.65, -5.8) node[twoportshape, t={EEM Port 1}, circuitikz/bipoles/twoport/width=3.6, scale=0.7, rotate=-90] (eem1) {};
% Connect I/O expander & direction switches to bus transceivers block
% The transceivers had been grouped up, there is no need to label I/O direction indices anymore
% It might still be useful to identify the direction line itself, though
\draw [latexslim-] (i2c.west) -- (3.25, -3.5);
\draw [-] (ioswitch.south) -- (5.05, -3.5);
\draw [latexslim-latexslim] (bus0.east) -- (bus1.west);
\node [label=center:\tiny{IO Direction}] at (4.1, -3.4) {};
% Connect LVDS transceivers to bus transceivers, with labelling
\draw [latexslim-latexslim] (lvds0.south) -- (3.6, -0.025);
\node [label=center:\tiny{EEM}] at (4.2, 0.075) {};
\node [label=center:\tiny{0..3}] at (4.2, -0.125) {};
\draw [latexslim-latexslim] (lvds1.south) -- (3.6, -1.675);
\node [label=center:\tiny{EEM}] at (4.2, -1.575) {};
\node [label=center:\tiny{4..7}] at (4.2, -1.775) {};
\draw [latexslim-latexslim] (lvds2.south) -- (3.6, -4.625);
\node [label=center:\tiny{EEM}] at (4.2, -4.525) {};
\node [label=center:\tiny{8..11}] at (4.2, -4.725) {};
\draw [latexslim-latexslim] (lvds3.south) -- (3.6, -6.275);
\node [label=center:\tiny{EEM}] at (4.2, -6.175) {};
\node [label=center:\tiny{12..15}] at (4.2, -6.375) {};
% Connect EEM0 & EEM1
\draw [latexslim-latexslim] (lvds0.north) -- (6.3, -0.025);
\draw [latexslim-latexslim] (lvds1.north) -- (6.3, -1.675);
\draw [latexslim-latexslim] (lvds2.north) -- (6.3, -4.625);
\draw [latexslim-latexslim] (lvds3.north) -- (6.3, -6.275);
\draw [latexslim-latexslim] (eeprom0.east) -- (6.3, 1.1);
\draw [latexslim-latexslim] (eeprom1.east) -- (6.3, -7.4);
\draw [latexslim-latexslim] (eem0.east) -- (i2c.north);
% Reminder: IO directions are only selectable by bank. Channels from the same bank must have the same IO direction.
% Might be unnecessary as I/O directions signals are labelled with the "Bank" prefix.
\node [label={center:\tiny{Channels from the same bank}}] at (1.4, -3.05) {};
\node [label={center:\tiny{must have the same IO direction.}}] at (1.4, -3.25) {};
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=1.8in]{DIO_MCX_FP.pdf}
\includegraphics[height=2in]{photo2238.jpg}
\caption{MCX-TTL Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
Both recommended operating conditions and electrical characteristics are based on the datasheet of the bus transceivers IC (74LVT162245MTD\footnote{\label{transceiver}https://www.onsemi.com/pdf/datasheet/74lvt162245-d.pdf}).
\begin{table}[h]
\begin{threeparttable}
\caption{Recommended Operating Conditions}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Input voltage & $V_{I}$ & 0 & & 5.5* & V \\
\hline
High-level output current & $I_{OH}$ & & & -24 & mA \\
\hline
Low-level output current & $I_{OL}$ & & & 24 & mA \\
\hline
Input edge rate & $\frac{\Delta t}{\Delta V}$ & & & 10 & ns/V & $0.8V \leq V_I \leq 2.0V$ \\
\thickhline
\multicolumn{7}{l}{*With the 50\textOmega~termination enabled, the input voltage should not exceed 5V.}
\end{tabularx}
\end{threeparttable}
\end{table}
The recommended operating temperature is $-40\degree C \leq T_A \leq 85\degree C$.
All specifications are in the recommended operating temperature range unless otherwise noted.
\begin{table}[h]
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Input clamp diode voltage & $V_{IK}$ & & & -1.2 & V & $I_I =-36 mA$ \\
\hline
Input high voltage & $V_{IH}$ & 2.0 & & & V & \\
\hline
Input low voltage & $V_{IL}$ & & & 0.8 & V & \\
\hline
Output high voltage & $V_{OH}$ & 2.0 & & & V & $I_{OH}=-24mA$ \\
& & 3.1 & & & V & $I_{OH}=-200\mu A$ \\
\hline
Output low voltage & $V_{OL}$ & & & 0.8 & V & $I_{OL}=-24mA$ \\
& & & & 0.2 & V & $I_{OL}=-200\mu A$ \\
\hline
Input current & $I_I$ & & & 20 & \textmu A & $V_I=5.5V$ \\
& & & & 2 & \textmu A & $V_I=3.3V$ \\
& & & & -10 & \textmu A & $V_I=0V$ \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\section{Configuring IO Direction \& Termination}
The termination and IO direction can be configured by switches.
The per-channel termination and per-bank IO direction switches are found at the top and middle of the card respectively.
\begin{multicols}{2}
Termination switches selects the termination of each channel, between high impedence (OFF) and 50\textOmega~(ON).
IO direction switches partly decides the IO direction of each bank.
\begin{itemize}
\itemsep0em
\item Closed switch (ON) \\
Fix the corresponding bank to output. The direction cannot be changed by I\textsuperscript{2}C.
\item Opened switch (OFF) \\
Switch to input mode. The direction is input by default. Configurable by I\textsuperscript{2}C.
\end{itemize}
\columnbreak
\begin{center}
\centering
\includegraphics[height=1.7in]{mcx_ttl_switches.jpg}
\captionof{figure}{Position of switches}
\end{center}
\end{multicols}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 2245 LVDS-TTL card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
Timing accuracy in the examples below is well under 1 nanosecond thanks to the ARTIQ RTIO system.
\subsection{One pulse per second}
The channel should be configured as output in both the gateware and hardware.
\inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py}
\subsection{Morse code}
This example demonstrates some basic algorithmic features of the ARTIQ-Python language.
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
\newpage
\subsection{Counting rising edges in a 1ms window}
The channel should be configured as input in both the gateware and hardware.
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
This example code uses the software counter, which has a maximum count rate of approximately 1 million events per second.
If the gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second:
\inputcolorboxminted{firstline=60,lastline=65}{examples/ttl.py}
\subsection{Responding to an external trigger}
One channel needs to be configured as input, and the other as output.
\inputcolorboxminted{firstline=74,lastline=80}{examples/ttl.py}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 2238 MCX-TTL in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

674
2245.tex
View File

@ -1,674 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\usepackage{tikz-timing}
\usetikztiminglibrary{counters}
\title{2245 LVDS-TTL}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{16 LVDS channels.}
\item{Input and output capable.}
\item{No galvanic isolation.}
\item{High speed and low jitter.}
\item{RJ45 connectors.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Photon counting.}
\item{External equipment trigger.}
\item{Optical shutter control.}
\item{Serial communication to remote devices.}
\end{itemize}
\section{General Description}
The 2245 LVDS-TTL card is a 4hp EEM module.
It adds general-purpose digital I/O capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
Each card provides sixteen digital channels each, controlled through 2 EEM connectors.
Each EEM connector controls eight channels independently.
Single EEM operation is possible.
Each RJ45 connector exposes four digital channels in the LVDS format.
The direction (input or output) of each channel can be selected using DIP switches.
Outputs are intended to drive 100\textOmega~loads, inputs are 100\textOmega~terminated.
This card can achieve higher speed and lower jitter than the isolated 2118/2128 BNC/SMA-TTL cards.
Only shielded Ethernet Cat-6 cables should be connected.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\inputcolorboxminted}[3][4]{%
\begin{tcolorbox}[colback=white]
\inputminted[#2, gobble=#1]{python}{#3}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% RJ45 Connectors
\draw (0, 2.8) node[twoportshape, t={\MyLabel{RJ45}{CH 0-3}}, circuitikz/bipoles/twoport/width=1.4, scale=0.5, rotate=-90] (eth0) {};
\draw (0, 1.0) node[twoportshape, t={\MyLabel{RJ45}{CH 4-7}}, circuitikz/bipoles/twoport/width=1.4, scale=0.5, rotate=-90] (eth1) {};
\draw (0, -1.0) node[twoportshape, t={\MyLabel{RJ45}{CH 8-11}}, circuitikz/bipoles/twoport/width=1.4, scale=0.5, rotate=-90] (eth2) {};
\draw (0, -2.8) node[twoportshape, t={\MyLabel{RJ45}{CH 12-15}}, circuitikz/bipoles/twoport/width=1.4, scale=0.5, rotate=-90] (eth3) {};
% Repeaters for channels
% Channel 7 repeaters
\draw (1.8, 0.4) node[twoportshape, t={\MyLabel{CH 7}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep7) {};
% Omission dots
\node at (1.8, 0.8)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, 1.0)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, 1.2)[circle,fill,inner sep=0.7pt]{};
% Channel 4 repeaters
\draw (1.8, 1.6) node[twoportshape, t={\MyLabel{CH 4}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep4) {};
% Channel 3 repeaters
\draw (1.8, 2.2) node[twoportshape, t={\MyLabel{CH 3}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep3) {};
% Omission dots
\node at (1.8, 2.6)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, 2.8)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, 3.0)[circle,fill,inner sep=0.7pt]{};
% Channel 0 repeaters
\draw (1.8, 3.4) node[twoportshape, t={\MyLabel{CH 0}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep0) {};
% Channel 8 repeaters
\draw (1.8, -0.4) node[twoportshape, t={\MyLabel{CH 8}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep8) {};
% Omission dots
\node at (1.8, -0.8)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, -1.0)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, -1.2)[circle,fill,inner sep=0.7pt]{};
% Channel 11 repeaters
\draw (1.8, -1.6) node[twoportshape, t={\MyLabel{CH 11}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep11) {};
% Channel 12 repeaters
\draw (1.8, -2.2) node[twoportshape, t={\MyLabel{CH 12}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep12) {};
% Omission dots
\node at (1.8, -2.6)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, -2.8)[circle,fill,inner sep=0.7pt]{};
\node at (1.8, -3.0)[circle,fill,inner sep=0.7pt]{};
% Channel 15 repeaters
\draw (1.8, -3.4) node[twoportshape, t={\MyLabel{CH 15}{Repeaters}}, circuitikz/bipoles/twoport/width=1.6, scale=0.5] (rep15) {};
% Direction switches
\draw (4.6, 0.4) node[twoportshape,t=\MymyLabel{Per-channel \phantom{spac} x8 }{Input/Output Switch}, circuitikz/bipoles/twoport/width=2.7, scale=0.5] (ioswitch0) {};
\draw (4.6, -0.4) node[twoportshape,t=\MymyLabel{Per-channel \phantom{spac} x8 }{Input/Output Switch}, circuitikz/bipoles/twoport/width=2.7, scale=0.5] (ioswitch1) {};
\begin{scope}[xshift=5cm, yshift=0.65cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4, 0) to[short,-o](0.75, 0);
\draw (0.78, 0)-- +(30: 0.46);
\draw (1.25, 0)to[short,o-](1.6, 0);
\end{scope}
\begin{scope}[xshift=5cm, yshift=-0.15cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4, 0) to[short,-o](0.75, 0);
\draw (0.78, 0)-- +(30: 0.46);
\draw (1.25, 0)to[short,o-](1.6, 0);
\end{scope}
% I2C I/O expanders
\draw (4.6, 1.6) node[twoportshape,t=\MymyLabel{IO Expander}{for I2C Bus}, circuitikz/bipoles/twoport/width=2.7, scale=0.5] (i2c0) {};
\draw (4.6, -1.6) node[twoportshape,t=\MymyLabel{IO Expander}{for I2C Bus}, circuitikz/bipoles/twoport/width=2.7, scale=0.5] (i2c1) {};
% 2 Aesthetic EEPROMs
\draw (4.6, 2.2) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=2.7, scale=0.5] (eeprom0) {};
\draw (4.6, -2.2) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=2.7, scale=0.5] (eeprom1) {};
% EEMs from core device / controllers
\draw (7.2, 1.9) node[twoportshape, t={EEM Port 0}, circuitikz/bipoles/twoport/width=3.6, scale=0.7, rotate=-90] (eem0) {};
\draw (7.2, -1.9) node[twoportshape, t={EEM Port 1}, circuitikz/bipoles/twoport/width=3.6, scale=0.7, rotate=-90] (eem1) {};
% Connect RJ45 to LVDS DIO channels
% CH 0
\draw [latexslim-] (rep0.west) -- (0.7, 3.4);
\draw [-] (0.7, 3.4) -- (0.7, 3.1);
\draw [-latexslim] (0.7, 3.1) -- (0.25, 3.1);
% CH 1
\draw [latexslim-latexslim] (0.25, 2.9) -- (0.9, 2.9);
\node [label=center:\tiny{CH 1}] at (1.2, 2.9) {};
% CH 2
\draw [latexslim-latexslim] (0.25, 2.7) -- (0.9, 2.7);
\node [label=center:\tiny{CH 2}] at (1.2, 2.7) {};
% CH 3
\draw [latexslim-] (rep3.west) -- (0.7, 2.2);
\draw [-] (0.7, 2.2) -- (0.7, 2.5);
\draw [-latexslim] (0.7, 2.5) -- (0.25, 2.5);
% CH 4
\draw [latexslim-] (rep4.west) -- (0.7, 1.6);
\draw [-] (0.7, 1.6) -- (0.7, 1.3);
\draw [-latexslim] (0.7, 1.3) -- (0.25, 1.3);
% CH 5
\draw [latexslim-latexslim] (0.25, 1.1) -- (0.9, 1.1);
\node [label=center:\tiny{CH 5}] at (1.2, 1.1) {};
% CH 6
\draw [latexslim-latexslim] (0.25, 0.9) -- (0.9, 0.9);
\node [label=center:\tiny{CH 6}] at (1.2, 0.9) {};
% CH 7
\draw [latexslim-] (rep7.west) -- (0.7, 0.4);
\draw [-] (0.7, 0.4) -- (0.7, 0.7);
\draw [-latexslim] (0.7, 0.7) -- (0.25, 0.7);
% CH 8
\draw [latexslim-] (rep8.west) -- (0.7, -0.4);
\draw [-] (0.7, -0.4) -- (0.7, -0.7);
\draw [-latexslim] (0.7, -0.7) -- (0.25, -0.7);
% CH 9
\draw [latexslim-latexslim] (0.25, -0.9) -- (0.9, -0.9);
\node [label=center:\tiny{CH 9}] at (1.2, -0.9) {};
% CH 10
\draw [latexslim-latexslim] (0.25, -1.1) -- (0.9, -1.1);
\node [label=center:\tiny{CH 10}] at (1.2, -1.1) {};
% CH 11
\draw [latexslim-] (rep11.west) -- (0.7, -1.6);
\draw [-] (0.7, -1.6) -- (0.7, -1.3);
\draw [-latexslim] (0.7, -1.3) -- (0.25, -1.3);
% CH 12
\draw [latexslim-] (rep12.west) -- (0.7, -2.2);
\draw [-] (0.7, -2.2) -- (0.7, -2.5);
\draw [-latexslim] (0.7, -2.5) -- (0.25, -2.5);
% CH 13
\draw [latexslim-latexslim] (0.25, -2.7) -- (0.9, -2.7);
\node [label=center:\tiny{CH 13}] at (1.2, -2.7) {};
% CH 14
\draw [latexslim-latexslim] (0.25, -2.9) -- (0.9, -2.9);
\node [label=center:\tiny{CH 14}] at (1.2, -2.9) {};
% CH 15
\draw [latexslim-] (rep15.west) -- (0.7, -3.4);
\draw [-] (0.7, -3.4) -- (0.7, -3.1);
\draw [-latexslim] (0.7, -3.1) -- (0.25, -3.1);
% Interconnect repeaters controlled by EEM 0
\draw [latexslim-] (2.4, 3.5) -- (2.9, 3.5);
\draw [latexslim-] (2.4, 2.3) -- (2.9, 2.3);
\draw [latexslim-] (2.4, 1.7) -- (2.9, 1.7);
\draw [latexslim-] (2.4, 0.5) -- (2.9, 0.5);
\draw [-] (2.9, 3.5) -- (2.9, 0.5);
\draw [latexslim-] (2.4, 3.3) -- (3.1, 3.3);
\draw [latexslim-] (2.4, 2.1) -- (3.1, 2.1);
\draw [latexslim-] (2.4, 1.5) -- (3.1, 1.5);
\draw [latexslim-] (2.4, 0.3) -- (3.1, 0.3);
\draw [-] (3.1, 3.3) -- (3.1, 0.3);
% Interconnect repeaters controlled by EEM 1
\draw [latexslim-] (2.4, -3.5) -- (2.9, -3.5);
\draw [latexslim-] (2.4, -2.3) -- (2.9, -2.3);
\draw [latexslim-] (2.4, -1.7) -- (2.9, -1.7);
\draw [latexslim-] (2.4, -0.5) -- (2.9, -0.5);
\draw [-] (2.9, -3.5) -- (2.9, -0.5);
\draw [latexslim-] (2.4, -3.3) -- (3.1, -3.3);
\draw [latexslim-] (2.4, -2.1) -- (3.1, -2.1);
\draw [latexslim-] (2.4, -1.5) -- (3.1, -1.5);
\draw [latexslim-] (2.4, -0.3) -- (3.1, -0.3);
\draw [-] (3.1, -3.3) -- (3.1, -0.3);
% Junction between I/O expander and I/O switches
\node at (4.6, 1.0)[circle,fill,inner sep=0.7pt]{};
\draw [-latexslim] (i2c0.south) -- (4.6, 1.0);
\draw [-latexslim] (ioswitch0.north) -- (4.6, 1.0);
\draw [-] (4.6, 1.0) -- (3.1, 1.0);
\node at (4.6, -1.0)[circle,fill,inner sep=0.7pt]{};
\draw [-latexslim] (i2c1.north) -- (4.6, -1.0);
\draw [-latexslim] (ioswitch1.south) -- (4.6, -1.0);
\draw [-] (4.6, -1.0) -- (2.9, -1.0);
% Connect EEM Ports
\draw [-latexslim] (2.9, 2.8) -- (6.85, 2.8);
\draw [latexslim-latexslim] (eeprom0.east) -- (6.85, 2.2);
\draw [latexslim-latexslim] (i2c0.east) -- (6.85, 1.6);
\draw [-latexslim] (3.1, -2.8) -- (6.85, -2.8);
\draw [latexslim-latexslim] (eeprom1.east) -- (6.85, -2.2);
\draw [latexslim-latexslim] (i2c1.east) -- (6.85, -1.6);
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% Channel 0 input repeater
\draw (3, 3.8) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (rep_in0) {};
% Extra node to raise the upper boundary of the ch7 dotted area
\draw[color=white, text=black] (3, 5.3) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (rep_out0_north) {};
% Left-extend the dotted area to enclose the intersection between input & output
\draw[color=white, text=black] (2.1, 5.2) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (rep_out0_west) {};
% Right-extend the dotted area to enclose intersection & DIR text
\draw[color=white, text=black] (3.8, 5.2) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (rep_out0_east) {};
% Channel 0 output repeater, defined after previous node to coverup white boundaries
\draw (3, 5.0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (rep_out0) {};
% Channel 0 boundary
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rep_in0)(rep_out0)(rep_out0_north)(rep_out0_west)(rep_out0_east)] (sig0) {};
\node[fill=white, scale=0.7] at (sig0.north) {CH X Repeaters};
% Channel 0 direction line
\draw [latexslim-latexslim] (3, 4.0) -- (3, 4.8);
\draw [-] (3, 4.4) -- (4.6, 4.4);
\node [label=center:\tiny{CH X}] at (5.0, 4.5) {};
\node [label=center:\tiny{Direction}] at (5.0, 4.3) {};
% Expose & interconnect internal LVDS inputs
\node at (3.8, 5.0)[circle,fill,inner sep=0.7pt]{};
\draw [latexslim-] (rep_out0.west) -- (3.8, 5.0);
\draw [-latexslim] (rep_in0.east) -- (3.8, 3.8) -- (3.8, 5.0);
\draw [latexslim-latexslim] (3.8, 5.0) -- (4.6, 5.0);
\node [label=center:\tiny{CH X}] at (5.0, 5.1) {};
\node [label=center:\tiny{EEM I/O}] at (5.0, 4.9) {};
% Expose external LVDS I/O
\node at (2.1, 4.4)[circle,fill,inner sep=0.7pt]{};
\draw [-latexslim] (rep_out0.east) -- (2.1, 5.0) -- (2.1, 4.4);
\draw [latexslim-] (rep_in0.west) -- (2.1, 3.8) -- (2.1, 4.4);
\draw [latexslim-latexslim] (2.1, 4.4) -- (1.3, 4.4);
\node [label=center:\tiny{CH X}] at (0.9, 4.5) {};
\node [label=center:\tiny{LVDS I/O}] at (0.9, 4.3) {};
\end{circuitikz}
}
\caption{Detailed diagram for channel repeaters}
\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=2.1in]{DIO_RJ45_FP.pdf}
\includegraphics[height=2.1in]{photo2245.jpg}
\caption{LVDS-TTL Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
Information in this section is based on the datasheet of the repeaters IC (FIN1101K8X\footnote{\label{repeaters}https://www.onsemi.com/pdf/datasheet/fin1101-d.pdf}).
\begin{table}[h]
\begin{threeparttable}
\caption{Recommended Input Voltage}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Magnitude of differential input & $|V_{ID}|$ & 0.1 & & 3.3 & V \\
\hline
Common mode input & $V_{IC}$ & $|V_{ID}|/2$ & & $3.3-|V_{ID}|/2$ & V \\
\hline
Differential input threshold HIGH & $V_{TH}$ & & & 100 & mV & \\
\hline
Differential input threshold LOW & $V_{TL}$ & -100 & & & mV & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
The recommended operating temperature is $-40\degree C \leq T_A \leq 85\degree C$.
All specifications are in the recommended operating temperature range unless otherwise noted.
All typical values of DC specifications are at $T_A = 25\degree C$.
\begin{table}[h]
\begin{threeparttable}
\caption{DC Specifications}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Output differentiual Voltage & $V_{OD}$ & 250 & 330 & 450 & mV & \multirow{4}{*}{With 100$\Omega$ load.} \\
\cline{0-5}
$|V_{OD}|$ change (LOW-to-HIGH) & $\Delta V_{OD}$ & & & 25 & mV & \\
\cline{0-5}
Offset voltage & $V_{OS}$ & 1.125 & 1.23 & 1.375 & V & \\
\cline{0-5}
$|V_{OS}|$ change (LOW-to-HIGH) & $\Delta V_{OS}$ & & & 25 & mV & \\
\hline
Short circuit output current & $I_{OS}$ & & $\pm3.4$ & $\pm6$ & mA & \\
\hline
Input current & $I_{IN}$ & & & $\pm20$ & \textmu A & Recommended Input Voltage \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 300mV$, $V_{IC} = 1.3V$ unless otherwise specified.
\begin{table}[h]
\begin{threeparttable}
\caption{AC Specifications}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Differential Output Rise Time & \multirow{2}{*}{$t_{TLHD}$} & \multirow{2}{*}{0.29} & \multirow{2}{*}{0.40} & \multirow{2}{*}{0.58} & \multirow{2}{*}{ns} & duty Cycle = 50\%.\\
(20\% to 80\%) & & & & & & \\
\cline{0-5}
Differential Output Fall Time & \multirow{2}{*}{$t_{THLD}$} & \multirow{2}{*}{0.29} & \multirow{2}{*}{0.40} & \multirow{2}{*}{0.58} & \multirow{2}{*}{ns} & \\
(80\% to 20\%) & & & & & & \\
\cline{0-5}
Pulse width distortion & $PWD$ & & 0.01 & 0.2 & ns & \\
\hline
LVDS data jitter, & \multirow{2}{*}{$t_{DJ}$} & & \multirow{2}{*}{85} & \multirow{2}{*}{125} & \multirow{2}{*}{ps} & $PRBS=2^{23}-1$\\
deterministic & & & & & & 800 Mbps\\
\hline
LVDS clock jitter, & \multirow{2}{*}{$t_{RJ}$} & & \multirow{2}{*}{2.1} & \multirow{2}{*}{3.5} & \multirow{2}{*}{ps} & \multirow{2}{*}{400 MHz clock}\\
random (RMS) & & & & & & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\section{Configuring IO Direction \& Termination}
The IO direction can be configured by switches, which are found at the top of the card.
\begin{multicols}{2}
IO direction switches partly decides the IO direction of each bank.
\begin{itemize}
\itemsep0em
\item Closed switch (ON) \\
Fix the corresponding channel to output. The direction cannot be changed by I\textsuperscript{2}C.
\item Opened switch (OFF) \\
Switch to input mode. The direction is input by default. Configurable by I\textsuperscript{2}C.
\end{itemize}
\columnbreak
\begin{center}
\centering
\includegraphics[height=1.5in]{lvds_ttl_switches.jpg}
\captionof{figure}{Position of switches}
\end{center}
\end{multicols}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 2245 LVDS-TTL card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
Timing accuracy in the examples below is well under 1 nanosecond thanks to the ARTIQ RTIO system.
\subsection{One pulse per second}
The channel should be configured as output in both the gateware and hardware.
\inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py}
\subsection{Morse code}
This example demonstrates some basic algorithmic features of the ARTIQ-Python language.
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
\newpage
\subsection{Counting rising edges in a 1ms window}
The channel should be configured as input in both the gateware and hardware.
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
This example code uses the software counter, which has a maximum count rate of approximately 1 million events per second.
If the gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second:
\inputcolorboxminted{firstline=60,lastline=65}{examples/ttl.py}
\subsection{Responding to an external trigger}
One channel needs to be configured as input, and the other as output.
\inputcolorboxminted{firstline=74,lastline=80}{examples/ttl.py}
\newcommand{\wrapspacer}[1]% #1 = special text
{\bgroup
\sbox0{\begin{minipage}{\linewidth}\hrule height0pt
#1\hrule height0pt
\end{minipage}}%
\dimen0=\dimexpr \ht0+\dp0\relax
\loop\ifdim\dimen0>\baselineskip
\strut\vspace{-\baselineskip}\newline
\advance\dimen0 by -\baselineskip
\repeat
\noindent\strut\usebox0\par
\egroup}
\newpage
\subsection{SPI Master Device}
If a EEM port is configured as \texttt{dio\char`_spi} instead of \texttt{dio}, its associated TTL channels can be configured as SPI master devices.
Invocation of an SPI transfer follows this pattern:
\begin{enumerate}
% The config register can be set using set_config.
% However, the only difference between these 2 methods is that set_config accepts an arbitrary
% frequency, then translate into the rough frequency divisor for set_config_mu.
% It doesn't guarantee such frequency would be set as the SPI frequency
% In addition, finding clock division is quite easy. set_config_mu seems to be a more
% straight-forward & representative of the actual implementation.
\item Set the \texttt{config} register (e.g. using \texttt{set\char`_config\char`_mu()}).
\item Start the SPI transfer by writing the \texttt{data} register using \texttt{write()}.
\item If the data from the SPI slave is to be read (i.e. \texttt{SPI\char`_INPUT} was set in \texttt{config}), invoke \texttt{read()} to read.
\end{enumerate}
The list of configurations supported in the gateware are listed as below:
\begin{table}[h]
\centering
\begin{tabular}{|c|l|}
\hline
Flag & Description \\ \hline
\texttt{SPI\char`_OFFLINE} & Switch all pins to high impedance mode. \\ \hline
\texttt{SPI\char`_END} & Next SPI transfer is the last of the transcation. \\ \hline
\texttt{SPI\char`_INPUT} & Submit SPI read data as RTIO input event when the transfer is complete. \\ \hline
\texttt{SPI\char`_CS\char`_POLARITY} & Active level of chip select (CS) \\ \hline
\texttt{SPI\char`_CLK\char`_POLARITY} & Idle level of serial clock (SCK) \\ \hline
\texttt{SPI\char`_CLK\char`_PHASE} & Data is sampled on falling edge \& shifted out on rising edge. \\ \hline
\texttt{SPI\char`_LSB\char`_FIRST} & LSB is the first on bit on the wire. \\ \hline
\texttt{SPI\char`_HALF\char`_DUPLEX} & Use 3-wire SPI, where MOSI is both input \& output capable. \\ \hline
\end{tabular}
\end{table}
The following ARTIQ example demonstrates the flow of an SPI transcation with a typical SPI setup with 3 homogeneous slaves.
The direction switches on the LVDS-TTL card should be set to the correct IO direction for all relevant channels before powering on.
\begin{center}
\begin{circuitikz}[european, scale=1, every label/.append style={align=center}]
% SPI master
\draw (0, 1.8) node[twoportshape, t={}, circuitikz/bipoles/twoport/width=2.8, circuitikz/bipoles/twoport/height=2, scale=1] (master) {};
\node [label={center:\large{SPI Master}}] at (-0.6, 2.05) {};
\node [label={center:\large{(LVDS-TTL)}}] at (-0.6, 1.55) {};
\node [label=left:{SCK}] at (2, 2.8) {};
\node [label=left:{MOSI}] at (2, 2.4) {};
\node [label=left:{MISO}] at (2, 2.0) {};
\node [label=left:{CS0}] at (2, 1.6) {};
\node [label=left:{CS1}] at (2, 1.2) {};
\node [label=left:{CS2}] at (2, 0.8) {};
% SPI slaves
% The top one will have its SCK, MOSI, MISO aligned with the master, for wiring simplicity
\draw (7, 2.2) node[twoportshape, t={}, circuitikz/bipoles/twoport/width=2.8, circuitikz/bipoles/twoport/height=1.4, scale=1] (slave0) {};
\node [label={center:\large{SPI Slave 0}}] at (7.6, 2.2) {};
\node [label=right:{SCK}] at (5, 2.8) {};
\node [label=right:{MOSI}] at (5, 2.4) {};
\node [label=right:{MISO}] at (5, 2.0) {};
\node [label=right:{$\mathrm{\overline{CS}}$}] at (5, 1.6) {};
% The top one will have its SCK, MOSI, MISO aligned with the master, for wiring simplicity
\draw (7, 0) node[twoportshape, t={}, circuitikz/bipoles/twoport/width=2.8, circuitikz/bipoles/twoport/height=1.4, scale=1] (slave1) {};
\node [label={center:\large{SPI Slave 1}}] at (7.6, 0) {};
\node [label=right:{SCK}] at (5, 0.6) {};
\node [label=right:{MOSI}] at (5, 0.2) {};
\node [label=right:{MISO}] at (5, -0.2) {};
\node [label=right:{$\mathrm{\overline{CS}}$}] at (5, -0.6) {};
% The top one will have its SCK, MOSI, MISO aligned with the master, for wiring simplicity
\draw (7, -2.2) node[twoportshape, t={}, circuitikz/bipoles/twoport/width=2.8, circuitikz/bipoles/twoport/height=1.4, scale=1] (slave2) {};
\node [label={center:\large{SPI Slave 2}}] at (7.6, -2.2) {};
\node [label=right:{SCK}] at (5, -1.6) {};
\node [label=right:{MOSI}] at (5, -2.0) {};
\node [label=right:{MISO}] at (5, -2.4) {};
\node [label=right:{$\mathrm{\overline{CS}}$}] at (5, -2.8) {};
% Connect the master to slave 0
\draw [-latexslim] (1.95, 2.8) -- (5.05, 2.8);
\draw [-latexslim] (1.95, 2.4) -- (5.05, 2.4);
\draw [latexslim-] (1.95, 2.0) -- (5.05, 2.0);
\draw [-latexslim] (1.95, 1.6) -- (5.05, 1.6);
% Connect slave 1
\draw [-latexslim] (4.2, 2.8) -- (4.2, 0.6) -- (5.05, 0.6);
\draw [-latexslim] (3.8, 2.4) -- (3.8, 0.2) -- (5.05, 0.2);
\draw [-] (3.4, 2.0) -- (3.4, -0.2) -- (5.05, -0.2);
\draw [-latexslim] (1.95, 1.2) -- (3.0, 1.2) -- (3.0, -0.6) -- (5.05, -0.6);
% Connect slave 2
\draw [-latexslim] (4.2, 0.6) -- (4.2, -1.6) -- (5.05, -1.6);
\draw [-latexslim] (3.8, 0.2) -- (3.8, -2.0) -- (5.05, -2.0);
\draw [-] (3.4, -0.2) -- (3.4, -2.4) -- (5.05, -2.4);
\draw [-latexslim] (1.95, 0.8) -- (2.6, 0.8) -- (2.6, -2.8) -- (5.05, -2.8);
% Add dot to intersection to distinguish from overlaps
\node at (4.2, 2.8)[circle,fill,inner sep=0.7pt]{};
\node at (3.8, 2.4)[circle,fill,inner sep=0.7pt]{};
\node at (3.4, 2.0)[circle,fill,inner sep=0.7pt]{};
\node at (4.2, 0.6)[circle,fill,inner sep=0.7pt]{};
\node at (3.8, 0.2)[circle,fill,inner sep=0.7pt]{};
\node at (3.4, -0.2)[circle,fill,inner sep=0.7pt]{};
\end{circuitikz}
\end{center}
\newpage
\subsubsection{SPI Configuration}
The following examples will assume the SPI communication has the following properties:
\begin{itemize}
\item Chip select (CS) is active low
\item Serial clock (SCK) idle level is low
\item Data is sampled on rising edge of SCK \& shifted out on falling edge of SCK
\item Most significant bit (MSB) first
\item Full duplex
\end{itemize}
The base line configuration for an \texttt{SPIMaster} instance can be defined as such:
\inputcolorboxminted[0]{firstline=2,lastline=8}{examples/spi.py}
The \texttt{SPI\char`_END} \& \texttt{SPI\char`_INPUT} flags will be modified during runtime in the following example.
\subsubsection{SPI frequency}
Frequency of the SPI clock must be the result of RTIO clock frequency divided by an integer factor from [2, 257].
In the folowing examples, the SPI frequency will be set to 1 MHz by dividing the RTIO frequency (125 MHz) by 125.
\inputcolorboxminted[0]{firstline=10,lastline=10}{examples/spi.py}
\subsubsection{SPI write}
Typically, an SPI write operation involves sending an instruction and data to the SPI slaves.
Suppose the instruction and data are 8 bits and 32 bits respectively.
The timing diagram of such write operation is shown in the following.
\begin{center}
\begin{tikztimingtable}
[
timing/d/background/.style={fill=white},
timing/lslope=0.2
]
$\mathrm{\overline{CS}}$ & H51{L}H \\
SCK & LL31{T}; 2{[dotted] T}; 17{T} L \\
% The better approach is to use pass the counter (\tikztimingcounter{Q}) to a macro,
% then print the label from macro. But it turns out tikz-timing will print
% the counter value separately, even with an additional macro.
% Therefore, it does not work properly.
MOSI & [timing/counter/new={char=I, reset char=J, reset type=arg, increment=-1, text format=I}, timing/counter/new={char=A, reset char=R, reset type=arg, increment=-1, text format=D}]
UJ{7}8{2I}R{31}8{2A}; [dotted] D [dotted] D{}; R{7}8{2A}2U \\
MOSI & 53U \\
\end{tikztimingtable}%
\end{center}
\newpage
Suppose the instruction is \texttt{0x13}, while the data is \texttt{0xDEADBEEF}. In addition, both slave 1 \& 2 are selected. This SPI transcation can be performed by the following code.
\inputcolorboxminted{firstline=18,lastline=27}{examples/spi.py}
\subsubsection{SPI read}
A 32-bits read is represented by the following timing diagram.
\begin{center}
\begin{tikztimingtable}
[
timing/d/background/.style={fill=white},
timing/lslope=0.2
]
$\mathrm{\overline{CS}}$ & H51{L}H \\
SCK & LL31{T}; 2{[dotted] T}; 17{T} L \\
% The better approach is to use pass the counter (\tikztimingcounter{Q}) to a macro,
% then print the label from macro. But it turns out tikz-timing will print
% the counter value separately, even with an additional macro.
% Therefore, it does not work properly.
MOSI & [timing/counter/new={char=I, reset char=J, reset type=arg, increment=-1, text format=I}]
UJ{7}8{2I}36U \\
MOSI & [timing/counter/new={char=A, reset char=R, reset type=arg, increment=-1, text format=D}]
17UR{31}8{2A}; [dotted] D [dotted] D{}; R{7}8{2A}2U \\
\end{tikztimingtable}%
\end{center}
Suppose the instruction is \texttt{0x81}, where only slave 0 is selected. This SPI transcation can be performed by the following code.
\inputcolorboxminted{firstline=35,lastline=49}{examples/spi.py}
\newpage
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 2245 LVDS-TTL in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

File diff suppressed because it is too large Load Diff

484
4456.tex
View File

@ -1,484 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usepackage{pifont}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{4456 Synthesizer Mirny}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{4-channel VCO/PLL.}
\item{Output frequency ranges from 53 MHz to \textgreater 4 GHz.}
\item{Up to 13.6 GHz with Almazny mezzanine.}
\item{Higher frequency resolution than Urukul.}
\item{Lower jitter and phase noise.}
\item{Large frequency changes take several milliseconds.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Low-noise microwave source.}
\item{Quantum state control.}
\item{Driving acousto/electro-optic modulators.}
\end{itemize}
\section{General Description}
The 4456 Synthesizer Mirny card is a 4hp EEM module part of the ARTIQ Sinara family.
It adds microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 channels of PLL frequency synthesis.
Output frequency from 53 MHz to \textgreater 4 GHz are supported.
The range can be expanded up to 13.6 GHz with Almazny mezzanine.
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator.
RF switches on each channel provides at least 50 dB isolation.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{0.95}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
\begin{scope}[]
% Node to pin-point the locations of SMA symbols
\draw[color=white, text=black] (-0.1, 0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (ext_clk) {};
\draw[color=white, text=black] (-0.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx) {};
\draw[color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf0) {};
\draw[color=white, text=black] (-0.1, -2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf1) {};
\draw[color=white, text=black] (-0.1, -3.15) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf2) {};
\draw[color=white, text=black] (-0.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf3) {};
% Node to pin-point the locations of SMP symbols
\draw[color=white, text=black] (2.65, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (smp0) {};
\draw[color=white, text=black] (2.65, -2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (smp1) {};
\draw[color=white, text=black] (2.65, -3.15) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (smp2) {};
\draw[color=white, text=black] (2.65, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (smp3) {};
% Extra node to expand the future channel dotted area eastward
\draw[color=white, text=black] (2.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (sig3_east) {};
% Labels for female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\node [label=left:\tiny{EXT CLK}] at (0.35, 0.35) {};
\node [label=left:\tiny{MMCX}] at (0.35, 0) {};
\node [label=left:\tiny{RF 0}] at (0.35, -1.75) {};
\node [label=left:\tiny{RF 1}] at (0.35, -2.45) {};
\node [label=left:\tiny{RF 2}] at (0.35, -3.15) {};
\node [label=left:\tiny{RF 3}] at (0.35, -3.85) {};
% draw female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=35cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=45cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=55cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% draw female SMP connectors
\begin{scope}[scale=0.07 , rotate=90, xshift=-25cm, yshift=-45cm]
\draw (0,0) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=-35cm, yshift=-45cm]
\draw (0,0) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=-45cm, yshift=-45cm]
\draw (0,0) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=-55cm, yshift=-45cm]
\draw (0,0) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\end{scope}
% Labels for female SMP {0, 1, 2, 3}
\node [label=right:\tiny{SMP 0}] at (3, -1.75) {};
\node [label=right:\tiny{SMP 1}] at (3, -2.45) {};
\node [label=right:\tiny{SMP 2}] at (3, -3.15) {};
\node [label=right:\tiny{SMP 3}] at (3, -3.85) {};
% Draw the internal oscillator
\draw (0.02, -0.45) node[twoportshape, t={OSC}, circuitikz/bipoles/twoport/width=0.8, scale=0.4] (xo) {};
% Draw the clock buffers
\draw (1.6, 0) node[twoportshape, t={CLK Buffers}, circuitikz/bipoles/twoport/width=2.2, scale=0.5, rotate=-90] (clk_buf) {};
% Connect CLK_IN to PLL clock buffers
\draw [-latexslim] (ext_clk.east) -- (1.35, 0.35);
\draw [-latexslim] (mmcx.east) -- (1.35, 0);
\draw [-latexslim] (xo.east) -- (1.35, -0.45);
% Connect CPLD clk_sel to PLL clock buffers
\draw [-latexslim] (clk_buf.east) -- (1.6, -1.35);
% Signal path: From control signals / clock of PLL to output of the RF switches
\draw (1.6, -1.75) node[twoportshape, t={PLL Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.5] (sig0) {};
\draw (1.6, -2.45) node[twoportshape, t={PLL Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.5] (sig1) {};
\draw (1.6, -3.15) node[twoportshape, t={PLL Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.5] (sig2) {};
\draw (1.6, -3.85) node[twoportshape, t={PLL Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.5] (sig3) {};
% Connect RF to PLL block
\draw [latexslim-] (rf0.east) -- (sig0.west);
\draw [latexslim-] (rf1.east) -- (sig1.west);
\draw [latexslim-] (rf2.east) -- (sig2.west);
\draw [latexslim-] (rf3.east) -- (sig3.west);
% PLL signal path dotted area
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rf3)(sig0)(sig3_east.east)] (abs_dds) {};
\node[fill=white, rotate=-90, scale=0.7] at (abs_dds.west) {PLL Channels};
% CPLD after signal path 0
\draw (4.6, -0.2) node[twoportshape, t={CPLD}, circuitikz/bipoles/twoport/width=1.1, scale=0.8, rotate=-90] (cpld) {};
% Connect CPLD to:
% PLL clock buffer
\draw [latexslim-] (clk_buf.north) -- (4.2, 0);
% PLL signal path
\draw [latexslim-latexslim] (4.2, -0.4) -- (2.2, -0.4) -- (2.2, -1.35);
% Connect each PLL channel to its cooresponding SMP connector
\draw [-latexslim] (sig0.east) -- (smp0.east);
\draw [-latexslim] (sig1.east) -- (smp1.east);
\draw [-latexslim] (sig2.east) -- (smp2.east);
\draw [-latexslim] (sig3.east) -- (smp3.east);
% Draw AFE header
\draw (4.6, -2.8) node[twoportshape, t={AFE Header}, circuitikz/bipoles/twoport/width=1.8, scale=0.6, rotate=-90] (afe) {};
% Connect AFE header to CPLD
\draw [latexslim-latexslim] (cpld.east) -- (afe.west);
% Draw LVDS transceivers, EEM
\draw (6.2, 0) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (lvds0) {};
\draw (6.2, -1.6) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (lvds1) {};
\draw (7.8, -1.5) node[twoportshape, t={EEM Port}, circuitikz/bipoles/twoport/width=3.8, scale=0.7, rotate=-90] (eem) {};
% Connect LVDS transceiver to CPLD
\draw [latexslim-latexslim] (lvds0.south) -- (5, 0);
\draw [latexslim-latexslim] (lvds1.south) -- (5.5, -1.6) -- (5.5, -0.4) -- (5, -0.4);
% Connect EEM to LVDS transceiver
\draw [latexslim-latexslim] (lvds0.north) -- (7.45, 0);
\draw [latexslim-latexslim] (lvds1.north) -- (7.45, -1.6);
% Draw EEPROM
\draw (6.2, -3.85) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom) {};
% Interconnect I2C between EEPROM, AFE header & EEM
\draw [latexslim-latexslim] (afe.north) -- (7.45, -2.8);
\draw [-latexslim] (6.2, -2.8) -- (eeprom.north);
\end{scope}
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
\begin{scope}[]
% RF switches {0, 1, 2, 3} for SMA {0, 1, 2, 3}
\draw (1.4, 0) node[twoportshape, t={RF Switch}, circuitikz/bipoles/twoport/width=1.5, scale=0.6] (sw) {};
% Amplifiers {0, 1, 2, 3} for RF switches {0, 1, 2, 3}
\draw (3, 0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (amp) {};
% Attenuators {0, 1, 2, 3} for amplifiers {0, 1, 2, 3}
\draw (4.6, 0) node[twoportshape, t=\MymyLabel{Digital}{Attenuator}, circuitikz/bipoles/twoport/width=2, scale=0.6, rotate=-90] (att) {};
% PLL {0, 1, 2, 3} for attenuators {0, 1, 2, 3}
\draw (6.6, 0) node[twoportshape, t={PLL}, circuitikz/bipoles/twoport/width=1.2, scale=0.7] (pll) {};
% Connect main signal path
\draw [-latexslim] (pll.west) -- (att.north);
\draw [-latexslim] (att.south) -- (amp.west);
\draw [-latexslim] (amp.east) -- (sw.east);
% Connect abstract PLL clock input
\node [label=above:\tiny{CLK Buffers}] at (8, -0.2) {};
\draw [latexslim-] (pll.east) -- (8, 0);
% Insert CPLD signal to relevant components
\node [label=above:\tiny{CPLD}] at (8, 1.1) {};
\draw [-] (1.4, 1.3) -- (8, 1.3);
\draw [-latexslim] (1.4, 1.3) -- (sw.north);
\draw [-latexslim] (4.6, 1.3) -- (att.west);
\draw [-latexslim] (6.6, 1.3) -- (pll.north);
% Connect PLL to SMP connectors
\draw [-latexslim] (pll.south) -- (6.6, -1.35);
\node [label=below:\tiny{SMP}] at (6.6, -1.15) {};
% Direct the RF switch output to RF output
\draw [-latexslim] (sw.west) -- (0, 0);
\node [label=left:\tiny{RF}] at (0.2, 0) {};
\end{scope}
\end{circuitikz}
}
\caption{Simplified PLL Signal Path}
\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=2in]{Mirny_FP.pdf}
\includegraphics[height=2in]{photo4456.jpg}
\caption{Mirny Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
Specifications of parameters are based on the datasheets of the
PLL IC(ADF5356\footnote{\label{adf5356}https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}),
clock buffer IC (Si53340-B-GM\footnote{\label{clock_buffer}https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si5334x-datasheet.pdf}),
digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}).
Test results are from the Krzysztof Belewicz's thesis ``Microwave synthesizer for driving ion traps in quantum computing"\footnote{\label{mirny_thesis}https://m-labs.hk/Krzysztof\_Belewicz\_V1.1.pdf}.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Recommended Operating Conditions}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
% Note to future editors, the clk_div signal in gateware is not used.
% Input divider was removed (mirny#8)
Clock input & & & & & \\
\hspace{3mm}Frequency\repeatfootnote{adf5356}
& 10 & & 250 & MHz & Single-ended clock input (PLL config.) \\
& 10 & & 600 & MHz & Differential clock input (PLL config.) \\
\cline{2-6}
\hspace{3mm}Differential input swing\repeatfootnote{clock_buffer}
& 0.11 & & 1.55 & V\textsubscript{p-p} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Output Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Frequency & 53.125 & & 4000 & MHz & \\
\hline
Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\
\hline
Resolution & \multicolumn{4}{c|}{} & \\
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{4}{c|}{52 bits} & \\
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{4}{c|}{24 bits} & \\
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{4}{c|}{0.5 dB} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Phase noise performance of Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}.
The SPI signal is driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card.
Mirny is then connected to the RSA5100A spectrum analyzer for measurement.
Noise response spike can be improved by inserting an additional common-mode choke between the power supply and Mirny.
Note that the common-mode choke is not present on the Mirny card.
The following is a comparison between 2 setups at 1 GHz output:
\begin{itemize}
\item Red: Before any modifications
\item Blue: Adding a CM choke with an 100 \textmu F capacitor after the CM choke
\end{itemize}
\begin{figure}[H]
\centering
\includegraphics[height=3in]{mirny_phase_noise_cm_choke.png}
\caption{Phase noise measurement at 1 GHz}
\end{figure}
Phase noise at different output frequencies are then measured.
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\begin{table}[hbt!]
\centering
\begin{threeparttable}
\caption{Phase noise performance}
\begin{tabularx}{0.8\textwidth}{| c | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Output frequency}} &
\multicolumn{5}{c|}{\textbf{Phase noise (dBc/Hz) at carrier offset}}\\
\cline{2-6} & 1 kHz & 10 kHz & 100 kHz & 1 MHz & 10 MHz \\
\hline
125 MHz & -114 & -116 & -115 & -132 & -133 \\
\hline
500 MHz & -107 & -129 & -111 & -130 & -132 \\
\hline
1 GHz & -102 & -106 & -107 & -125 & -133 \\
\hline
2 GHz & -102 & -98 & -104 & -123 & -124 \\
\hline
3.5 GHz & -96 & -101 & -103 & -127 & -128 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{figure}[H]
\centering
\includegraphics[height=3in]{mirny_phase_noise_frequency.png}
\caption{Phase noise measurement}
\end{figure}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 4456 Synthesizer Mirny card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{1 GHz Sinusoidal Wave}
Generate a 1 GHz sinusoid from RF0 with full scale amplitude, attenuated by 12 dB.
Both the CPLD and the PLL channels should be initialized.
\inputcolorboxminted{firstline=10,lastline=17}{examples/pll.py}
\subsection{ADF5356 Power Control}
Output power can be controlled be configuring the PLL channels individually, in addition to the digital attenuators.
After initialization of the PLL channel (ADF5356), the following line of code can change the output power level.
\inputcolorboxminted{firstline=28,lastline=28}{examples/pll.py}
The parameter corresponds to a specific change of output power according to the following table\repeatfootnote{adf5356}.
\begin{center}
\captionof{table}{Power changes from ADF5356}
\begin{tabular}{|c|c|}
\hline
Parameter & Power \\ \hline
0 & -4 dBm \\ \hline
1 & -1 dBm \\ \hline
2 & +2 dBm \\ \hline
3 & +5 dBm \\ \hline
\end{tabular}
\end{center}
ADF5356 gives +5 dBm by default. The stored parameter in ADF5356 can be read using the folowing line.
\inputcolorboxminted{firstline=29,lastline=29}{examples/pll.py}
\newpage
\subsection{Periodic 100\textmu s pulses}
The output can be toggled on and off periodically using the RF switches.
The following code emits a 100\textmu s pulse in every millisecond.
A microwave signal should be programmed in prior (such as the 1 GHz wave example).
\inputcolorboxminted{firstline=42,lastline=44}{examples/pll.py}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 4456 Synthesizer Mirny in the ARTIQ Sinara crate configuration tool.
The cards may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

711
5108.tex
View File

@ -1,711 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{5108 ADC Sampler}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{8-channel ADC.}
\item{16-bits resolution.}
\item{1.5 MSPS simultaneously on all channels.}
\item{Full scale input voltage $\pm$10mV to $\pm$10V.}
\item{BNC connector.}
\item{SMA breakout with 5528 SMA-IDC adapter.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Sample intermediate-frequency (IF) waveform.}
\item{Monitor laser power with a photodiode.}
\item{Synchronize laser frequencies with a phase frequency detector.}
\item{Form a laser intensity servo with 4410 Urukul.}
\end{itemize}
\section{General Description}
The 5108 ADC Sampler is a 8hp EEM module part of the ARTIQ Sinara family.
It adds analog-digital converting capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 8 analog-to-digital channels, each exposed by a BNC connector.
Each channel supports input voltage ranges from \textpm 10mV to \textpm 10V.
All channels can be sampled simultaneously.
Channels can broken out to SMA by adding a 5528 SMA-IDC card.
5108 ADC Sampler provides a sample rate of 1.5 MSPS.
However, the sample rate in practice is typically limited by the use of ARTIQ-Python kernel code.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{1}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% Node to pin-point the locations of BNC symbols
\draw[color=white, text=black] (-0.1, 1.225) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc0) {};
\draw[color=white, text=black] (-0.1, 0.875) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc1) {};
\draw[color=white, text=black] (-0.1, 0.525) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc2) {};
\draw[color=white, text=black] (-0.1, 0.175) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc3) {};
\draw[color=white, text=black] (-0.1, -0.175) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc4) {};
\draw[color=white, text=black] (-0.1, -0.525) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc5) {};
\draw[color=white, text=black] (-0.1, -0.875) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc6) {};
\draw[color=white, text=black] (-0.1, -1.225) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc7) {};
% Labels for BNC 0-7
\node [label=left:\tiny{IN 0}] at (0.35, 1.225) {};
\node [label=left:\tiny{IN 1}] at (0.35, 0.875) {};
\node [label=left:\tiny{IN 2}] at (0.35, 0.525) {};
\node [label=left:\tiny{IN 3}] at (0.35, 0.175) {};
\node [label=left:\tiny{IN 4}] at (0.35, -0.175) {};
\node [label=left:\tiny{IN 5}] at (0.35, -0.525) {};
\node [label=left:\tiny{IN 6}] at (0.35, -0.875) {};
\node [label=left:\tiny{IN 7}] at (0.35, -1.225) {};
% draw BNC 0-7
\begin{scope}[scale=0.07 , rotate=-90, xshift=2.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=7.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=12.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=17.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-2.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-7.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-12.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-17.5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Draw termination switches
\draw (1.0, 1.925) node[twoportshape,t=\MymyLabel{100k/50\textOmega}{Switch \phantom{s} x8}, circuitikz/bipoles/twoport/width=1.5, scale=0.5] (termswitch) {};
\begin{scope}[xshift=1.2cm, yshift=1.925cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% Dwar IDC Port (ADC IN)
\draw (0.8, -1.925) node[twoportshape,t={IDC Port}, circuitikz/bipoles/twoport/width=1.5, scale=0.5] (idc) {};
% Draw PGIAs
% The connections are too complicated for the usual buffer/op-amp symbol
\draw (3, 2.45) node[twoportshape,t=\MymyLabel{CH 0}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia0) {};
\draw (3, 1.75) node[twoportshape,t=\MymyLabel{CH 1}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia1) {};
\draw (3, 1.05) node[twoportshape,t=\MymyLabel{CH 2}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia2) {};
\draw (3, 0.35) node[twoportshape,t=\MymyLabel{CH 3}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia3) {};
\draw (3, -0.35) node[twoportshape,t=\MymyLabel{CH 4}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia4) {};
\draw (3, -1.05) node[twoportshape,t=\MymyLabel{CH 5}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia5) {};
\draw (3, -1.75) node[twoportshape,t=\MymyLabel{CH 6}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia6) {};
\draw (3, -2.45) node[twoportshape,t=\MymyLabel{CH 7}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia7) {};
% Draw termination connection to input lines
\draw [-] (0.65, 1.675) -- (0.65, 1.225);
\draw [-] (0.75, 1.675) -- (0.75, 0.875);
\draw [-] (0.85, 1.675) -- (0.85, 0.525);
\draw [-] (0.95, 1.675) -- (0.95, 0.175);
\draw [-] (1.05, 1.675) -- (1.05, -0.175);
\draw [-] (1.15, 1.675) -- (1.15, -0.525);
\draw [-] (1.25, 1.675) -- (1.25, -0.875);
\draw [-] (1.35, 1.675) -- (1.35, -1.225);
% Draw IDC port (ADC IN) connection to input lines
\draw [-] (0.45, -1.675) -- (0.45, 1.225);
\draw [-] (0.55, -1.675) -- (0.55, 0.875);
\draw [-] (0.65, -1.675) -- (0.65, 0.525);
\draw [-] (0.75, -1.675) -- (0.75, 0.175);
\draw [-] (0.85, -1.675) -- (0.85, -0.175);
\draw [-] (0.95, -1.675) -- (0.95, -0.525);
\draw [-] (1.05, -1.675) -- (1.05, -0.875);
\draw [-] (1.15, -1.675) -- (1.15, -1.225);
% Connect BNC to PGIA, with termination line
\draw [-latexslim] (bnc0.east) -- (1.9, 1.225) -- (1.9, 2.45) -- (pgia0.west);
\draw [-latexslim] (bnc1.east) -- (2, 0.875) -- (2, 1.75) -- (pgia1.west);
\draw [-latexslim] (bnc2.east) -- (2.1, 0.525) -- (2.1, 1.05) -- (pgia2.west);
\draw [-latexslim] (bnc3.east) -- (2.2, 0.175) -- (2.2, 0.35) -- (pgia3.west);
\draw [-latexslim] (bnc4.east) -- (2.2, -0.175) -- (2.2, -0.35) -- (pgia4.west);
\draw [-latexslim] (bnc5.east) -- (2.1, -0.525) -- (2.1, -1.05) -- (pgia5.west);
\draw [-latexslim] (bnc6.east) -- (2, -0.875) -- (2, -1.75) -- (pgia6.west);
\draw [-latexslim] (bnc7.east) -- (1.9, -1.225) -- (1.9, -2.45) -- (pgia7.west);
% Draw shift register & ADC
\draw (4.7, 1) node[twoportshape,t=\MymyLabel{Shift}{Registers}, circuitikz/bipoles/twoport/width=1.6, scale=0.6, rotate=-90] (sr) {};
\draw (4.7, -1) node[twoportshape,t={ADC}, circuitikz/bipoles/twoport/width=1.6, scale=0.6, rotate=-90] (adc) {};
% Connect PGIA -> ADC paths
\draw [-] (3.45, 2.55) -- (4, 2.55) -- (4, -1);
\draw [-] (3.45, -2.35) -- (4, -2.35) -- (4, -1);
\draw [-] (3.45, 1.85) -- ++ (0.55, 0);
\draw [-] (3.45, 1.15) -- ++ (0.55, 0);
\draw [-] (3.45, 0.45) -- ++ (0.55, 0);
\draw [-] (3.45, -0.25) -- ++ (0.55, 0);
\draw [-latexslim] (3.45, -0.95) -- ++ (0.95, 0);
\draw [-] (3.45, -1.65) -- ++ (0.55, 0);
% Connect SR -> PGIA paths
\draw [latexslim-] (3.45, 2.35) -- (3.8, 2.35) -- (3.8, 1);
\draw [latexslim-] (3.45, -2.55) -- (3.8, -2.55) -- (3.8, 1);
\draw [latexslim-] (3.45, 1.65) -- ++ (0.35, 0);
\draw [latexslim-] (3.45, 0.95) -- ++ (0.95, 0);
\draw [latexslim-] (3.45, 0.25) -- ++ (0.35, 0);
\draw [latexslim-] (3.45, -0.45) -- ++ (0.35, 0);
\draw [latexslim-] (3.45, -1.15) -- ++ (0.35, 0);
\draw [latexslim-] (3.45, -1.85) -- ++ (0.35, 0);
% Draw LVDS transceivers & repeaters
\draw (6.3, 1) node[twoportshape,t=\MymyLabel{LVDS}{Transceivers}, circuitikz/bipoles/twoport/width=1.8, scale=0.6, rotate=-90] (lvds) {};
\draw (6.3, -1) node[twoportshape,t={Repeaters}, circuitikz/bipoles/twoport/width=1.8, scale=0.6, rotate=-90] (rep) {};
% ADC & SR connection lines
% Note: MISO line from shift register ignored, the repeater is omiited in some versions
% Also, that MISO line does not do anything useful. The ARTIQ driver implementation is just a huge data integrity check.
\draw [-latexslim] (6, 1.2) -- (5, 1.2);
\draw [-latexslim] (6, 0.8) -- (5.5, 0.8) -- (5.5, -0.8) -- (5, -0.8);
% Data comes out of the ADC, the only signal that goes in is the clock
\draw [-latexslim] (5, -1.2) -- (6, -1.2);
% Draw EEPROMs
\draw (6, 2.35) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=1.4, scale=0.6] (eeprom0) {};
\draw (6.3, -2.6) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=1.4, scale=0.6, rotate=-90] (eeprom1) {};
% Draw EEM 0 & 1
\draw (7.9, 1.9) node[twoportshape,t={EEM Port 0}, circuitikz/bipoles/twoport/width=3.4, scale=0.6, rotate=-90] (eem0) {};
\draw (7.9, -1.9) node[twoportshape,t={EEM Port 1}, circuitikz/bipoles/twoport/width=2.6, scale=0.6, rotate=-90] (eem1) {};
% Connect EEM Port 1
\draw [-latexslim] (6.6, -1.2) -- (7.6, -1.2);
\draw [latexslim-latexslim] (eeprom1.north) -- (7.6, -2.6);
% Connect EEM Port 0
\draw [-latexslim] (6.6, -0.8) -- (7.1, -0.8) -- (7.1, 0.8) -- (7.6, 0.8);
\draw [latexslim-] (6.6, 1.2) -- (7.6, 1.2);
\draw [latexslim-latexslim] (eeprom0.east) -- (7.6, 2.35);
% Draw IO Expander
\draw (3, 3.15) node[twoportshape,t={IO Expander}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (i2c) {};
% Connect IO Expander
\draw [-latexslim] (termswitch.north) -- (1, 3.15) -- (i2c.west);
\draw [-latexslim] (i2c.east) -- (7.6, 3.15);
% Stress that the termination status I2C interface is read-only
\node [label=center:\tiny{Read Only}] at (1.6, 3.25) {};
% State that PGIA stands for "Programmable Gain Instrumentation Amplifier"
% The name is too long, and there isn't any good places to mention this
\node [label=center:\tiny{Note: PGIA = Programmable Gain Instrumentation Amplifier}] at (3, -3) {};
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[height=1.9in]{Sampler_FP.jpg}
\includegraphics[height=1.9in]{photo5108.jpg}
\caption{Sampler Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Input Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Input voltage & -10 & & 10 & V & 1x gain, termination off* \\
& -1 & & 1 & V & 10x gain\\
& -100 & & 100 & mV & 100x gain\\
& -10 & & 10 & mV & 1000x gain\\
\hline
DC Input signal impedance & \multicolumn{4}{c|}{100 k$\Omega$} & Termination off\\
& \multicolumn{4}{c|}{50 $\Omega$} & Termination on\\
\hline
Resolution &\multicolumn{4}{c|}{16 bits}& \\
\thickhline
\multicolumn{6}{l}{*With the 50\textOmega~termination enabled, the input voltage magnitude must not exceed 5V.}
\end{tabularx}
\end{threeparttable}
\end{table}
The electrical characteristics are based on various test results\footnote{\label{sinara226}https://github.com/sinara-hw/sinara/issues/226}\textsuperscript{,}
\footnote{\label{sinara489}https://github.com/sinara-hw/sinara/issues/489}\textsuperscript{,}
\footnote{\label{sampler2}https://github.com/sinara-hw/Sampler/issues/2}.
\begin{table}[hbt!]
\centering
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline
% Github wiki page info regarding BW is outdated, so only coarse estimate here
% There is an updated plot for this. See the plots.
-6dB bandwidth\repeatfootnote{sampler2} & & & & & See bandwidth plots \\
& & 200 & & kHz & 1x/10x/100x gain \\
& & 90 & & kHz & 1000x gain \\
\hline
Noise\repeatfootnote{sampler2} & & & & & 83.33 kHz sampling rate \\
\hspace{18mm} 1x gain & & 1.78 & & LSB RMS & Termination on \\
& & 1.75 & & LSB RMS & Termination off \\
\hspace{18mm} 10x gain & & 1.84 & & LSB RMS & Termination on \\
& & 3.09 & & LSB RMS & Termination off \\
\hspace{18mm} 100x gain & & 3.47 & & LSB RMS & Termination on \\
& & 26.02 & & LSB RMS & Termination off \\
\hspace{18mm} 1000x gain & & 13.87 & & LSB RMS & Termination on \\
& & 206.3 & & LSB RMS & Termination off \\
% \hline
DC cross-talk\repeatfootnote{sinara226} & & & -96 & dB & 1x gain\\
\hline
% AC cross-talk data on wiki is also outdated (when it was still novo)
% sinara-hw/sinara #489 is a better source of info
% But it seems that AC-XT is not channel-invariant
% So it is tabulated instead.
Second-order harmonics\repeatfootnote{sinara226} & & & & & 25 kHz input, termination on, 1x gain \\
& & -51 & & dBc & 0.1 V\textsubscript{pp} (-48dBFS), limited by ADC (-100dBFS) \\
& & -69 & & dBc & 1 V\textsubscript{pp} (-28dBFS) \\
& & -58.8 & & dBc & 10 V\textsubscript{pp} (-8dBFS) \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{table}[h]
\begin{threeparttable}
\caption{Electrical Characteristics (cont.)}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline
Common-mode rejection ratio\repeatfootnote{sinara226} & CMRR & & & & & 2 V\textsubscript{pp} sine wave as CM input, termination on\\
\hspace{12mm} 1x gain & & & & -98 & dB & $f=0.01,0.1,1$ kHz \\
& & & -87 & & dB & $f=10$ kHz \\
& & & -55 & & dB & $f=100$ kHz \\
& & & -83 & & dB & $f=1$ MHz \\
& & & -85 & & dB & $f=10$ MHz \\
\cline{3-7}
\hspace{12mm} 100x gain & & & & -118 & dB & $f=0.01$ kHz \\
& & & -98 & & dB & $f=0.1$ kHz \\
& & & -88 & & dB & $f=1$ kHz \\
& & & -70 & & dB & $f=10$ kHz \\
& & & -50 & & dB & $f=100$ kHz \\
& & & -80 & & dB & $f=1$ MHz \\
& & & & -118 & dB & $f=10$ MHz \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Crosstalk between ADC channels of 5108 ADC Sampler is shown below\repeatfootnote{sinara489}.
A 10 V\textsubscript{pp} signal is the input.
The aggressor channel always has 1x gain.
All channels have 50 \textOmega~termination enabled.
Data is acquired by taking 512 samples at 80 kHz sampling rate 20 times to average out the FFT.
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\begin{table}[h]
\begin{threeparttable}
\caption{Crosstalk with 35 kHz input frequency, 1000x gain on victim}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Aggressor}} &
\multicolumn{8}{c|}{\textbf{Crosstalk (dB) on Victim Channels}}\\
\cline{2-9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
Channel 0 & 0.00 & -114.90 & -129.35 & -131.54 & -132.19 & -142.56 & -145.39 & -159.98 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{figure}[hbt!]
\centering
\includegraphics[width=\textwidth]{sampler_xt_35khz.png}
\caption{Crosstalk with 35 kHz input frequency, 1000x gain on victim, channel 0 as the aggressor}
\end{figure}
\begin{table}[hbt!]
\begin{threeparttable}
\caption{Crosstalk with 300 kHz input frequency, 1000x gain on victim}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Aggressor}} &
\multicolumn{8}{c|}{\textbf{Crosstalk (dB) on Victim Channels}}\\
\cline{2-9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
Channel 0 & 0.00 & -109.18 & -123.94 & -128.46 & -131.11 & -134.45 & -135.62 & -158.51 \\
\hline
Channel 1 & -112.90 & 0.00 & -114.98 & -124.11 & -131.40 & -142.61 & -145.94 & -168.51 \\
\hline
Channel 2 & -123.27 & -112.58 & 0.00 & -111.17 & -121.46 & -129.97 & -137.31 & -163.77 \\
\hline
Channel 3 & -140.61 & -125.20 & -114.49 & 0.00 & -111.84 & -125.10 & -133.74 & -164.55 \\
\hline
Channel 4 & -140.12 & -131.07 & -124.30 & -112.65 & 0.00 & -109.22 & -124.71 & -160.22 \\
\hline
Channel 5 & -140.33 & -135.77 & -134.42 & -126.34 & -116.35 & 0.00 & -118.40 & -156.63 \\
\hline
Channel 6 & -142.39 & -139.25 & -138.51 & -134.73 & -125.00 & -108.91 & 0.00 & -146.29 \\
\hline
Channel 7 & -145.06 & -138.97 & -144.31 & -139.50 & -135.50 & -120.62 & -114.28 & 0.00 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
% The plots are quite small given that it is 8-plots-in-1, but the numbers should give a better picture
\begin{figure}[hbt!]
\centering
\includegraphics[width=\textwidth]{sampler_xt_300khz.png}
\caption{Crosstalk with 300 kHz input frequency, 1000x gain on victim, channel 0 as the aggressor}
\end{figure}
\begin{table}[hbt!]
\begin{threeparttable}
\caption{Crosstalk with 300 kHz input frequency, 1x gain on victim}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Aggressor}} &
\multicolumn{8}{c|}{\textbf{Crosstalk (dB) on Victim Channels}}\\
\cline{2-9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
Channel 0 & 0.00 & -84.36 & -100.65 & -100.16 & -102.72 & -93.51 & -96.23 & -105.70 \\
\hline
Channel 1 & -91.95 & 0.00 & -87.47 & -104.87 & -115.80 & -99.91 & -101.55 & -106.71 \\
\hline
Channel 2 & -109.04 & -86.28 & 0.00 & -88.78 & -96.81 & -95.41 & -108.53 & -109.23 \\
\hline
Channel 3 & -101.31 & -97.47 & -92.72 & 0.00 & -88.65 & -96.58 & -100.80 & -97.46 \\
\hline
Channel 4 & -101.27 & -95.18 & -97.16 & -88.29 & 0.00 & -87.26 & -99.11 & -100.12 \\
\hline
Channel 5 & -103.41 & -102.10 & -101.54 & -104.59 & -99.87 & 0.00 & -89.34 & -102.49 \\
\hline
Channel 6 & -104.62 & -104.64 & -103.39 & -101.73 & -104.08 & -87.61 & 0.00 & -88.34 \\
\hline
Channel 7 & -100.67 & -99.20 & -97.34 & -95.48 & -102.93 & -113.76 & -92.80 & 0.00 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{figure}[hbt!]
\centering
\includegraphics[width=\textwidth]{sampler_xt_300khz_1x_gain.png}
\caption{Crosstalk with 300 kHz input frequency, 1x gain on victim, channel 3 as the aggressor}
\end{figure}
Noise density is measured using the following configuration\repeatfootnote{sampler2}:
\begin{enumerate}
\item 1/12\textmu s sampling rate
\item 10k samples per measurement, averaging over 100 measurements
\item Measured at channels 6 \& 7. Channel 6 has the 50\textOmega~termination on, channel 7 has it off
\end{enumerate}
Noise density with respect to different gain settings with termination on/off are plotted below.
\begin{multicols}{2}
\begin{figure}[H]
\includegraphics[width=3.3in]{sampler_noise_term.png}
\caption{Noise density with termination enabled}
\end{figure}
\columnbreak
\begin{figure}[H]
\includegraphics[width=3.3in]{sampler_noise_no_term.png}
\caption{Noise density with termination disabled}
\end{figure}
\end{multicols}
\newpage
Bandwidth of small signal and large signal input is shown below\repeatfootnote{sampler2}. The setup is as the following:
\begin{enumerate}
\itemsep0em
\item 10k samples, sampled at 79.37 kHz
\item Driven by sinusoid from Keysight 33500B generator; Sampled using channel 7 without termination
\item Small signal measured using 2V\textsubscript{pp}/gain; Large signal measured using 15V\textsubscript{pp}/gain
\end{enumerate}
\begin{multicols}{2}
\begin{figure}[H]
\includegraphics[width=3.3in]{sampler_small_signal_bw.png}
\caption{Small signal bandwidth}
\end{figure}
\columnbreak
\begin{figure}[H]
\includegraphics[width=3.3in]{sampler_large_signal_bw.png}
\caption{Large signal bandwidth}
\end{figure}
\end{multicols}
\newpage
\section{Front Panel Drawings}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=2.7in]{sampler_drawings.pdf}
\captionof{figure}{5108 ADC Sampler front panel drawings}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=2.7in]{sampler_assembly.pdf}
\captionof{figure}{5108 ADC Sampler front panel assembly}
\end{center}
\end{multicols}
\begin{multicols}{2}
\begin{center}
\captionof{table}{Bill of Material (Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90504202 & 1 & FP-FRONT PANEL, EXTRUDED, TYPE 2, STATIC, 3Ux8HP \\ \hline
2 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
3 & 3020716 & 0.04 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\captionof{table}{Bill of Material (Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90504202 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
2 & 3033098 & 0.04 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
3 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
4 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
5 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
6 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
7 & 3040005 & 1 & HANDLE 8HP GREY PLASTIC \\ \hline
8 & 3207076 & 0.01 & SCR M2.5*12 PAN 100 21101-222 \\ \hline
9 & 3201130 & 0.01 & NUT M2.5 HEX ST NI KIT (100PCS) \\ \hline
10 & 3211232 & 1 & SCR M2.5*14 PAN PHL SS \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\section{Configuring Termination}
\begin{multicols}{2}
The input termination can be configured by switches.
The per-channel termination switches are found at the middle left part of the card.
Switching on the termination switch adds a 50\textOmega~termination between the differential input signals.
Regardless of the switch configurations, the differential input signals are separately terminated with 100k\textOmega~to the PCB ground.
\columnbreak
\begin{center}
\centering
\includegraphics[height=1.7in]{sampler_switches.jpg}
\captionof{figure}{Position of switches}
\end{center}
\end{multicols}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 5108 ADC Sampler card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{Get input voltage}
The following example initializes the Sampler card with 1x gain on all ADC channels.
Sample all ADC channels at the end.
\inputcolorboxminted{firstline=9,lastline=21}{examples/sampler.py}
\subsection{Voltage-controlled DDS Amplitude (SU-Servo Only)}
The SU-Servo feature can be enabled by integrating the 5108 ADC Sampler with 4410 DDS Urukuls.
Amplitude of the DDS output can be controlled by the ADC input of the Sampler through PI control, characterised by the following transfer function.
\[H(s)=k_p+\frac{k_i}{s+\frac{k_i}{g}}\]
In the following example, the amplitude of DDS is proportional to the ADC input from Sampler.
First, initialize the RTIO, SU-Servo and its channel with 1x gain.
\inputcolorboxminted{firstline=10,lastline=17}{examples/suservo.py}
Next, setup the PI control as an IIR filter. It has -1 proportional gain $k_p$ and no integrator gain $k_i$.
\inputcolorboxminted{firstline=18,lastline=25}{examples/suservo.py}
Then, configure the DDS frequency to 10 MHz with 3V input offset.
When input voltage $\geq$ offset voltage, the DDS output amplitude is 0.
\inputcolorboxminted{firstline=26,lastline=30}{examples/suservo.py}
SU-Servo encodes the ADC voltage in a linear scale [-1, 1].
Therefore, 3V is converted to 0.3.
Note that the ASF of all DDS channels are capped at 1.0, the amplitude clips when ADC input $\leq -7V$ with the above IIR filter.
Finally, enable the SU-Servo channel with the IIR filter programmed beforehand.
\inputcolorboxminted{firstline=32,lastline=33}{examples/suservo.py}
A 10 MHz DDS signal is generated from the example above, with amplitude controllable by ADC.
The RMS voltage of the DDS channel against the ADC voltage is plotted.
The DDS channel is terminated with 50\textOmega.
\begin{center}
\begin{tikzpicture}[
declare function={
func(\x)= and(\x>=-10, \x<-7) * (160) +
and(\x>=-7, \x<3) * (16*(3-x)) +
and(\x>=3, \x<10) * (0);
}
]
\begin{axis}[
axis x line=middle, axis y line=middle,
every axis x label/.style={
at={(axis description cs:0.5,-0.1)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=south,
},
minor x tick num=3,
grid=both,
height=8cm,
width=12cm,
ymin=-5, ymax=180, ytick={0,16,...,160}, ylabel=DDS RMS Voltage ($mV_{rms}$),
xmin=-10, xmax=10, xtick={-10,-8,...,10}, xlabel=Sampler Voltage ($V$),
]
\addplot[very thick, blue, samples=21, domain=-10:10]{func(x)};
\end{axis}
\end{tikzpicture}
\end{center}
DDS signal should be attenuated.
High output power affects the linearity due to the 1 dB compression point of the amplifier at 13 dBm output power.
15 dB attenuation at the digital attenuator was applied in this example.
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 5108 ADC Sampler in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

335
5432.tex
View File

@ -1,335 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{5432 DAC Zotino}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{32-channel DAC.}
\item{16-bits resolution.}
\item{1 MSPS shared between all channels.}
\item{Output voltage $\pm$10V.}
\item{HD68 connector.}
\item{Can be broken out to BNC/SMA/MCX.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Controlling setpoints of PID controllers for laser power stabilization.}
\item{Low-frequency arbitrary waveform generation.}
\item{Driving DC electrodes in ion traps.}
\end{itemize}
\section{General Description}
The 5432 Zotino is a 4hp EEM module part of the ARTIQ Sinara family.
It adds digital-analog converting capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 groups of 8 analog channels each, exposed by 1 HD68 connector.
Each channel supports output voltage from -10 V to 10 V.
All channels can be updated simultaneously.
Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528 SMA-IDC or 5538 MCX-IDC cards.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% HD68 Connector
\draw (0, 0) node[muxdemux, muxdemux def={Lh=6.5, Rh=8, w=2, NL=0, NB=0, NR=0}, circuitikz/bipoles/twoport/width=3.2, scale=0.7] (hd68) {HD68};
% IDC Connectors to IDC cards
\draw (2.2, 1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 16-23}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem2) {};
\draw (1.4, 1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 24-31}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem3) {};
\draw (2.2, -1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 8-15}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem1) {};
\draw (1.4, -1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 0-7}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem0) {};
% Op-amp x32
\draw (3, 0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (amp) {};
% DAC AD5372
\draw (4.6, 0.2) node[twoportshape, t=\MyLabel{32-CH}{DAC}, circuitikz/bipoles/twoport/width=1.2, circuitikz/bipoles/twoport/height=1.2, scale=0.7] (dac) {};
% LVDS Transceivers
\draw (6.6, 0) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (lvds0) {};
\draw (6.6, -1.6) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (lvds1) {};
% Aesthetic EEPROM
\draw (6.6, 1.6) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (eeprom) {};
% EEMs from core device / controllers
\draw (8.2, 0.0) node[twoportshape, t={EEM Port}, circuitikz/bipoles/twoport/width=3.6, scale=0.7, rotate=-90] (eem_in) {};
% Connect EEM IN to LVDS & EEMPROM
\draw [latexslim-latexslim] (eeprom.north) -- (7.85, 1.6);
\draw [latexslim-latexslim] (lvds0.north) -- (7.85, 0);
\draw [latexslim-latexslim] (lvds1.north) -- (7.85, -1.6);
% Connect LVDS to DAC
\draw [latexslim-latexslim] (lvds0.south) -- (5.2, 0);
\draw [latexslim-latexslim] (lvds1.south) -- (4.6, -1.6) -- (dac.south);
% Connect DAC to Op-amp, label op-amp width x32
\draw [-latexslim] (4, 0) -- (amp.west);
\node [label=below:\tiny{Op-amp x32}] at (3.2, -0.2) {};
\node [label=below:\tiny{1 per ch.}] at (3.2, -0.45) {};
% Connect Op-amp to EEM OUT and HD68
\draw [-latexslim] (amp.east) -- (hd68.east);
\draw [-latexslim] (2.2, 0) -- (eem2.east);
\draw [-latexslim] (1.4, 0) -- (eem3.east);
\draw [-latexslim] (2.2, 0) -- (eem1.west);
\draw [-latexslim] (1.4, 0) -- (eem0.west);
% TEC Cooler on top of the DAC
% To make it more obvious that it is cooling the DAC
\draw (4.6, 1.45) node[twoportshape, t=\MymyLabel{TEC}{Cooler}, circuitikz/bipoles/twoport/width=1.2, circuitikz/bipoles/twoport/height=1.2, scale=0.7] (tec_cooler) {};
% TEC Controller lined up with EEM IN
\draw (8.2, 3.5) node[twoportshape, t=\MymyLabel{TEC Controller}{Connector}, circuitikz/bipoles/twoport/width=2.6, scale=0.7, rotate=-90] (tec_conn) {};
% Thermistor for TEC controller
\draw (6.6, 3.3) node[thermistorshape, scale=0.7, rotate=-90] (thermistor) {};
\draw [latexslim-] (7.85, 3.3) -- (6.75, 3.3);
% Connect the controller to the cooler
\draw [-latexslim] (7.85, 4.2) -- (4.6, 4.2) -- (tec_cooler.north);
% Thermal connection between DAC and thermistor
\draw [densely dotted] (thermistor.south) -- (5.6, 3.3) -- (5.6, 0.5) -- (5.2, 0.5);
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[height=2in]{Zotino_FP.jpg}
\includegraphics[height=2in]{photo5432.jpg}
\caption{Zotino Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
% \hypersetup{hidelinks}
% \urlstyle{same}
The specifications are based on the datasheet of the DAC IC
(AD5372BCPZ\footnote{\label{dac}https://www.analog.com/media/en/technical-documentation/data-sheets/AD5372\_5373.pdf}),
and various information from Sinara wiki\footnote{\label{zotino_wiki}https://github.com/sinara-hw/Zotino/wiki}.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Output Specifications}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Output voltage & -10 & & 10 & V & \\
\hline
Output impedance\repeatfootnote{zotino_wiki} & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\
\hline
Resolution\repeatfootnote{dac} & & 16 & & bits & \\
\hline
3dB bandwidth\repeatfootnote{zotino_wiki} & & 75 & & kHz & \\
\hline
Power consumption\repeatfootnote{zotino_wiki} & 3 & & 8.7 & W & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
The following are cross-talk and transient behavior of Zotino\footnote{\label{zotino21}https://github.com/sinara-hw/Zotino/issues/21}.
In terms of output noise, it was measured after 15 cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50 pF), and 500 k$\Omega$ $||$ 150 pF\footnote{\label{zotino27}https://github.com/sinara-hw/Zotino/issues/27}.
The DAC output during noise measurement is 3.5 V.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline
DC cross-talk\repeatfootnote{zotino21} & & -116 & & dB & \\
\hline
Fall-time\repeatfootnote{zotino21} & & 18.5 & & $\mu$s & 10\% to 90\% fall-time \\
& & 25 & & $\mu$s & 1\% to 99\% fall-time \\
\hline
Negative overshoot\repeatfootnote{zotino21} & & 0.5\% & & - & \\
\hline
Rise-time\repeatfootnote{zotino21} & & 30 & & $\mu$s & 1\% to 99\% rise-time \\
\hline
Positive overshoot\repeatfootnote{zotino21} & & 0.65\% & & - & \\
\hline
Output noise\repeatfootnote{zotino27} & & & & & \\
\hspace{18mm} @ 100 Hz & & 500 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 300 Hz & & 300 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 50 kHz & & 210 & & nV/rtHz & 6.9 kHz bandwidth \\
\hspace{18mm} @ 1 MHz & & 4.6 & & nV/rtHz & 6.9 kHz bandwidth \\
\hspace{18mm} $>$ 4 MHz & & & 1 & nV/rtHz & 6.9 kHz bandwidth \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Step response are found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (10V) and observe the waveform\repeatfootnote{zotino21}.
\begin{figure}[hbt!]
\centering
\subfloat[\centering Switching from -10V to +10V]{{
\includegraphics[height=1.8in]{zotino_step_response_rising.png}
}}%
\subfloat[\centering Switching from +10V to -10V]{{
\includegraphics[height=1.8in]{zotino_step_response_falling.png}
}}%
\caption{Step response}%
\end{figure}
Far-end crosstalk is measured using the following setup\repeatfootnote{zotino21}.
\begin{enumerate}
\item CH1 as aggressor, CH0 as victim
\item CH0, 2-7 terminated, CH 8-31 open
\item Aggressor signal from BNC passed through 15cm IDC26, 2m HD68-HD68 SCSI-3 shielded twisted pair, 15cm IDC26, converted back to BNC with adapters between all different cables \& connectors.
\end{enumerate}
\begin{figure}[hbt!]
\centering
\includegraphics[width=3.3in]{zotino_fext.png}
\caption{Step crosstalk}
\end{figure}
\newpage
\section{Front Panel Drawings}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=3in]{zotino_drawings.pdf}
\captionof{figure}{5432 DAC Zotino front panel drawings}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90503572 & 1 & FRONT PANEL 3U 4HP PIU TYPE2 \\ \hline
2 & 3020716 & 0.02 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
3 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=3in]{zotino_assembly.pdf}
\captionof{figure}{5432 DAC Zotino front panel assembly}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90503572 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
2 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
3 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
4 & 3010124 & 0.1 & EMC GASKET FABRIC 3U (10PCS) \\ \hline
5 & 3033098 & 0.02 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
6 & 3040012 & 1 & HANDLE 4HP GREY PLASTIC \\ \hline
7 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
8 & 3207075 & 0.01 & SCR M2.5*12 PAN 100 21101-221 \\ \hline
9 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 5432 DAC Zotino card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{Set output voltage}
The following example initializes the Zotino card, then emits 1.0 V, 2.0 V, 3.0 V and 4.0 V at channel 0, 1, 2, 3 respectively.
Voltages of all 4 channels are updated simultaneously with the use of \texttt{set\char`_dac()}.
\inputcolorboxminted{firstline=11,lastline=22}{examples/zotino.py}
\newpage
\subsection{Triangular Wave}
A triangular waveform at 10 Hz, 16 V peak-to-peak.
Timing accuracy of the RTIO system can be demonstrated by the precision of the frequency.
Import \texttt{scipy.signal} and \texttt{numpy} modules to run this example.
\inputcolorboxminted{firstline=30,lastline=49}{examples/zotino.py}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 5432 DAC Zotino in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

View File

@ -1,384 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usepackage{pifont}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{5518 BNC-IDC / 5528 SMA-IDC}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{8 channels.}
\item{Internal IDC connector.}
\item{External BNC or SMA connectors.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Breaks out analog signals.}
\item{BNC or SMA adapters for: \begin{itemize}
\item{5432 DAC Zotino}
\item{5632 DAC Fastino}
\end{itemize}}
\item{(5528 only) SMA adapter for 5108 Sampler.}
\item{Convert from/to HD68 with 5568 HD68-IDC.}
\end{itemize}
\section{General Description}
The 5518 BNC-IDC card is a 8hp EEM module, while the 5528 SMA-IDC card is a 4hp EEM module.
Both adapter cards break out analog signal from IDC connectors to BNC (5518) or SMA (5528).
IDC connectors can be found on 5108 Sampler, 5432 DAC Zotino, 5632 DAC Fastino \& 5568 HD68-IDC.
Each card provides 8 channels, with BNC (5518) or SMA (5528) connectors.
Breaking out all 32 channels from 5432 DAC Zotino, 5632 DAC Fastino or 5568 HD68-IDC requires 4 BNC/SMA-IDC cards.
Only 1 BNC/SMA-IDC is required to break out all 8 ADC channels from a 5108 Sampler.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{0.95}{
\begin{circuitikz}[european, scale=1.2, every label/.append style={align=center}]
\begin{scope}[]
% Node to pin-point the locations of IO symbols
\draw[color=white, text=black] (-0.1, 2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io0) {};
\draw[color=white, text=black] (-0.1, 1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io1) {};
\draw[color=white, text=black] (-0.1, 1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io2) {};
\draw[color=white, text=black] (-0.1, 0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io3) {};
\draw[color=white, text=black] (-0.1, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io4) {};
\draw[color=white, text=black] (-0.1, -1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io5) {};
\draw[color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io6) {};
\draw[color=white, text=black] (-0.1, -2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (io7) {};
% Labels for all IO symbols
\node [label=left:\tiny{IO 0}] at (0.25, 2.45) {};
\node [label=left:\tiny{IO 1}] at (0.25, 1.75) {};
\node [label=left:\tiny{IO 2}] at (0.25, 1.05) {};
\node [label=left:\tiny{IO 3}] at (0.25, 0.35) {};
\node [label=left:\tiny{IO 4}] at (0.25, -0.35) {};
\node [label=left:\tiny{IO 5}] at (0.25, -1.05) {};
\node [label=left:\tiny{IO 6}] at (0.25, -1.75) {};
\node [label=left:\tiny{IO 7}] at (0.25, -2.45) {};
% draw all IO symbols
\begin{scope}[scale=0.07 , rotate=-90, xshift=35cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=15cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-15cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-35cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Draw CH0, CH1 & CH7 CM chokes
\draw (3, 1.2) node[twoportshape, t=\MymyLabel{Common Mode}{Line Filter}, circuitikz/bipoles/twoport/width=2.2, scale=0.6] (cm0) {};
\draw (3, 0.4) node[twoportshape, t=\MymyLabel{Common Mode}{Line Filter}, circuitikz/bipoles/twoport/width=2.2, scale=0.6] (cm1) {};
\draw (3, -1.1) node[twoportshape, t=\MymyLabel{Common Mode}{Line Filter}, circuitikz/bipoles/twoport/width=2.2, scale=0.6] (cm7) {};
% Omission dots for other channels
\node at (3, -0.15)[circle,fill,inner sep=0.7pt]{};
\node at (3, -0.35)[circle,fill,inner sep=0.7pt]{};
\node at (3, -0.55)[circle,fill,inner sep=0.7pt]{};
% IDC26 connector
\draw (5.13, 0) node[twoportshape, t={IDC Port}, circuitikz/bipoles/twoport/width=3.8, scale=0.7, rotate=-90] (idc) {};
% Connect IO connectors to CM chokes
\draw [latexslim-latexslim] (io0.east) -- (1.3, 2.45) -- (1.3, 1.2) -- (cm0.west);
\draw [latexslim-latexslim] (io1.east) -- (1.2, 1.75) -- (1.2, 0.4) -- (cm1.west);
\draw [latexslim-latexslim] (io2.east) -- (1.1, 1.05) -- (1.1, -0.15) -- (2.5, -0.15);
\draw [latexslim-latexslim] (io3.east) -- (1.0, 0.35) -- (1.0, -0.25) -- (2.5, -0.25);
\draw [latexslim-latexslim] (io4.east) -- (1.0, -0.35) -- (1.0, -0.35) -- (2.5, -0.35);
\draw [latexslim-latexslim] (io5.east) -- (1.1, -1.05) -- (1.1, -0.45) -- (2.5, -0.45);
\draw [latexslim-latexslim] (io6.east) -- (1.2, -1.75) -- (1.2, -0.55) -- (2.5, -0.55);
\draw [latexslim-latexslim] (io7.east) -- (1.3, -2.45) -- (1.3, -1.1) -- (cm7.west);
% Connect CM chokes to the IDC connector
\draw [latexslim-latexslim] (cm0.east) -- (4.85, 1.2);
\draw [latexslim-latexslim] (cm1.east) -- (4.85, 0.4);
\draw [latexslim-latexslim] (3.5, -0.15) -- ++(1.35, 0);
\draw [latexslim-latexslim] (3.5, -0.25) -- ++(1.35, 0);
\draw [latexslim-latexslim] (3.5, -0.35) -- ++(1.35, 0);
\draw [latexslim-latexslim] (3.5, -0.45) -- ++(1.35, 0);
\draw [latexslim-latexslim] (3.5, -0.55) -- ++(1.35, 0);
\draw [latexslim-latexslim] (cm7.east) -- (4.85, -1.1);
\end{scope}
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[hbt!]
\centering
\subfloat[\centering BNC-IDC]{{
\includegraphics[height=2.5in]{BNC_IDC_FP.jpg}
\includegraphics[height=2.5in]{photo5518.jpg}
}}%
\subfloat[\centering SMA-IDC]{{
\quad
\includegraphics[height=2.5in]{SMA_IDC_FP.pdf}
\quad
}}%
\caption{BNC-IDC/SMA-IDC Card photos}%
\label{fig:example}%
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
Specifications of parameters are based on the datasheet of the
common mode line filter\footnote{\label{cm_choke}https://www.we-online.com/catalog/datasheet/744229.pdf}.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Electrical Specifications}
\begin{tabularx}{0.65\textwidth}{l | c | c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Max. Value} & \textbf{Unit} & \textbf{Conditions} \\
\hline
Rated voltage & $V_{R}$ & 80 & V & \\
\hline
Rated current & $I_{R}$ & 400 & mA & $\Delta T^{*}=40K$ \\
\thickhline
\end{tabularx}
*$\Delta T$ refers to the temperature of the CM line filter minus the ambient.
\end{threeparttable}
\end{table}
Impedance characteristics of common mode \& differential mode signal at different frequencies are shown in the following graph.
\begin{figure}[H]
\centering
\includegraphics[]{idc_cm_choke.pdf}
\caption{Common Mode Line Filter Impedance Characteristics}
\end{figure}
\newpage
\section{Channel Mapping}
The following table shows the corresponding channel number of the BNC/SMA-IDC adapter IO ports, when it is connected to Sinara cards that support IDC connections.
\begin{table}[h]
\caption{Channel Mapping of BNC/SMA-IDC to Zotino, Fastino \& HD68-IDC}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
IDC Port Label & \multicolumn{1}{l|}{IO 0} & \multicolumn{1}{l|}{IO 1} & \multicolumn{1}{l|}{IO 2} & \multicolumn{1}{l|}{IO 3} & \multicolumn{1}{l|}{IO 4} & \multicolumn{1}{l|}{IO 5} & \multicolumn{1}{l|}{IO 6} & \multicolumn{1}{l|}{IO 7} \\ \hline
CH 0-7 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline
CH 8-15 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline
CH 16-23 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ \hline
CH 24-31 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \hline
\end{tabular}
\end{table}
\begin{table}[h]
\caption{Channel Mapping of BNC/SMA-IDC to 5108 Sampler}
\centering
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
& IO 0 & IO 1 & IO 2 & IO 3 & IO 4 & IO 5 & IO 6 & IO 7 \\ \hline
Sampler Ch. & \multicolumn{1}{c|}{7} & \multicolumn{1}{c|}{6} & \multicolumn{1}{c|}{5} & \multicolumn{1}{c|}{4} & \multicolumn{1}{c|}{3} & \multicolumn{1}{c|}{2} & \multicolumn{1}{c|}{1} & \multicolumn{1}{c|}{0} \\ \hline
\end{tabular}
\end{table}
\section{Front Panel Drawings}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=2.7in]{bnc_idc_drawings.pdf}
\captionof{figure}{5518 BNC-IDC front panel drawings}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (5518 Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90506946 & 1 & FP-FRONT PANEL, EXTRUDED, TYPE 2, STATIC, 3Ux8HP \\ \hline
2 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
3 & 3020716 & 0.04 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=2.7in]{bnc_idc_assembly.pdf}
\captionof{figure}{5518 BNC-IDC front panel assembly}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (5518 Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90506946 & 1 & FP-LYKJ 3U8HP PANEL \\ \hline
2 & 3033098 & 0.04 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
3 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
4 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
5 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
6 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI (100EA) \\ \hline
7 & 3040005 & 1 & HANDLE 8HP GREY PLASTIC \\ \hline
8 & 3207076 & 0.01 & SCR M2.5*16 PAN 100 21101-222 \\ \hline
9 & 3201130 & 0.01 & NUT M2.5 HEX ST NI KIT (100PCS) \\ \hline
10 & 3211232 & 1 & SCR M2.5*14 PAN PHL SS \\ \hline
11 & 3010124 & 0.1 & EMC GASKET FABRIC 3U (10PCS) \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=3in]{sma_idc_drawings.pdf}
\captionof{figure}{5528 SMA-IDC front panel drawings}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (5528 Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90506946 & 1 & FRONT PANEL 3U 4HP PIU TYPE2 \\ \hline
2 & 3020716 & 0.02 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
3 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=3in]{sma_idc_assembly.pdf}
\captionof{figure}{5528 SMA-IDC front panel assembly}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (5528 Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90506949 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
2 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
3 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
4 & 3010124 & 0.1 & EMC GASKET FABRIC 3U (10PCS) \\ \hline
5 & 3040012 & 1 & HANDLE 4HP GREY PLASTIC \\ \hline
6 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
7 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI (100EA) \\ \hline
8 & 3207075 & 0.01 & SCR M2.5*12 PAN 100 21101-221 \\ \hline
9 & 3033098 & 0.02 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 5518 BNC-IDC/5528 SMA-IDC in the ARTIQ Sinara crate configuration tool.
The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

135
5568.tex
View File

@ -1,135 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usepackage{pifont}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{5568 HD68-IDC}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{32 channels.}
\item{Internal IDC connector.}
\item{External HD68 connectors.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Branch out analog signal from: \begin{itemize}
\item{5432 DAC Zotino}
\item{5632 DAC Fastino}
\end{itemize}}
\item{BNC or SMA adapter when used with: \begin{itemize}
\item{5518 BNC-IDC}
\item{5528 SMA-IDC}
\end{itemize}}
\end{itemize}
\section{General Description}
The 5568 HD68-IDC card is a 4hp EEM module part of the ARTIQ Sinara family.
It is an adapter that converts IDC connection from/to HD68 connection.
It connects to an external HD68 cable to 5518 BNC-IDC or 5528 SMA-IDC cards.
Each card support 32 channels, with 1 HD68 connector and 4 IDC connectors.
Each IDC connector supports 8 channels, while all 32 channels are accessible using an external HD68 cable.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{1}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% HD68 Connector
\draw (0, 0) node[muxdemux, muxdemux def={Lh=6.5, Rh=8, w=2, NL=0, NB=0, NR=0}, circuitikz/bipoles/twoport/width=3.2, scale=0.7] (hd68) {HD68};
% IDC Connectors to IDC cards
\draw (3.0, 1.8) node[twoportshape, t={\MyLabel{IDC}{CH 16-23}}, circuitikz/bipoles/twoport/width=1.8, scale=0.7, rotate=-90] (eem2) {};
\draw (1.8, 1.8) node[twoportshape, t={\MyLabel{IDC}{CH 24-31}}, circuitikz/bipoles/twoport/width=1.8, scale=0.7, rotate=-90] (eem3) {};
\draw (3.0, -1.8) node[twoportshape, t={\MyLabel{IDC}{CH 8-15}}, circuitikz/bipoles/twoport/width=1.8, scale=0.7, rotate=-90] (eem1) {};
\draw (1.8, -1.8) node[twoportshape, t={\MyLabel{IDC}{CH 0-7}}, circuitikz/bipoles/twoport/width=1.8, scale=0.7, rotate=-90] (eem0) {};
% Connect Op-amp to EEM OUT and HD68
\draw [-latexslim] (3.0, 0) -- (hd68.east);
\draw [-latexslim] (3.0, 0) -- (eem2.east);
\draw [-latexslim] (1.8, 0) -- (eem3.east);
\draw [-latexslim] (3.0, 0) -- (eem1.west);
\draw [-latexslim] (1.8, 0) -- (eem0.west);
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[height=2.1in]{HD68_IDC_FP.pdf}
\includegraphics[height=2.1in]{photo5568.jpg}
\caption{HD68-IDC Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Cable Connection Diagram}
The 5568 HD68-IDC card can convert signal from HD68 format to IDC format.
In the Sinara family, analog output of 5432 DAC Zotino \& 5632 DAC Fastino cards are exported using HD68 connectors.
To break out the analog signal in a different crate, connect 5568 HD68-IDC with the DAC card using an external SCSI cable.
Then, plug in IDC cables to the appropriate IDC connectors to break out the signal to 5518 BNC-IDC or 5528 SMA-IDC cards.
The cable connections for 5568 HD68-IDC can be seen in the diagram below.
\begin{figure}[h]
\centering
\includegraphics[height=5in]{hd68_idc_connection.pdf}
\caption{HD68-IDC connection diagram}
\end{figure}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 5568 HD68-IDC in the ARTIQ Sinara crate configuration tool.
The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

328
7210.tex
View File

@ -1,328 +0,0 @@
\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{7210 Clocker}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{Distribute a low jitter clock signal.}
\item{SMA \& MMCX clock input.}
\item{4 SMA \& 6 MMCX output.}
\item{\textless100 fs RMS clock jitter.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Distribute clock signal.}
\item{Clock distribution amplifier.}
\item{Drive clocks input for:\begin{itemize}
\item{4410/4412 DDS Urukul}
\item{4456 Synthesizer Mirny}
\item{4624 Phaser}
\end{itemize}}
\end{itemize}
\section{General Description}
The 7210 Clocker card is a 4hp EEM module.
It distrubites clock signal with \textless100 fs RMS jitter.
Clock input can be supplied to Clocker through the external SMA connector or the internal MMCX connector.
The input source can be selected using an SPDT switch.
Each card distributes the input to 10 outputs.
4 outputs are interfaced with SMA connectors, the other 6 are with MMCX connectors.
Clocker can be powered externally or internally.
To provide external power, connect an external 12V power source through the front panel power jack.
Otherwise, connect it to a carrier card (1124 Kasli or 1125 Kasli-SoC) using the EEM port.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
\begin{figure}[h]
\centering
\scalebox{0.95}{
\begin{circuitikz}[european, scale=1.2, every label/.append style={align=center}]
\begin{scope}[]
% Node to pin-point the locations of IO symbols
\draw[color=white, text=black] (-0.1, 1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma1) {};
\draw[color=white, text=black] (-0.1, 1.4) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma0) {};
\draw[color=white, text=black] (-0.1, 0.7) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma2) {};
\draw[color=white, text=black] (-0.1, 0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma3) {};
\draw[color=white, text=black] (-0.1, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx4) {};
\draw[color=white, text=black] (-0.1, -0.7) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx5) {};
\draw[color=white, text=black] (-0.1, -1.05) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx6) {};
\draw[color=white, text=black] (-0.1, -1.4) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx7) {};
\draw[color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx8) {};
\draw[color=white, text=black] (-0.1, -2.1) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx9) {};
% Labels for all IO symbols
\node [label=center:\tiny{OUT 0}] at (sma0) {};
\node [label=center:\tiny{OUT 1}] at (sma1) {};
\node [label=center:\tiny{OUT 2}] at (sma2) {};
\node [label=center:\tiny{OUT 3}] at (sma3) {};
\node [label=center:\tiny{OUT 4}] at (mmcx4) {};
\node [label=center:\tiny{OUT 5}] at (mmcx5) {};
\node [label=center:\tiny{OUT 6}] at (mmcx6) {};
\node [label=center:\tiny{OUT 7}] at (mmcx7) {};
\node [label=center:\tiny{OUT 8}] at (mmcx8) {};
\node [label=center:\tiny{OUT 9}] at (mmcx9) {};
% draw all IO symbols
\begin{scope}[scale=0.07 , rotate=-90, xshift=-20cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-15cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-10cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=-5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=10cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=15cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=20cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=30cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Draw dotted enclosure to diferentiate SMA from MMCX outputs
% Extend the enclosure to the right
\draw[color=white, text=black] (0.5, 0.35) node[twoportshape, circuitikz/bipoles/twoport/width=0.1, scale=0.1 ] (sma_east) {};
\draw[color=white, text=black] (0.5, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=0.1, scale=0.1 ] (mmcx_east) {};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(sma0) (sma3.south west) (sma_east)] (sma_box) {};
\node[fill=white, rotate=-90] at (sma_box.west) {SMA};
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(mmcx9) (mmcx4.north west) (mmcx_east)] (mmcx_box) {};
\node[fill=white, rotate=-90] at (mmcx_box.west) {MMCX};
% Draw clock buffer
\draw (2.6, 0) node[twoportshape, t={Clock Buffer}, circuitikz/bipoles/twoport/width=2, circuitikz/bipoles/twoport/height=2, scale=0.7] (clk_buf) {};
% Draw clock input symbols
\begin{scope}[scale=0.07 , rotate=90, xshift=-5cm, yshift=-66cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=90, xshift=5cm, yshift=-66cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\draw[color=white, text=black] (4.5, 0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx_clkin) {};
\draw[color=white, text=black] (4.5, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (sma_clkin) {};
\node [label=right:\tiny{MMCX CLK IN}] at (mmcx_clkin) {};
\node [label=right:\tiny{SMA CLK IN}] at (sma_clkin) {};
% Draw the SPDT switch
\draw (2.6, -2) node[twoportshape,t=\MymyLabel{Input Clock \phantom{spac} }{Selection Switch}, circuitikz/bipoles/twoport/width=2.7, scale=0.6] (clk_sel) {};
\begin{scope}[xshift=3cm, yshift=-1.78cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
\draw (0.4,0) to[short,-o](0.75,0);
\draw (0.78,0)-- +(30:0.46);
\draw (1.25,0)to[short,o-](1.6,0) ;
\end{scope}
% Connect CLKINs to the clock buffer
\draw [-latexslim] (4.41, 0.35) -- (3.41, 0.35);
\draw [-latexslim] (4.41, -0.35) -- (3.41, -0.35);
% Connect the CLK SEL switch to the clock buffer
\draw [-latexslim] (clk_sel.north) -- (clk_buf.south);
% Connect the clock buffer to all output connectors
\draw [-latexslim] (1.79, 0.2) -- (1, 0.2) -- (1, 0.35) -- (0.25, 0.35);
\draw [-latexslim] (1.79, 0.3) -- (1.1, 0.3) -- (1.1, 0.7) -- (0.25, 0.7);
\draw [-latexslim] (1.79, 0.4) -- (1.2, 0.4) -- (1.2, 1.05) -- (0.25, 1.05);
\draw [-latexslim] (1.79, 0.5) -- (1.3, 0.5) -- (1.3, 1.4) -- (0.25, 1.4);
\draw [-latexslim] (1.79, -0.1) -- (0.9, -0.1) -- (0.9, -0.35) -- (0.25, -0.35);
\draw [-latexslim] (1.79, -0.2) -- (1.0, -0.2) -- (1.0, -0.7) -- (0.25, -0.7);
\draw [-latexslim] (1.79, -0.3) -- (1.1, -0.3) -- (1.1, -1.05) -- (0.25, -1.05);
\draw [-latexslim] (1.79, -0.4) -- (1.2, -0.4) -- (1.2, -1.4) -- (0.25, -1.4);
\draw [-latexslim] (1.79, -0.5) -- (1.3, -0.5) -- (1.3, -1.75) -- (0.25, -1.75);
\draw [-latexslim] (1.79, -0.6) -- (1.4, -0.6) -- (1.4, -2.1) -- (0.25, -2.1);
\end{scope}
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=3in]{Clocker_FP.jpg}
\includegraphics[height=3in]{photo7210.jpg}
\caption{Clocker Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
Specifications are derived based on the datasheets of
the clock buffer (ADCLK950BCPZ\footnote{\label{clock_buffer}https://www.analog.com/media/en/technical-documentation/data-sheets/ADCLK950.pdf}) \&
the RF transformer (TCM2-43X+\footnote{\label{rf_transformer}https://www.minicircuits.com/pdfs/TCM2-43X+.pdf}).
Clock output specifications is tested by supplying a 100 MHz DDS signal to the SMA input connector.\footnote{\label{clocker6}https://github.com/sinara-hw/Clocker/issues/6\#issuecomment-414048168}
The output is connected to an oscilloscope with 50\textOmega~termination.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Clock Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Clock input\repeatfootnote{clock_buffer}\textsuperscript{,}\repeatfootnote{rf_transformer} & & & & & \\
\hspace{3mm} Peak-to-peak voltage & 0.40 & & 2.40 & V\textsubscript{p-p} & \\
\hspace{3mm} Frequency & 10 & & 4000 & MHz & \\
\hline
Clock output
& & 0.8 & & V\textsubscript{p-p} & \multirow{3}{*}{50\textOmega~load, 100 MHz} \\
& & 5 & & dBm & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{figure}[H]
\centering
\includegraphics[width=5in]{clocker_waveform.png}
\caption{Waveform of Clocker at 100 MHz\repeatfootnote{clocker6}}
\end{figure}
\newpage
\section{Selecting Clock Source}
Clock input can be supplied to the 7210 Clocker using either the internal MMCX connector or the external SMA connector on the front panel.
The selection of clock input is configurable by a SPDT switch.
It is located between the MMCX input connector (\texttt{INT CLK IN}) and the MMCX output connectors.
\begin{multicols}{2}
Either INT or EXT can be selected.
\begin{itemize}
\itemsep0em
\item Internal MMCX (INT) \\
Clock signal from the MMCX connector \texttt{INT CLK IN} is distributed to all MMCX outputs.
\item External SMA (EXT) \\
Clock signal from the SMA connector \texttt{CLK IN} on the front panel is distributed to all MMCX outputs.
\end{itemize}
\columnbreak
\begin{center}
\centering
\includegraphics[height=1.7in]{clocker_spdt_switch.jpg}
\captionof{figure}{Position of the SPDT switch}
\end{center}
\end{multicols}
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 7210 Clocker in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
\end{footnotesize}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Binary file not shown.

View File

@ -1,35 +0,0 @@
from artiq.experiment import *
class CachePut(EnvExperiment):
def build(self):
self.setattr_device("core")
self.setattr_device("core_cache")
@kernel
def put(self, key, value):
self.core_cache.put(key, value)
# First experiment
@kernel
def run(self):
self.put("data", [0xCAFE, 0xDEAD, 0xBEEF])
class CacheGet(EnvExperiment):
def build(self):
self.setattr_device("core")
self.setattr_device("core_cache")
@kernel
def get(self, key):
return self.core_cache.get(key)
@rpc(flags={"async"})
def p(self, p):
print([hex(_) for _ in p])
# Second experiment
@kernel
def run(self):
self.p(self.get("data"))

View File

@ -1,134 +0,0 @@
from artiq.experiment import *
from artiq.coredevice.ad9910 import *
class Sinusoid(EnvExperiment):
def build(self):
self.setattr_device("core")
self.cpld = self.get_device("urukul0_cpld")
self.dds0 = self.get_device("urukul0_ch0")
@kernel
def run(self):
self.core.reset()
self.cpld.init()
self.dds0.init()
self.dds0.cfg_sw(True)
self.dds0.set_att(6.*dB)
self.dds0.set(10*MHz)
class SynchronizedSinusoid(EnvExperiment):
def build(self):
self.setattr_device("core")
self.cpld = self.get_device("urukul0_cpld")
self.dds0 = self.get_device("urukul0_ch0")
self.dds1 = self.get_device("urukul0_ch1")
@kernel
def run(self):
self.core.reset()
self.cpld.init()
self.dds0.init()
self.dds0.cfg_sw(True)
self.dds0.set_phase_mode(PHASE_MODE_TRACKING)
self.dds0.set_att(6.*dB)
self.dds1.init()
self.dds1.cfg_sw(True)
self.dds1.set_phase_mode(PHASE_MODE_TRACKING)
self.dds1.set_att(6.*dB)
self.dds0.set(frequency=10*MHz, phase=0.0)
self.dds1.set(frequency=10*MHz, phase=0.25) # 0.25 turns phase offset
class PulseRAM(EnvExperiment):
def build(self):
self.setattr_device("core")
self.cpld = self.get_device("urukul0_cpld")
self.dds0 = self.get_device("urukul0_ch0")
self.dds1 = self.get_device("urukul0_ch1")
def prepare(self):
self.amp = [0.0, 0.0, 0.0, 0.7, 0.0, 0.7, 0.7] # Reversed Order
self.asf_ram = [0] * len(self.amp)
@kernel
def init_dds(self, dds):
self.core.break_realtime()
dds.init()
dds.set_att(6.*dB)
dds.cfg_sw(True)
@kernel
def configure_ram_mode(self, dds):
self.core.break_realtime()
dds.set_cfr1(ram_enable=0)
self.cpld.io_update.pulse_mu(8)
self.cpld.set_profile(0) # Enable the corresponding RAM profile
# Profile 0 is the default
dds.set_profile_ram(start=0, end=len(self.asf_ram)-1,
step=250, profile=0, mode=RAM_MODE_CONT_RAMPUP)
self.cpld.io_update.pulse_mu(8)
dds.amplitude_to_ram(self.amp, self.asf_ram)
dds.write_ram(self.asf_ram)
self.core.break_realtime()
dds.set(frequency=5*MHz, ram_destination=RAM_DEST_ASF)
# Pass osk_enable=1 to set_cfr1() if it is not an amplitude RAM
dds.set_cfr1(ram_enable=1, ram_destination=RAM_DEST_ASF)
self.cpld.io_update.pulse_mu(8)
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.cpld.init()
self.init_dds(self.dds0)
self.configure_ram_mode(self.dds0)
class AmpRAM(PulseRAM):
def prepare(self):
# Reversed Order
self.amp = [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]
self.asf_ram = [0] * len(self.amp)
class SynchronizedPulseRAM(PulseRAM):
@kernel
def configure_ram_mode(self, dds):
self.core.break_realtime()
dds.set_cfr1(ram_enable=0)
self.cpld.io_update.pulse_mu(8)
self.cpld.set_profile(0) # Enable the corresponding RAM profile
# Profile 0 is the default
dds.set_profile_ram(start=0, end=len(self.asf_ram)-1,
step=250, profile=0, mode=RAM_MODE_CONT_RAMPUP)
self.cpld.io_update.pulse_mu(8)
dds.amplitude_to_ram(self.amp, self.asf_ram)
dds.write_ram(self.asf_ram)
self.core.break_realtime()
dds.set(frequency=5*MHz, phase=0.0, ram_destination=RAM_DEST_ASF)
# Pass osk_enable=1 to set_cfr1() if it is not an amplitude RAM
dds.set_cfr1(ram_enable=1, ram_destination=RAM_DEST_ASF)
self.cpld.io_update.pulse_mu(8)
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.cpld.init()
self.init_dds(self.dds0)
self.init_dds(self.dds1)
self.dds0.set_phase_mode(PHASE_MODE_TRACKING)
self.dds1.set_phase_mode(PHASE_MODE_TRACKING)
self.configure_ram_mode(self.dds0)
self.configure_ram_mode(self.dds1)

View File

@ -1,29 +0,0 @@
from artiq.experiment import *
class DMA(EnvExperiment):
def build(self):
self.setattr_device("core")
self.setattr_device("core_dma")
self.setattr_device("led0")
@kernel
def record(self):
with self.core_dma.record("led_blink"):
delay(100*ms)
self.led0.on()
delay(100*ms)
self.led0.off()
@kernel
def playback(self, n):
handle = self.core_dma.get_handle("led_blink")
self.core.break_realtime()
for _ in range(n):
self.core_dma.playback_handle(handle)
@kernel
def run(self):
self.core.reset()
self.record()
self.playback(2)

View File

@ -1,44 +0,0 @@
from artiq.experiment import *
class MirnyEnv(EnvExperiment):
def build(self):
self.setattr_device("core")
self.cpld = self.get_device("mirny0_cpld")
self.pll0 = self.get_device("mirny0_ch0")
@kernel
def init_mirny(self):
self.core.reset()
self.cpld.init()
self.pll0.init()
self.pll0.set_frequency(1*GHz)
self.pll0.set_att(12*dB)
self.pll0.sw.on()
class PowerControl(MirnyEnv):
@kernel
def run(self):
self.core.reset()
self.init_mirny()
# Run other code here
delay(5*s)
self.pll0.set_output_power_mu(0)
print(self.pll0.output_power_mu())
class ToggleSwitch(MirnyEnv):
@kernel
def run(self):
self.core.reset()
self.init_mirny()
delay_mu(8) # Avoid RTIO collision
self.pll0.sw.off()
delay(1*s)
while True:
self.pll0.sw.pulse(100*us)
delay(900*us)

View File

@ -1,21 +0,0 @@
from artiq.experiment import *
class SamplerInit(EnvExperiment):
def build(self):
self.setattr_device("core")
self.sampler = self.get_device("sampler0")
def prepare(self):
self.smp = [0.0]*8
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.sampler.init()
delay(5*ms)
for i in range(8):
self.sampler.set_gain_mu(i, 0)
delay(100*us)
self.sampler.sample(self.smp)

View File

@ -1,49 +0,0 @@
from artiq.experiment import *
from artiq.coredevice import spi2 as spi
SPI_CONFIG = (0 * spi.SPI_OFFLINE | 0 * spi.SPI_END |
0 * spi.SPI_INPUT | 0 * spi.SPI_CS_POLARITY |
0 * spi.SPI_CLK_POLARITY | 0 * spi.SPI_CLK_PHASE |
0 * spi.SPI_LSB_FIRST | 0 * spi.SPI_HALF_DUPLEX)
CLK_DIV = 125
class SPIWrite(EnvExperiment):
def build(self):
self.setattr_device("core")
self.spi = self.get_device("dio_spi0")
@kernel
def run(self):
self.core.reset()
self.spi.set_config_mu(SPI_CONFIG, 8, CLK_DIV, 0b110)
self.spi.write(0x13 << 24) # Shift the bits to the MSBs.
# Since SPI_LSB_FIRST is NOT set,
# SPI Machine will shift out bits from
# the MSB of the `data` register.`
self.spi.set_config_mu(SPI_CONFIG | spi.SPI_END, 32, CLK_DIV, 0b110)
self.spi.write(0xDEADBEEF)
class SPIRead(EnvExperiment):
def build(self):
self.setattr_device("core")
self.spi = self.get_device("dio_spi0")
@kernel
def run(self):
self.core.reset()
self.spi.set_config_mu(SPI_CONFIG, 8, CLK_DIV, 0b001)
self.spi.write(0x81 << 24) # Shift the bits to the MSBs.
# Since SPI_LSB_FIRST is NOT set,
# SPI Machine will shift out bits from
# the MSB of the `data` register.`
self.spi.set_config_mu(SPI_CONFIG | spi.SPI_END | spi.SPI_INPUT,
32, CLK_DIV, 0b001)
self.spi.write(0) # write() performs the SPI transfer.
# As suggested by the timing diagram,
# the exact value of this argument
# does not matter.
print(self.spi.read())

View File

@ -1,33 +0,0 @@
from artiq.experiment import *
class SUServoExample(EnvExperiment):
def build(self):
self.setattr_device("core")
self.suservo = self.get_device("suservo0")
self.suschannel0 = self.get_device("suservo0_ch0")
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.suservo.init()
self.suservo.set_pgia_mu(0, 0) # unity gain
self.suservo.cplds[0].set_att(0, 15.)
self.suschannel0.set_y(profile=0, y=0.) # Clear integrator
self.suschannel0.set_iir(
profile=0,
adc=0, # take data from Sampler channel 0
kp=-1., # -1 P gain
ki=0./s, # no integrator gain
g=0., # no integrator gain limit
delay=0. # no IIR update delay after enabling
)
self.suschannel0.set_dds(
profile=0,
offset=-.3, # 3 V with above PGIA settings
frequency=10*MHz,
phase=0.)
# enable RF, IIR updates and set profile
self.suschannel0.set(en_out=1, en_iir=1, profile=0)
self.suservo.set_config(enable=1)

View File

@ -1,75 +0,0 @@
from artiq.experiment import *
class OnePulsePerSecond(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttl0 = self.get_device("ttl0")
@kernel
def run(self):
self.core.reset()
while True:
self.ttl0.pulse(500*ms)
delay(500*ms)
class MorseCode(EnvExperiment):
def build(self):
self.setattr_device("core")
self.led = self.get_device("led0")
def prepare(self):
# As of ARTIQ-6, the ARTIQ compiler has limited string handling
# capabilities, so we pass a list of integers instead.
message = ".- .-. - .. --.-"
self.commands = [{".": 1, "-": 2, " ": 3}[c] for c in message]
@kernel
def run(self):
self.core.reset()
for cmd in self.commands:
if cmd == 1:
self.led.pulse(100*ms)
delay(100*ms)
if cmd == 2:
self.led.pulse(300*ms)
delay(100*ms)
if cmd == 3:
delay(700*ms)
class SoftwareEdgeCount(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttl0 = self.get_device("ttl0")
@kernel
def run(self):
self.core.reset()
gate_end_mu = self.ttl0.gate_rising(1*ms)
counts = self.ttl0.count(gate_end_mu)
print(counts)
class ShortPulse(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttl0 = self.get_device("ttl0")
@kernel
def run(self):
self.core.reset()
delay(6*ns) # Coarse RTIO period: 0 - 7 ns
self.ttl0.pulse(3*ns) # Coarse RTIO period: 8 - 15 ns
class ClockGen(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttl0 = self.get_device("ttl0")
@kernel
def run(self):
self.core.reset()
self.ttl0.set(62.5*MHz)

View File

@ -1,98 +0,0 @@
from artiq.experiment import *
class SoftwareEdgeCount(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttlin = self.get_device("ttl0")
self.ttlout = self.get_device("ttl7")
@kernel
def run(self):
self.core.reset()
gate_start_mu = now_mu()
# Start input gate & advance timeline cursor to gate_end_mu
gate_end_mu = self.ttlin.gate_rising(1*ms)
at_mu(gate_start_mu)
for _ in range(64):
self.ttlout.pulse(8*ns)
delay(8*ns)
counts = self.ttlin.count(gate_end_mu)
print(counts)
class EdgeCounter(EnvExperiment):
def build(self):
self.setattr_device("core")
self.edgecounter0 = self.get_device("ttl0_counter")
@kernel
def run(self):
self.core.reset()
self.edgecounter0.gate_rising(1*ms)
counts = self.edgecounter0.fetch_count()
print(counts)
class ExternalTrigger(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttlin = self.get_device("ttl0")
self.ttlout = self.get_device("ttl4")
@kernel
def run(self):
self.core.reset()
gate_end_mu = self.ttlin.gate_rising(5*ms)
timestamp_mu = self.ttlin.timestamp_mu(gate_end_mu)
at_mu(timestamp_mu + self.core.seconds_to_mu(10*ms))
self.ttlout.pulse(1*us)
import time
class MeanTimestampDuration(EnvExperiment):
def build(self):
self.setattr_device("core")
self.ttlin = self.get_device("ttl0")
self.ttlclk = self.get_device("ttl7")
@kernel
def get_timestamp_duration(self, pulse_num) -> TInt64:
self.core.break_realtime()
delay(1*ms)
gate_start_mu = now_mu()
# Start input gate & advance timeline cursor to gate_end_mu
gate_end_mu = self.ttlin.gate_rising(1*ms)
at_mu(gate_start_mu)
self.ttlclk.set_mu(0x800000)
delay(16*pulse_num*ns)
self.ttlclk.set_mu(0)
# Guarantee t0 > gate_end_mu
# Otherwise timestamp_mu may wait for pulses till gate_end_mu
rtio_time_mu = self.core.get_rtio_counter_mu()
sleep_mu = float(gate_end_mu - rtio_time_mu)
self.rpc_sleep(self.core.mu_to_seconds(sleep_mu))
t0 = self.core.get_rtio_counter_mu()
while self.ttlin.timestamp_mu(gate_end_mu) >= 0:
pass
t1 = self.core.get_rtio_counter_mu()
return t1 - t0
@rpc
def rpc_sleep(self, duration):
time.sleep(duration)
@kernel
def run(self):
self.core.reset()
t64 = self.get_timestamp_duration(64)
t8 = self.get_timestamp_duration(8)
print("Mean timestamp_mu duration:")
print(self.core.mu_to_seconds((t64 - t8)/((64 + 1) - (8 + 1))))

View File

@ -1,49 +0,0 @@
from artiq.experiment import *
from scipy import signal
import numpy
class Voltage(EnvExperiment):
def build(self):
self.setattr_device("core")
self.zotino = self.get_device("zotino0")
def prepare(self):
self.channels = [0, 1, 2, 3]
self.voltages = [1.0, 2.0, 3.0, 4.0]
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.zotino.init()
delay(1*ms)
self.zotino.set_dac(self.voltages, self.channels)
class TriangularWave(EnvExperiment):
def build(self):
self.setattr_device("core")
self.zotino = self.get_device("zotino0")
def prepare(self):
self.period = 0.1*s
self.sample = 128
t = numpy.linspace(0, 1, self.sample)
self.voltages = 8*signal.sawtooth(2*numpy.pi*t, 0.5)
self.interval = self.period/self.sample
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.zotino.init()
delay(1*ms)
counter = 0
while True:
self.zotino.set_dac([self.voltages[counter]], [0])
counter = (counter + 1) % self.sample
delay(self.interval)

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 162 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 172 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 172 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 208 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 249 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB