Compare commits

..

3 Commits

Author SHA1 Message Date
3bdf3f41ad 4456-4457: fixes 2025-01-29 14:24:54 +01:00
21ac62978a 4456-4457: add note on LEDs 2025-01-24 22:58:00 +01:00
9bf9310ccf 4456 -> 4456-4457: add almazny 2025-01-24 14:34:13 +01:00
7 changed files with 205 additions and 135 deletions

View File

@ -1,10 +1,10 @@
\input{preamble.tex}
\graphicspath{{images/4456}{images}}
\graphicspath{{images/4456-4457}{images}}
\title{4456 Synthesizer Mirny}
\title{4456 Synthesizer Mirny / 4457 HF Synthesizer Mirny + Almazny}
\author{M-Labs Limited}
\date{January 2022}
\revision{Revision 1}
\date{January 2025}
\revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
@ -13,29 +13,27 @@
\section{Features}
\begin{itemize}
\item{4-channel VCO/PLL}
\item{Output frequency ranges from 53 MHz to \textgreater 4 GHz}
\item{Up to 13.6 GHz with Almazny mezzanine}
\item{Higher frequency resolution than Urukul}
\item{Lower jitter and phase noise}
\item{Large frequency changes take several milliseconds}
\item{4-channel wide-band PLL/VCO-based microwave frequency synthesiser}
\item{Output frequency ranges from 53 MHz to \textgreater 4 GHz for 4456 Mirny only}
\item{Up to 12 GHz with 4457 Almazny}
\item{Higher frequency resolution than 4410/4412 Urukul}
\item{Lower jitter, phase noise than 4410/4412 Urukul}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Low-noise microwave source}
\item{Quantum state control}
\item{Driving acousto/electro-optic modulators}
\item{Low-noise microwave source}
\item{Quantum state control}
\item{Driving acousto/electro-optic modulators}
\end{itemize}
\section{General Description}
The 4456 Synthesizer Mirny card is a 4hp EEM module, part of the ARTIQ/Sinara family. It adds microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
The 4456 Synthesizer Mirny card is a 4hp EEM module; the 4457 HF Synthesizer Mirny + Almazny card, consisting of 4456 Mirny plus the 4-channel Almazny HF mezzanine, is a 8hp EEM module. Both Synthesizer cards add microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 channels of PLL frequency synthesis. Output frequencies from 53 MHz to \textgreater 4 GHz are supported.The range can be expanded up to 13.6 GHz with the Almazny mezzanine (4467 HF Synthesizer).
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches on each channel provides at least 50 dB isolation.
Both cards provide 4 channels of PLL frequency synthesis. 4456 Synthesizer Mirny supports output frequencies from 53 MHz to \textgreater 4GHz. As 4457 HF Synthesizer with Almazny mezzanine this range is expanded up to 12 GHz.
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches on each channel provide at least 50 dB isolation.
% Switch to next column
\vfill\break
@ -275,158 +273,230 @@ Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF sw
\begin{figure}[hbt!]
\centering
\includegraphics[height=2in]{photo4456.jpg}
\includegraphics[height=3in, angle=90]{Mirny_FP.pdf}
\caption{Mirny card and front panel}
\includegraphics[height=2in]{photo4457.jpg}
\caption{Mirny + Almazny card}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\sourcesection{4456 Synthesizer Mirny}{https://github.com/sinara-hw/mirny}
\begin{figure}[hbt!]
\subfloat[\centering Mirny and Almazny front panels]{{
\begin{minipage}[b]{0.5\linewidth}
\centering
\includegraphics[height=3in, angle=90]{fp4456.pdf} \\
\vspace{0.2in}
\includegraphics[height=3in, angle=90]{fp4457.pdf}
\vspace{0.25in}
\end{minipage}
}}
\subfloat[\centering Mirny, top-down view]{{
\includegraphics[height=2.5in]{photo4456.jpg}
}}
\end{figure}
\sourcesectiond{4456 Synthesizer Mirny}{the 4457 Almazny mezzanine}{https://github.com/sinara-hw/mirny}{https://github.com/sinara-hw/Almazny}
\section{Electrical Specifications}
Specifications of parameters are based on the datasheets of the PLL IC
(ADF5356\footnote{\label{adf5356}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}}),
clock buffer IC (Si53340-B-GM\footnote{\label{clock_buffer}\url{https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si5334x-datasheet.pdf}}),
and digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}}).
Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for driving ion traps in quantum computing"\footnote{\label{mirny_thesis}\url{https://m-labs.hk/Krzysztof\_Belewicz\_V1.1.pdf}}.
Specifications of parameters are based on the datasheets of the PLL IC
(ADF5356\footnote{\label{adf5356}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}} for 4456 Mirny, ADF5355\footnote{\label{adf5355}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5355.pdf}}) for 4457 Almazny),
clock buffer IC (Si53340-B-GM\footnote{\label{clock_buffer}\url{https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si5334x-datasheet.pdf}}),
and digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}}).
Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for driving ion traps in quantum computing"\footnote{\label{mirny_thesis}\url{https://m-labs.hk/Krzysztof\_Belewicz\_V1.1.pdf}}.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Recommended Operating Conditions}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
% Note to future editors, the clk_div signal in gateware is not used.
% Input divider was removed (mirny#8)
Clock input & & & & & \\
\hspace{3mm}Frequency\repeatfootnote{adf5356}
& 10 & & 250 & MHz & Single-ended clock input (PLL config.) \\
& 10 & & 600 & MHz & Differential clock input (PLL config.) \\
\cline{2-6}
\hspace{3mm}Differential input swing\repeatfootnote{clock_buffer}
& 0.11 & & 1.55 & V\textsubscript{p-p} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Recommended Operating Conditions}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
% Note to future editors, the clk_div signal in gateware is not used.
% Input divider was removed (mirny#8)
Clock input & & & & & \\
\hspace{3mm}Frequency\repeatfootnote{adf5356}
& 10 & & 250 & MHz & Single-ended clock input (PLL config.) \\
& 10 & & 600 & MHz & Differential clock input (PLL config.) \\
\cline{2-6}
\hspace{3mm}Differential input swing\repeatfootnote{clock_buffer}
& 0.11 & & 1.55 & V\textsubscript{p-p} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Output Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Frequency & 53.125 & & 4000 & MHz & \\
\hline
Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\
\hline
Resolution & \multicolumn{4}{c|}{} & \\
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{4}{c|}{52 bits} & \\
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{4}{c|}{24 bits} & \\
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{4}{c|}{0.5 dB} & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Output Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Frequency & 53.125 & & 4000 & MHz & 4456 Mirny only \\
& & & 12000 & MHz & With Almazny mezzanine \\
\hline
Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\
\hline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Phase noise performance of Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}. The SPI signal was driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card. Mirny was then connected to the RSA5100A spectrum analyzer for measurement.
Noise response spike can be improved by inserting an additional common-mode choke between the power supply and Mirny; note that this common-mode choke is not present on the card itself. The following is a comparison between the two setups at 1 GHz output:
\begin{itemize}
\item Red: Before any modifications
\item Blue: CM choke added with an 100 \textmu F capacitor after the CM choke
\end{itemize}
\begin{figure}[H]
\begin{table}[h]
\centering
\includegraphics[height=3in]{mirny_phase_noise_cm_choke.png}
\caption{Phase noise measurement at 1 GHz}
\end{figure}
\begin{threeparttable}
\caption{Output Specifications, cont.}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Lock time & & 1.7 & & ms & 4456 Mirny channels \\
& & 3.5 & & ms & 4457 Almazny channels \\
\hline
Resolution & & & & \\
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{3}{c|}{52} & bits & \\
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{3}{c|}{24} & bits & \\
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{3}{c|}{0.5} & dB & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
Phase noise at different output frequencies is then measured:
Phase noise performance of 4456 Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}. The SPI signal was driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card. 4456 Mirny was then connected to the RSA5100A spectrum analyzer for measurement.
\newcolumntype{Y}{>{\centering\arraybackslash}X}
Noise response spike can be improved by inserting an additional common-mode choke between the power supply and Mirny; note that this common-mode choke is not present on the card itself. The following is a comparison between the two setups at 1 GHz output:
\begin{table}[hbt!]
\centering
\begin{threeparttable}
\caption{Phase noise performance}
\begin{tabularx}{0.8\textwidth}{| c | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Output frequency}} &
\multicolumn{5}{c|}{\textbf{Phase noise (dBc/Hz) at carrier offset}}\\
\cline{2-6} & 1 kHz & 10 kHz & 100 kHz & 1 MHz & 10 MHz \\
\hline
125 MHz & -114 & -116 & -115 & -132 & -133 \\
\hline
500 MHz & -107 & -129 & -111 & -130 & -132 \\
\hline
1 GHz & -102 & -106 & -107 & -125 & -133 \\
\hline
2 GHz & -102 & -98 & -104 & -123 & -124 \\
\hline
3.5 GHz & -96 & -101 & -103 & -127 & -128 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{figure}[H]
\centering
\includegraphics[height=3in]{mirny_phase_noise_cm_choke.png}
\caption{Phase noise measurement at 1 GHz}
\end{figure}
\begin{itemize}
\item Red: Before any modifications
\item Blue: CM choke added with an 100 \textmu F capacitor after the CM choke
\end{itemize}
\newpage
\begin{figure}[H]
Phase noise at different output frequencies is then measured:
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\begin{table}[hbt!]
\centering
\includegraphics[height=3in]{mirny_phase_noise_frequency.png}
\caption{Phase noise measurement}
\end{figure}
\begin{threeparttable}
\caption{Phase noise performance}
\begin{tabularx}{0.8\textwidth}{| c | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Output frequency}} &
\multicolumn{5}{c|}{\textbf{Phase noise (dBc/Hz) at carrier offset}}\\
\cline{2-6} & 1 kHz & 10 kHz & 100 kHz & 1 MHz & 10 MHz \\
\hline
125 MHz & -114 & -116 & -115 & -132 & -133 \\
\hline
500 MHz & -107 & -129 & -111 & -130 & -132 \\
\hline
1 GHz & -102 & -106 & -107 & -125 & -133 \\
\hline
2 GHz & -102 & -98 & -104 & -123 & -124 \\
\hline
3.5 GHz & -96 & -101 & -103 & -127 & -128 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\codesection{4456 Synthesizer Mirny}
\begin{figure}[H]
\centering
\includegraphics[height=3in]{mirny_phase_noise_frequency.png}
\caption{Phase noise measurement}
\end{figure}
\subsection{1 GHz sinusoidal wave}
Generates a 1 GHz sinusoid from RF0 with full scale amplitude, attenuated by 12 dB. Both the CPLD and the PLL channels should be initialized.
\section{Programmable LEDs}
\inputcolorboxminted{firstline=10,lastline=17}{examples/pll.py}
4456 Mirny features several status LEDs, including a two per output channel. One per channel displays RF switch status.
\subsection{ADF5356 power control}
Output power can be controlled be configuring the PLL channels individually in addition to the digital attenuators. After initialization of the PLL channel (ADF5356), the following line of code can change the output power level:
The 4457 Almazny mezzanine features an additional row of LEDs, one per output channel, without a fixed purpose. The associated ARTIQ module allows programming these directly through the channel \texttt{set} method.
\inputcolorboxminted{firstline=28,lastline=28}{examples/pll.py}
\newpage
\sysdescsection
The parameter corresponds to a specific change of output power according to the following table\repeatfootnote{adf5356}.
4456 Synthesizer Mirny must be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
\begin{center}
\captionof{table}{Power changes from ADF5356}
\begin{tabular}{|c|c|}
\hline
Parameter & Power \\ \hline
0 & -4 dBm \\ \hline
1 & -1 dBm \\ \hline
2 & +2 dBm \\ \hline
3 & +5 dBm \\ \hline
\end{tabular}
\end{center}
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "mirny",
"ports": 0,
"clk_sel": "mmcx", // optional
"refclk": 125e6 // optional
}
\end{minted}
\end{tcolorbox}
ADF5356 gives +5 dBm by default. The stored parameter in ADF5356 can be read using the following line"
Replace 0 with the EEM port number used on the core device. Any port can be used. The \texttt{clk\_sel} field is optional and may be specified as one of either \texttt{xo}, \texttt{mmcx}, or \texttt{sma}. The default is \texttt{xo}. The \texttt{refclk} field is optional and the default is \texttt{100e6}.
\inputcolorboxminted{firstline=29,lastline=29}{examples/pll.py}
For 4457 Mirny + Almazny, one field must be added:
\subsection{Periodic 100\textmu s pulses}
The output can be toggled on and off periodically using the RF switches. The following code emits a 100\textmu s pulse in every millisecond. A microwave signal should be programmed in prior (such as the 1 GHz wave example).
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "mirny",
"almazny": true,
"ports": 0
}
\end{minted}
\end{tcolorbox}
\inputcolorboxminted{firstline=42,lastline=44}{examples/pll.py}
\codesection{4456 Synthesizer Mirny and 4457 Mirny + Almazny}
\ordersection{4456 Synthesizer Mirny}
\subsection{1 GHz sinusoidal wave}
Generates a 1 GHz sinusoid from RF0 with full scale amplitude, attenuated by 12 dB. Both the CPLD and the PLL channels should be initialized.
\inputcolorboxminted{firstline=10,lastline=17}{examples/pll.py}
\subsection{Almazny paired output}
Mirny and Almazny output channels are paired, and Almazny output channels output twice the frequency of the main Mirny outputs. To set Almazny HF outputs for 4457 HF Synthesizer, set the Mirny outputs to one-half the desired frequency. The above code, run with 4457 HF Synthesizer, will also output 2GHz from Almazny HF0.
\subsection{ADF5356 power control}
Output power can be controlled be configuring the PLL channels individually in addition to the digital attenuators. After initialization of the PLL channel (ADF5356), the following line of code can change the output power level:
\inputcolorboxminted{firstline=28,lastline=28}{examples/pll.py}
The parameter corresponds to a specific change of output power according to the following table\repeatfootnote{adf5356}.
\begin{center}
\captionof{table}{Power changes from ADF5356}
\begin{tabular}{|c|c|}
\hline
Parameter & Power \\ \hline
0 & -4 dBm \\ \hline
1 & -1 dBm \\ \hline
2 & +2 dBm \\ \hline
3 & +5 dBm \\ \hline
\end{tabular}
\end{center}
ADF5356 gives +5 dBm by default. The stored parameter in ADF5356 can be read using the following line"
\inputcolorboxminted{firstline=29,lastline=29}{examples/pll.py}
\subsection{Periodic 100\textmu s pulses}
The output can be toggled on and off periodically using the RF switches. The following code emits a 100\textmu s pulse in every millisecond. A microwave signal should be programmed in prior (such as the 1 GHz wave example).
\inputcolorboxminted{firstline=42,lastline=44}{examples/pll.py}
\ordersection{4456 Synthesizer Mirny or 4457 HF Synthesizer Mirny + Almazny}
\finalfootnote

BIN
images/4456-4457/fp4457.pdf Normal file

Binary file not shown.

View File

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 62 KiB

View File

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 98 KiB

View File

Before

Width:  |  Height:  |  Size: 140 KiB

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 179 KiB