Compare commits
6 Commits
3a6ed63f0a
...
df564d2375
Author | SHA1 | Date |
---|---|---|
occheung | df564d2375 | |
occheung | b8e89f4d01 | |
occheung | 8138e793d7 | |
occheung | a14aa89a76 | |
occheung | 5d8dc38db7 | |
occheung | 688f5fdf23 |
|
@ -702,8 +702,8 @@ The reported values are obtained from the oscilloscope.
|
|||
|
||||
\end{multicols}
|
||||
|
||||
The expected RMS voltage is described by the linear function $V_\mathrm{rms,exp}(\mathrm{ASF})=\frac{V_\mathrm{rms}(0.1)}{0.1}*\mathrm{ASF}$.
|
||||
The measured RMS voltage divided by the full scale expected RMS voltage (i.e. $V_\mathrm{rms,exp}(1)$) is shown below.
|
||||
The ideal RMS voltage is described by the linear function $V_\mathrm{rms,ideal}(\mathrm{ASF})=\frac{V_\mathrm{rms}(0.1)}{0.1}*\mathrm{ASF}$.
|
||||
The measured RMS voltage divided by the full scale ideal RMS voltage (i.e. $V_\mathrm{rms,ideal}(1)$) is shown below.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
@ -767,11 +767,11 @@ The measured RMS voltage divided by the full scale expected RMS voltage (i.e. $V
|
|||
(0, 0) (0.1, 16.6691) (0.2, 33.3762) (0.3, 49.8844) (0.4, 67.055) (0.5, 83.652)
|
||||
(0.6, 99.970) (0.7, 116.906) (0.8, 133.368) (0.9, 150.839) (1.0, 167.033)
|
||||
};
|
||||
\legend{Expected response, 0dB attenuation, 5dB attenuation, 10dB attenuation, 15dB attenuation}
|
||||
\legend{Ideal response, 0dB attenuation, 5dB attenuation, 10dB attenuation, 15dB attenuation}
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{RMS voltage scaled by expected voltage at ASF=1, 100 MHz}
|
||||
\caption{RMS voltage scaled by ideal voltage at ASF=1, 100 MHz}
|
||||
\end{figure}
|
||||
|
||||
\newpage
|
||||
|
|
2
5108.tex
2
5108.tex
|
@ -314,7 +314,7 @@ However, the sample rate in practice is typically limited by the use of ARTIQ-Py
|
|||
\hline
|
||||
Resolution &\multicolumn{4}{c|}{16 bits}& \\
|
||||
\thickhline
|
||||
\multicolumn{6}{l}{*At 1x gain with 50\textOmega~termination enabled, the input voltage magnitude must not exceed 5V.}
|
||||
\multicolumn{6}{l}{*With the 50\textOmega~termination enabled, the input voltage magnitude must not exceed 5V.}
|
||||
\end{tabularx}
|
||||
\end{threeparttable}
|
||||
\end{table}
|
||||
|
|
20
7210.tex
20
7210.tex
|
@ -35,7 +35,7 @@
|
|||
\item{Distribute a low jitter clock signal.}
|
||||
\item{SMA \& MMCX clock input.}
|
||||
\item{4 SMA \& 6 MMCX output.}
|
||||
\item{\textless100 fs clock jitter.}
|
||||
\item{\textless100 fs RMS clock jitter.}
|
||||
\end{itemize}
|
||||
|
||||
\section{Applications}
|
||||
|
@ -46,12 +46,13 @@
|
|||
\item{Drive clocks input for:\begin{itemize}
|
||||
\item{4410/4412 DDS Urukul}
|
||||
\item{4456 Synthesizer Mirny}
|
||||
\item{4624 Phaser}
|
||||
\end{itemize}}
|
||||
\end{itemize}
|
||||
|
||||
\section{General Description}
|
||||
The 7210 Clocker card is a 4hp EEM module.
|
||||
It distrubites clock signal with \textless100 fs jitter.
|
||||
It distrubites clock signal with \textless100 fs RMS jitter.
|
||||
|
||||
Clock input can be supplied to Clocker through the external SMA connector or the internal MMCX connector.
|
||||
The input source can be selected using an SPDT switch.
|
||||
|
@ -261,7 +262,7 @@ Otherwise, connect it to a carrier card (1124 Kasli or 1125 Kasli-SoC) using the
|
|||
Specifications are derived based on the datasheets of
|
||||
the clock buffer (ADCLK950BCPZ\footnote{\label{clock_buffer}https://www.analog.com/media/en/technical-documentation/data-sheets/ADCLK950.pdf}) \&
|
||||
the RF transformer (TCM2-43X+\footnote{\label{rf_transformer}https://www.minicircuits.com/pdfs/TCM2-43X+.pdf}).
|
||||
Clock output specifications is tested by supplying a 100 MHz DDS signal to the SMA input connector.
|
||||
Clock output specifications is tested by supplying a 100 MHz DDS signal to the SMA input connector.\footnote{\label{clocker6}https://github.com/sinara-hw/Clocker/issues/6\#issuecomment-414048168}
|
||||
The output is connected to an oscilloscope with 50\textOmega~termination.
|
||||
|
||||
\begin{table}[h]
|
||||
|
@ -274,14 +275,12 @@ The output is connected to an oscilloscope with 50\textOmega~termination.
|
|||
\textbf{Unit} & \textbf{Conditions} \\
|
||||
\hline
|
||||
Clock input\repeatfootnote{clock_buffer}\textsuperscript{,}\repeatfootnote{rf_transformer} & & & & & \\
|
||||
\hspace{3mm} Differential peak-to-peak voltage & 0.40 & & 2.40 & V\textsubscript{p-p} & \\
|
||||
\hspace{3mm} Peak-to-peak voltage & 0.40 & & 2.40 & V\textsubscript{p-p} & \\
|
||||
\hspace{3mm} Frequency & 10 & & 4000 & MHz & \\
|
||||
\hline
|
||||
Differential output
|
||||
Clock output
|
||||
& & 0.8 & & V\textsubscript{p-p} & \multirow{3}{*}{50\textOmega~load, 100 MHz} \\
|
||||
& & 5 & & dBm & \\
|
||||
\cline{0-4}
|
||||
Rise time (-200mV to 200mV) & & 415 & & ps & \\
|
||||
\thickhline
|
||||
\end{tabularx}
|
||||
\end{threeparttable}
|
||||
|
@ -290,14 +289,9 @@ The output is connected to an oscilloscope with 50\textOmega~termination.
|
|||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=5in]{clocker_waveform.png}
|
||||
\caption{Waveform of Clocker at 100 MHz}
|
||||
\caption{Waveform of Clocker at 100 MHz\repeatfootnote{clocker6}}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=5in]{clocker_rise_time.png}
|
||||
\caption{Rising Edge of Clocker at 100 MHz}
|
||||
\end{figure}
|
||||
\newpage
|
||||
|
||||
\section{Selecting Clock Source}
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 64 KiB |
Loading…
Reference in New Issue