From 6358db4e50016f830a10e02d3cf3d6b89e5c85d4 Mon Sep 17 00:00:00 2001 From: architeuthidae Date: Thu, 7 Nov 2024 17:25:08 +0100 Subject: [PATCH] 2238: spellcheck, style --- 2238.tex | 155 ++++++++++++++++++++++++++----------------------------- 1 file changed, 73 insertions(+), 82 deletions(-) diff --git a/2238.tex b/2238.tex index d41661b..20aa134 100644 --- a/2238.tex +++ b/2238.tex @@ -1,5 +1,6 @@ -\include{preamble.tex} +\input{preamble.tex} \graphicspath{{images/2238}{images}} + \title{2238 MCX-TTL} \author{M-Labs Limited} \date{January 2022} @@ -12,31 +13,28 @@ \section{Features} \begin{itemize} -\item{16 channels.} -\item{Input and output capable.} -\item{No galvanic isolation.} -\item{High speed and low jitter.} -\item{MCX connectors.} +\item{16 MCX-TTL channels} +\item{Input and output capable} +\item{No galvanic isolation} +\item{High speed and low jitter} +\item{MCX connectors} \end{itemize} \section{Applications} \begin{itemize} -\item{Photon counting.} -\item{External equipment trigger.} -\item{Optical shutter control.} +\item{Photon counting} +\item{External equipment trigger} +\item{Optical shutter control} \end{itemize} \section{General Description} -The 2238 MCX-TTL card is a 4hp EEM module. -It adds general-purpose digital I/O capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC. -Each card provides four banks of four digital channels each, with MCX connectors, controlled through 2 EEM connectors. -Each EEM connector controls two banks independently. -Single EEM operation is possible. -The direction (input or output) of each bank can be selected using DIP switches. -Each channel supports 50\textOmega~terminations individually controllable using DIP switches. -This card can achieve higher speed and lower jitter than the isolated 2118/2128 BNC/SMA-TTL cards. +The 2238 MCX-TTL card is a 4hp EEM module. It adds general-purpose digital I/O capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC. + +Each card provides four banks of four digital channels each for a total of sixteen digital channels, with MCX connectors in the front panel, controlled through 2 EEM connectors. Each individual EEM connector controls two banks independently. Single EEM operation is possible. The direction (input or output) of each bank can be selected using DIP switches, and applies to all four channels of the bank. + +Each channel supports 50\textOmega~terminations individually controllable using DIP switches. This card can achieve higher speed and lower jitter than the isolated 2118/2128 BNC/SMA-TTL cards. % Switch to next column \vfill\break @@ -222,22 +220,22 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128 \begin{scope}[xshift=1.8cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.9cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=2.0cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=2.1cm, yshift=1.23cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} % Bus transceiver 1 @@ -245,22 +243,22 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128 \begin{scope}[xshift=1.6cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.7cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.8cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.9cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} % Bus transceiver 2 @@ -268,22 +266,22 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128 \begin{scope}[xshift=1.8cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.9cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=2cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=2.1cm, yshift=-3.67cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} % Bus transceiver 3 @@ -291,25 +289,25 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128 \begin{scope}[xshift=1.6cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.7cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.8cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=1.9cm, yshift=-7.47cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} - % Connection termination switches to each IO line + % Connection termination switches to each IO line % IO 0, 2, 4, 6 \draw [-] (1.4, 1) -- (1.4, 0.7); \draw [-] (1.6, 1) -- (1.6, 0); @@ -373,22 +371,22 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128 \begin{scope}[xshift=5.3cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=5.4cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=5.5cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} \begin{scope}[xshift=5.6cm, yshift=-2.57cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ] \draw (0.4,0) to[short,-o](0.75,0); \draw (0.78,0)-- +(30:0.46); - \draw (1.25,0)to[short,o-](1.6,0) ; + \draw (1.25,0)to[short,o-](1.6,0); \end{scope} % EEM Ports @@ -439,65 +437,66 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128 \begin{figure}[hbt!] \centering - \includegraphics[height=1.8in]{DIO_MCX_FP.pdf} \includegraphics[height=2in]{photo2238.jpg} - \caption{MCX-TTL Card photo} + \caption{MCX-TTL card} + \includegraphics[angle=90, height=0.6in]{DIO_MCX_FP.pdf} + \caption{MCX-TTL front panel} \end{figure} % For wide tables, a single column layout is better. It can be switched % page-by-page. \onecolumn +\sourcesection{2238 MCX-TTL}{https://github.com/sinara-hw/DIO_MCX/wiki} + \section{Electrical Specifications} -Both recommended operating conditions and electrical characteristics are based on the datasheet of the bus transceivers IC (74LVT162245MTD\footnote{\label{transceiver}https://www.onsemi.com/pdf/datasheet/74lvt162245-d.pdf}). +All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherwise noted. Information in this section is based on the datasheet of the bus transceiver IC (74LVT162245MTD\footnote{\label{transceiver}\url{https://www.onsemi.com/pdf/datasheet/74lvt162245-d.pdf}}). \begin{table}[h] \begin{threeparttable} \caption{Recommended Operating Conditions} -\begin{tabularx}{\textwidth}{l | c | c c c | c | X} +\begin{tabularx}{\textwidth}{l | c c c | c | X} \thickhline - \textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & + \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Unit} & \textbf{Conditions} \\ \hline - Input voltage & $V_{I}$ & 0 & & 5.5* & V \\ + Input voltage & 0 & & 5.5* & V \\ \hline - High-level output current & $I_{OH}$ & & & -24 & mA \\ + High-level output current & & & -24 & mA \\ \hline - Low-level output current & $I_{OL}$ & & & 24 & mA \\ + Low-level output current & & & 24 & mA \\ \hline - Input edge rate & $\frac{\Delta t}{\Delta V}$ & & & 10 & ns/V & $0.8V \leq V_I \leq 2.0V$ \\ + Input edge rate & & & 10 & ns/V & $0.8V \leq V_I \leq 2.0V$ \\ \thickhline - \multicolumn{7}{l}{*With the 50\textOmega~termination enabled, the input voltage should not exceed 5V.} + \multicolumn{6}{l}{*With the 50\textOmega~termination enabled, the input voltage should not exceed 5V.} \end{tabularx} \end{threeparttable} \end{table} -The recommended operating temperature is $-40\degree C \leq T_A \leq 85\degree C$. -All specifications are in the recommended operating temperature range unless otherwise noted. \begin{table}[h] \begin{threeparttable} \caption{Electrical Characteristics} -\begin{tabularx}{\textwidth}{l | c | c c c | c | X} +\begin{tabularx}{\textwidth}{l | c c c | c | X} \thickhline - \textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & + \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Unit} & \textbf{Conditions} \\ \hline - Input clamp diode voltage & $V_{IK}$ & & & -1.2 & V & $I_I =-36 mA$ \\ + Input clamp diode voltage & & & -1.2 & V & $I_I =-36 mA$ \\ \hline - Input high voltage & $V_{IH}$ & 2.0 & & & V & \\ + Input high voltage & 2.0 & & & V & \\ \hline - Input low voltage & $V_{IL}$ & & & 0.8 & V & \\ + Input low voltage & & & 0.8 & V & \\ \hline - Output high voltage & $V_{OH}$ & 2.0 & & & V & $I_{OH}=-24mA$ \\ - & & 3.1 & & & V & $I_{OH}=-200\mu A$ \\ + Output high voltage & 2.0 & & & V & $I_{OH}=-24mA$ \\ + & 3.1 & & & V & $I_{OH}=-200\mu A$ \\ \hline - Output low voltage & $V_{OL}$ & & & 0.8 & V & $I_{OL}=-24mA$ \\ - & & & & 0.2 & V & $I_{OL}=-200\mu A$ \\ + Output low voltage & & & 0.8 & V & $I_{OL}=-24mA$ \\ + & & & 0.2 & V & $I_{OL}=-200\mu A$ \\ \hline - Input current & $I_I$ & & & 20 & \textmu A & $V_I=5.5V$ \\ - & & & & 2 & \textmu A & $V_I=3.3V$ \\ - & & & & -10 & \textmu A & $V_I=0V$ \\ + Input current & & & 20 & \textmu A & $V_I=5.5V$ \\ + & & & 2 & \textmu A & $V_I=3.3V$ \\ + & & & -10 & \textmu A & $V_I=0V$ \\ \thickhline \end{tabularx} \end{threeparttable} @@ -506,18 +505,16 @@ All specifications are in the recommended operating temperature range unless oth \newpage \section{Configuring IO Direction \& Termination} -The termination and IO direction can be configured by switches. -The per-channel termination and per-bank IO direction switches are found at the top and middle of the card respectively. +IO direction and termination must be configured by switches. The termination switches are found at the top and the IO direction switches at the middle of the card respectively. \begin{multicols}{2} -Termination switches selects the termination of each channel, between high impedence (OFF) and 50\textOmega~(ON). +Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note that termination switches are by-channel but IO direction switches are by-bank. -IO direction switches partly decides the IO direction of each bank. \begin{itemize} \itemsep0em - \item Closed switch (ON) \\ - Fix the corresponding bank to output. The direction cannot be changed by I\textsuperscript{2}C. - \item Opened switch (OFF) \\ - Switch to input mode. The direction is input by default. Configurable by I\textsuperscript{2}C. + \item IO direction switch closed (\texttt{ON}) \\ + Fixes the corresponding bank to output. The IO direction cannot be changed by I\textsuperscript{2}C. + \item IO direction switch open (OFF) \\ + The corresponding bank is set to input by default. IO direction \textit{can} be changed by I\textsuperscript{2}C. \end{itemize} \columnbreak \begin{center} @@ -529,11 +526,9 @@ IO direction switches partly decides the IO direction of each bank. \newpage \section{Example ARTIQ code} -The sections below demonstrate simple usage scenarios of the 2245 LVDS-TTL card with the ARTIQ control system. -They do not exhaustively demonstrate all the features of the ARTIQ system. -The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}. +\codesection{2238 MCX-TTL card} -Timing accuracy in the examples below is well under 1 nanosecond thanks to the ARTIQ RTIO system. +Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure. \subsection{One pulse per second} The channel should be configured as output in both the gateware and hardware. @@ -544,8 +539,8 @@ This example demonstrates some basic algorithmic features of the ARTIQ-Python la \inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py} \newpage -\subsection{Counting rising edges in a 1ms window} -The channel should be configured as input in both the gateware and hardware. +\subsection{Edge counting in an 1ms window} +The channel should be configured as input in both gateware and hardware. \inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py} This example code uses the software counter, which has a maximum count rate of approximately 1 million events per second. @@ -556,12 +551,8 @@ If the gateware counter is enabled on the TTL channel, it can typically count up One channel needs to be configured as input, and the other as output. \inputcolorboxminted{firstline=74,lastline=80}{examples/ttl.py} -\section{Ordering Information} -To order, please visit \url{https://m-labs.hk} and select the 2238 MCX-TTL in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}. +\ordersection{2238 MCX-TTL} -\section*{} -\vspace*{\fill} - -\input{footnote.tex} +\finalfootnote \end{document}