Syrostan-MCU-C/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c

621 lines
18 KiB
C
Raw Normal View History

2021-07-26 17:17:04 +08:00
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_f32.c
* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
#include "arm_common_tables.h"
extern void arm_radix8_butterfly_f32(
float32_t * pSrc,
uint16_t fftLen,
const float32_t * pCoef,
uint16_t twidCoefModifier);
extern void arm_bitreversal_32(
uint32_t * pSrc,
const uint16_t bitRevLen,
const uint16_t * pBitRevTable);
/**
* @ingroup groupTransforms
*/
/**
* @defgroup ComplexFFT Complex FFT Functions
*
* \par
* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
* Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
* than the DFT, especially for long lengths.
* The algorithms described in this section
* operate on complex data. A separate set of functions is devoted to handling
* of real sequences.
* \par
* There are separate algorithms for handling floating-point, Q15, and Q31 data
* types. The algorithms available for each data type are described next.
* \par
* The FFT functions operate in-place. That is, the array holding the input data
* will also be used to hold the corresponding result. The input data is complex
* and contains <code>2*fftLen</code> interleaved values as shown below.
* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
* The FFT result will be contained in the same array and the frequency domain
* values will have the same interleaving.
*
* \par Floating-point
* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
* stages are performed along with a single radix-2 or radix-4 stage, as needed.
* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
* a different twiddle factor table.
* \par
* The function uses the standard FFT definition and output values may grow by a
* factor of <code>fftLen</code> when computing the forward transform. The
* inverse transform includes a scale of <code>1/fftLen</code> as part of the
* calculation and this matches the textbook definition of the inverse FFT.
* \par
* Pre-initialized data structures containing twiddle factors and bit reversal
* tables are provided and defined in <code>arm_const_structs.h</code>. Include
* this header in your function and then pass one of the constant structures as
* an argument to arm_cfft_f32. For example:
* \par
* <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
* \par
* computes a 64-point inverse complex FFT including bit reversal.
* The data structures are treated as constant data and not modified during the
* calculation. The same data structure can be reused for multiple transforms
* including mixing forward and inverse transforms.
* \par
* Earlier releases of the library provided separate radix-2 and radix-4
* algorithms that operated on floating-point data. These functions are still
* provided but are deprecated. The older functions are slower and less general
* than the new functions.
* \par
* An example of initialization of the constants for the arm_cfft_f32 function follows:
* \code
* const static arm_cfft_instance_f32 *S;
* ...
* switch (length) {
* case 16:
* S = &arm_cfft_sR_f32_len16;
* break;
* case 32:
* S = &arm_cfft_sR_f32_len32;
* break;
* case 64:
* S = &arm_cfft_sR_f32_len64;
* break;
* case 128:
* S = &arm_cfft_sR_f32_len128;
* break;
* case 256:
* S = &arm_cfft_sR_f32_len256;
* break;
* case 512:
* S = &arm_cfft_sR_f32_len512;
* break;
* case 1024:
* S = &arm_cfft_sR_f32_len1024;
* break;
* case 2048:
* S = &arm_cfft_sR_f32_len2048;
* break;
* case 4096:
* S = &arm_cfft_sR_f32_len4096;
* break;
* }
* \endcode
* \par Q15 and Q31
* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
* stages are performed along with a single radix-2 stage, as needed.
* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
* a different twiddle factor table.
* \par
* The function uses the standard FFT definition and output values may grow by a
* factor of <code>fftLen</code> when computing the forward transform. The
* inverse transform includes a scale of <code>1/fftLen</code> as part of the
* calculation and this matches the textbook definition of the inverse FFT.
* \par
* Pre-initialized data structures containing twiddle factors and bit reversal
* tables are provided and defined in <code>arm_const_structs.h</code>. Include
* this header in your function and then pass one of the constant structures as
* an argument to arm_cfft_q31. For example:
* \par
* <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
* \par
* computes a 64-point inverse complex FFT including bit reversal.
* The data structures are treated as constant data and not modified during the
* calculation. The same data structure can be reused for multiple transforms
* including mixing forward and inverse transforms.
* \par
* Earlier releases of the library provided separate radix-2 and radix-4
* algorithms that operated on floating-point data. These functions are still
* provided but are deprecated. The older functions are slower and less general
* than the new functions.
* \par
* An example of initialization of the constants for the arm_cfft_q31 function follows:
* \code
* const static arm_cfft_instance_q31 *S;
* ...
* switch (length) {
* case 16:
* S = &arm_cfft_sR_q31_len16;
* break;
* case 32:
* S = &arm_cfft_sR_q31_len32;
* break;
* case 64:
* S = &arm_cfft_sR_q31_len64;
* break;
* case 128:
* S = &arm_cfft_sR_q31_len128;
* break;
* case 256:
* S = &arm_cfft_sR_q31_len256;
* break;
* case 512:
* S = &arm_cfft_sR_q31_len512;
* break;
* case 1024:
* S = &arm_cfft_sR_q31_len1024;
* break;
* case 2048:
* S = &arm_cfft_sR_q31_len2048;
* break;
* case 4096:
* S = &arm_cfft_sR_q31_len4096;
* break;
* }
* \endcode
*
*/
void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
{
uint32_t L = S->fftLen;
float32_t * pCol1, * pCol2, * pMid1, * pMid2;
float32_t * p2 = p1 + L;
const float32_t * tw = (float32_t *) S->pTwiddle;
float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
float32_t m0, m1, m2, m3;
uint32_t l;
pCol1 = p1;
pCol2 = p2;
// Define new length
L >>= 1;
// Initialize mid pointers
pMid1 = p1 + L;
pMid2 = p2 + L;
// do two dot Fourier transform
for ( l = L >> 2; l > 0; l-- )
{
t1[0] = p1[0];
t1[1] = p1[1];
t1[2] = p1[2];
t1[3] = p1[3];
t2[0] = p2[0];
t2[1] = p2[1];
t2[2] = p2[2];
t2[3] = p2[3];
t3[0] = pMid1[0];
t3[1] = pMid1[1];
t3[2] = pMid1[2];
t3[3] = pMid1[3];
t4[0] = pMid2[0];
t4[1] = pMid2[1];
t4[2] = pMid2[2];
t4[3] = pMid2[3];
*p1++ = t1[0] + t2[0];
*p1++ = t1[1] + t2[1];
*p1++ = t1[2] + t2[2];
*p1++ = t1[3] + t2[3]; // col 1
t2[0] = t1[0] - t2[0];
t2[1] = t1[1] - t2[1];
t2[2] = t1[2] - t2[2];
t2[3] = t1[3] - t2[3]; // for col 2
*pMid1++ = t3[0] + t4[0];
*pMid1++ = t3[1] + t4[1];
*pMid1++ = t3[2] + t4[2];
*pMid1++ = t3[3] + t4[3]; // col 1
t4[0] = t4[0] - t3[0];
t4[1] = t4[1] - t3[1];
t4[2] = t4[2] - t3[2];
t4[3] = t4[3] - t3[3]; // for col 2
twR = *tw++;
twI = *tw++;
// multiply by twiddle factors
m0 = t2[0] * twR;
m1 = t2[1] * twI;
m2 = t2[1] * twR;
m3 = t2[0] * twI;
// R = R * Tr - I * Ti
*p2++ = m0 + m1;
// I = I * Tr + R * Ti
*p2++ = m2 - m3;
// use vertical symmetry
// 0.9988 - 0.0491i <==> -0.0491 - 0.9988i
m0 = t4[0] * twI;
m1 = t4[1] * twR;
m2 = t4[1] * twI;
m3 = t4[0] * twR;
*pMid2++ = m0 - m1;
*pMid2++ = m2 + m3;
twR = *tw++;
twI = *tw++;
m0 = t2[2] * twR;
m1 = t2[3] * twI;
m2 = t2[3] * twR;
m3 = t2[2] * twI;
*p2++ = m0 + m1;
*p2++ = m2 - m3;
m0 = t4[2] * twI;
m1 = t4[3] * twR;
m2 = t4[3] * twI;
m3 = t4[2] * twR;
*pMid2++ = m0 - m1;
*pMid2++ = m2 + m3;
}
// first col
arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U);
// second col
arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U);
}
void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
{
uint32_t L = S->fftLen >> 1;
float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
const float32_t *tw2, *tw3, *tw4;
float32_t * p2 = p1 + L;
float32_t * p3 = p2 + L;
float32_t * p4 = p3 + L;
float32_t t2[4], t3[4], t4[4], twR, twI;
float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
float32_t m0, m1, m2, m3;
uint32_t l, twMod2, twMod3, twMod4;
pCol1 = p1; // points to real values by default
pCol2 = p2;
pCol3 = p3;
pCol4 = p4;
pEnd1 = p2 - 1; // points to imaginary values by default
pEnd2 = p3 - 1;
pEnd3 = p4 - 1;
pEnd4 = pEnd3 + L;
tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
L >>= 1;
// do four dot Fourier transform
twMod2 = 2;
twMod3 = 4;
twMod4 = 6;
// TOP
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
// col 2
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
// col 3
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
// col 4
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
// col 1
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
// Twiddle factors are ones
*p2++ = t2[0];
*p2++ = t2[1];
*p3++ = t3[0];
*p3++ = t3[1];
*p4++ = t4[0];
*p4++ = t4[1];
tw2 += twMod2;
tw3 += twMod3;
tw4 += twMod4;
for (l = (L - 2) >> 1; l > 0; l-- )
{
// TOP
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
// col 2
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
// col 3
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
// col 4
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
// col 1 - top
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
// BOTTOM
p1ap3_1 = pEnd1[-1] + pEnd3[-1];
p1sp3_1 = pEnd1[-1] - pEnd3[-1];
p1ap3_0 = pEnd1[0] + pEnd3[0];
p1sp3_0 = pEnd1[0] - pEnd3[0];
// col 2
t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
// col 3
t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0];
// col 4
t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1;
t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
// col 1 - Bottom
*pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
*pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
// COL 2
// read twiddle factors
twR = *tw2++;
twI = *tw2++;
// multiply by twiddle factors
// let Z1 = a + i(b), Z2 = c + i(d)
// => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d)
// Top
m0 = t2[0] * twR;
m1 = t2[1] * twI;
m2 = t2[1] * twR;
m3 = t2[0] * twI;
*p2++ = m0 + m1;
*p2++ = m2 - m3;
// use vertical symmetry col 2
// 0.9997 - 0.0245i <==> 0.0245 - 0.9997i
// Bottom
m0 = t2[3] * twI;
m1 = t2[2] * twR;
m2 = t2[2] * twI;
m3 = t2[3] * twR;
*pEnd2-- = m0 - m1;
*pEnd2-- = m2 + m3;
// COL 3
twR = tw3[0];
twI = tw3[1];
tw3 += twMod3;
// Top
m0 = t3[0] * twR;
m1 = t3[1] * twI;
m2 = t3[1] * twR;
m3 = t3[0] * twI;
*p3++ = m0 + m1;
*p3++ = m2 - m3;
// use vertical symmetry col 3
// 0.9988 - 0.0491i <==> -0.9988 - 0.0491i
// Bottom
m0 = -t3[3] * twR;
m1 = t3[2] * twI;
m2 = t3[2] * twR;
m3 = t3[3] * twI;
*pEnd3-- = m0 - m1;
*pEnd3-- = m3 - m2;
// COL 4
twR = tw4[0];
twI = tw4[1];
tw4 += twMod4;
// Top
m0 = t4[0] * twR;
m1 = t4[1] * twI;
m2 = t4[1] * twR;
m3 = t4[0] * twI;
*p4++ = m0 + m1;
*p4++ = m2 - m3;
// use vertical symmetry col 4
// 0.9973 - 0.0736i <==> -0.0736 + 0.9973i
// Bottom
m0 = t4[3] * twI;
m1 = t4[2] * twR;
m2 = t4[2] * twI;
m3 = t4[3] * twR;
*pEnd4-- = m0 - m1;
*pEnd4-- = m2 + m3;
}
//MIDDLE
// Twiddle factors are
// 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
// col 2
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
// col 3
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
// col 4
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
// col 1 - Top
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
// COL 2
twR = tw2[0];
twI = tw2[1];
m0 = t2[0] * twR;
m1 = t2[1] * twI;
m2 = t2[1] * twR;
m3 = t2[0] * twI;
*p2++ = m0 + m1;
*p2++ = m2 - m3;
// COL 3
twR = tw3[0];
twI = tw3[1];
m0 = t3[0] * twR;
m1 = t3[1] * twI;
m2 = t3[1] * twR;
m3 = t3[0] * twI;
*p3++ = m0 + m1;
*p3++ = m2 - m3;
// COL 4
twR = tw4[0];
twI = tw4[1];
m0 = t4[0] * twR;
m1 = t4[1] * twI;
m2 = t4[1] * twR;
m3 = t4[0] * twI;
*p4++ = m0 + m1;
*p4++ = m2 - m3;
// first col
arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U);
// second col
arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U);
// third col
arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U);
// fourth col
arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U);
}
/**
* @addtogroup ComplexFFT
* @{
*/
/**
* @details
* @brief Processing function for the floating-point complex FFT.
* @param[in] *S points to an instance of the floating-point CFFT structure.
* @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return none.
*/
void arm_cfft_f32(
const arm_cfft_instance_f32 * S,
float32_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t L = S->fftLen, l;
float32_t invL, * pSrc;
if (ifftFlag == 1U)
{
/* Conjugate input data */
pSrc = p1 + 1;
for(l=0; l<L; l++)
{
*pSrc = -*pSrc;
pSrc += 2;
}
}
switch (L)
{
case 16:
case 128:
case 1024:
arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
break;
case 32:
case 256:
case 2048:
arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
break;
case 64:
case 512:
case 4096:
arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
break;
}
if ( bitReverseFlag )
arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
if (ifftFlag == 1U)
{
invL = 1.0f/(float32_t)L;
/* Conjugate and scale output data */
pSrc = p1;
for(l=0; l<L; l++)
{
*pSrc++ *= invL ;
*pSrc = -(*pSrc) * invL;
pSrc++;
}
}
}
/**
* @} end of ComplexFFT group
*/