Syrostan-MCU-C/Drivers/CMSIS/DSP/Source/BasicMathFunctions/arm_mult_q15.c

143 lines
4.2 KiB
C
Raw Normal View History

2021-07-26 17:17:04 +08:00
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mult_q15.c
* Description: Q15 vector multiplication
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q15 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inB1, inB2; /* temporary input variables */
q15_t out1, out2, out3, out4; /* temporary output variables */
q31_t mul1, mul2, mul3, mul4; /* temporary variables */
/* loop Unrolling */
blkCnt = blockSize >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* read two samples at a time from sourceA */
inA1 = *__SIMD32(pSrcA)++;
/* read two samples at a time from sourceB */
inB1 = *__SIMD32(pSrcB)++;
/* read two samples at a time from sourceA */
inA2 = *__SIMD32(pSrcA)++;
/* read two samples at a time from sourceB */
inB2 = *__SIMD32(pSrcB)++;
/* multiply mul = sourceA * sourceB */
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
/* saturate result to 16 bit */
out1 = (q15_t) __SSAT(mul1 >> 15, 16);
out2 = (q15_t) __SSAT(mul2 >> 15, 16);
out3 = (q15_t) __SSAT(mul3 >> 15, 16);
out4 = (q15_t) __SSAT(mul4 >> 15, 16);
/* store the result */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
#else
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4U;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #if defined (ARM_MATH_DSP) */
while (blkCnt > 0U)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/