sndlock/dsp_lib.h

96 lines
2.5 KiB
C
Raw Normal View History

2024-12-30 23:45:14 +08:00
#pragma once
#include <cstdint>
2024-12-31 16:57:42 +08:00
#include <complex>
2025-01-18 15:46:45 +08:00
#include <chrono>
#include <thread>
2024-12-31 16:57:42 +08:00
2024-12-31 17:04:37 +08:00
typedef uint32_t phase_t;
#define PHASE_MAX UINT32_MAX
static phase_t frequency_to_ftw(double f) {
return f*(double)PHASE_MAX;
2024-12-31 16:57:42 +08:00
}
2024-12-30 23:45:14 +08:00
class DDS {
private:
2024-12-31 17:04:37 +08:00
phase_t phase = 0;
2024-12-30 23:45:14 +08:00
public:
2024-12-31 17:04:37 +08:00
phase_t ftw = 0;
2024-12-30 23:45:14 +08:00
double get() {
phase += ftw; // wraps on overflow
2024-12-31 17:04:37 +08:00
return sin(phase*2.0*M_PI/(double)PHASE_MAX);
2024-12-30 23:45:14 +08:00
}
2025-01-02 15:31:56 +08:00
phase_t get_phase() {
return phase;
}
2024-12-30 23:45:14 +08:00
};
2024-12-31 16:57:42 +08:00
template<typename T, unsigned int order>
2024-12-30 23:45:14 +08:00
class Lowpass {
private:
double k = 0.0;
2024-12-31 16:57:42 +08:00
T s[order] = {};
2024-12-30 23:45:14 +08:00
public:
void set_bandwidth(double f) {
k = 2.0*M_PI*f;
}
T update(T x) {
T a = x;
2024-12-31 16:57:42 +08:00
for(int i=0;i<order;i++) {
2024-12-30 23:45:14 +08:00
s[i] += (a - s[i])*k;
a = s[i];
}
return a;
}
};
2024-12-31 16:57:42 +08:00
template<unsigned int order>
class Lockin {
private:
2025-01-02 13:02:39 +08:00
double scale = 1.0;
2025-01-05 15:32:26 +08:00
phase_t multiplier = 1;
2024-12-31 17:04:37 +08:00
phase_t phase = 0;
2024-12-31 16:57:42 +08:00
Lowpass<std::complex<double>, order> lpf;
public:
2024-12-31 17:04:37 +08:00
phase_t ftw = 0;
2024-12-31 16:57:42 +08:00
void set_scale(double s) {
scale = s;
}
2025-01-05 15:32:26 +08:00
void set_multiplier(phase_t m) {
multiplier = m;
}
2024-12-31 16:57:42 +08:00
void set_bandwidth(double f) {
lpf.set_bandwidth(f);
}
std::complex<double> update(double x) {
std::complex<double> rotated;
2025-01-05 15:32:26 +08:00
rotated = x*std::polar(scale, multiplier*phase*2.0*M_PI/(double)PHASE_MAX);
2024-12-31 16:57:42 +08:00
phase -= ftw; // wraps on underflow
return lpf.update(rotated);
}
2025-01-02 15:31:56 +08:00
phase_t get_phase() {
return phase;
}
2024-12-31 16:57:42 +08:00
};
2025-01-18 15:46:45 +08:00
class Clocker {
private:
std::chrono::milliseconds period;
std::chrono::time_point<std::chrono::steady_clock> next_tick = std::chrono::time_point<std::chrono::steady_clock>::min();
public:
Clocker(std::chrono::milliseconds period): period(period) {};
void tick() {
if(next_tick == std::chrono::time_point<std::chrono::steady_clock>::min()) {
next_tick = std::chrono::steady_clock::now() + period;
} else {
auto duration = next_tick - std::chrono::steady_clock::now();
if(duration >= duration.zero())
std::this_thread::sleep_for(duration);
else
std::cerr << "missed tick" << std::endl;
next_tick += period;
}
}
};