extern crate argparse; extern crate num_traits; extern crate serde_derive; extern crate serde_json; use argparse::{ArgumentParser, StoreTrue, Store}; use serde_derive::Deserialize; use std::error::Error; use std::fs::File; use std::io::BufReader; use std::path::Path; mod noptica; #[derive(Deserialize, Debug)] struct Config { sample_command: String, // Shell command to start the logic analyzer. sample_rate: f64, // Sample rate of the logic analyzer in Hz. // The logic analyzer command must produce a stream of 4-bit nibbles on its // standard output, which are continuously sampled at the nominal sample rate. // Each of the signals below are mapped to one bit within each nibble. bit_ref: u8, // Bit# for REF signal of the reference laser head (HP 5501B). bit_meas: u8, // Bit# for displacement measurement detector (HP 10780). bit_input: u8, // Bit# for input laser interference detector. // The REF DPLL locks to the REF output of the reference laser and provides REF phase // information at each sample of the logic analyzer. // ref_min and ref_max are used to initialize the DPLL and clamp its NCO frequency. ref_min: f64, // Minimum REF frequency in Hz. ref_max: f64, // Maximum REF frequency in Hz. refpll_ki: i64, // Integration constant of the DPLL loop filter. refpll_kp: i64, // Proportionality constant of the DPLL loop filter. ref_wavelength: f64, // Wavelength of the reference laser in m. scan_displacement: f64, // Optical path difference across one scan cycle in m (use -c). scan_frequency: f64, // Frequency of the scan in Hz. scan_blanking: f64, // Fraction of the scan period that is blanked at the beginning // and end of each slope (4 times per scan period). } fn read_config_from_file>(path: P) -> Result> { let file = File::open(path)?; let reader = BufReader::new(file); let u = serde_json::from_reader(reader)?; Ok(u) } fn do_calibrate(config: &Config) { let mut sample_count = 0; let max_sample_count = (config.sample_rate/4.0) as u32; let mut position_min = i64::max_value(); let mut position_max = i64::min_value(); let mut refpll = noptica::Dpll::new( noptica::Dpll::frequency_to_ftw(config.ref_min, config.sample_rate), noptica::Dpll::frequency_to_ftw(config.ref_max, config.sample_rate), config.refpll_ki, config.refpll_kp); let mut position_tracker = noptica::PositionTracker::new(); noptica::sample(&config.sample_command, |rising, _falling| { refpll.tick(rising & (1 << config.bit_ref) != 0); if rising & (1 << config.bit_meas) != 0 { let position = position_tracker.edge(refpll.get_phase_unwrapped()); if position > position_max { position_max = position; } if position < position_min { position_min = position; } } sample_count += 1; if sample_count == max_sample_count { let displacement = ((position_max-position_min) as f64)/(noptica::Dpll::TURN as f64)*config.ref_wavelength; println!("{} um", 1.0e6*displacement); sample_count = 0; position_min = i64::max_value(); position_max = i64::min_value(); } }) } fn do_wavemeter(config: &Config) { println!("TODO {}", config.sample_command); } fn main() { let mut calibrate = false; let mut config_file = "wavemeter.json".to_string(); { let mut ap = ArgumentParser::new(); ap.refer(&mut calibrate) .add_option(&["-c", "--calibrate"], StoreTrue, "Calibrate scan displacement"); ap.refer(&mut config_file) .add_option(&["--config"], Store, "Configuration file"); ap.parse_args_or_exit(); } let config = read_config_from_file(config_file).unwrap(); if calibrate { do_calibrate(&config); } else { do_wavemeter(&config); } }