#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace net = std::experimental::net; using namespace std::literals::chrono_literals; void fft_mag(std::complex* in, float* out, size_t len); static const size_t block_len = 16384; static const int wf_width = 1000; static const int wf_height = 1200; static std::atomic shutdown_threads; static std::atomic tec_current; static void tec_thread() { net::io_context io_context; net::ip::tcp::socket tec_socket(io_context); tec_socket.connect(net::ip::tcp::endpoint(net::ip::make_address("192.168.1.27"), 23)); while(!shutdown_threads) { // FIXME: net::write seems unimplemented as of libstdc++ 13 tec_socket.write_some(net::buffer(std::format("pwm 0 i_set {:.6f}\n", (float)tec_current))); std::string reply; net::read(tec_socket, net::dynamic_buffer(reply), [&reply](auto ec, auto n) -> std::size_t { if(ec || (reply.size() > 0 && reply.compare(reply.size()-1, 1, "\n") == 0)) return 0; else return 1; }); std::this_thread::sleep_for(100ms); } } static std::atomic poh_accept_input; static std::binary_semaphore poh_input_ready{0}; static std::complex poh_input_block[block_len]; static std::mutex wf_poh_mutex; static unsigned int wf_poh[wf_width*wf_height]; static std::atomic freq_setpoint; static std::atomic freq_peak; static std::atomic tec_bias; static std::atomic tec_p; static void poh_thread() { std::vector block_mag(block_len); while(!shutdown_threads) { poh_accept_input = true; poh_input_ready.acquire(); fft_mag(poh_input_block, block_mag.data(), block_len); // stabilize laser float freq_peak_local; freq_peak_local = 40.0f*float(distance(block_mag.begin(), max_element(block_mag.begin(), block_mag.end())))/float(block_len); freq_peak = freq_peak_local; float freq_error = freq_peak_local - freq_setpoint; tec_current = std::max(tec_bias+tec_p*freq_error, 0.0f); // update waterfall { std::lock_guard guard(wf_poh_mutex); std::memmove(&wf_poh[wf_width], &wf_poh[0], sizeof(int)*wf_width*(wf_height - 1)); for(int i=0;i frames_processed; static std::atomic frames_dropped; static auto brf_last_second = std::chrono::time_point::min(); static int brf_frames_processed_cnt = 0; static int brf_frames_dropped_cnt = 0; static void* brf_dispatch(struct bladerf* dev, struct bladerf_stream* stream, struct bladerf_metadata* meta, void* samples_v, size_t num_samples, void* user_data) { if(poh_accept_input) { std::complex* samples = (std::complex*)samples_v; for(size_t i=0;i= 1s) { frames_processed = brf_frames_processed_cnt; frames_dropped = brf_frames_dropped_cnt; brf_frames_processed_cnt = 0; brf_frames_dropped_cnt = 0; brf_last_second += 1s; } if(shutdown_threads) return BLADERF_STREAM_SHUTDOWN; else return samples_v; } static void brf_thread() { struct bladerf_devinfo brf_dev_info; struct bladerf* brf_dev; struct bladerf_stream* brf_stream; void** brf_buffers; int status; bladerf_init_devinfo(&brf_dev_info); if((status = bladerf_open_with_devinfo(&brf_dev, &brf_dev_info)) != 0) { std::cerr << "cannot open bladeRF device: " << bladerf_strerror(status) << std::endl; return; } for(int i=0;i<2;i++) { if((status = bladerf_set_frequency(brf_dev, BLADERF_CHANNEL_RX(i), 1'655'000'000)) != 0) { std::cerr << "failed to set bladeRF frequency: " << bladerf_strerror(status) << std::endl; bladerf_close(brf_dev); return; } if((status = bladerf_set_sample_rate(brf_dev, BLADERF_CHANNEL_RX(i), 40'000'000, NULL)) != 0) { std::cerr << "failed to set bladeRF sample rate: " << bladerf_strerror(status) << std::endl; bladerf_close(brf_dev); return; } if((status = bladerf_set_bandwidth(brf_dev, BLADERF_CHANNEL_RX(i), 35'000'000, NULL)) != 0) { std::cerr << "failed to set bladeRF bandwidth: " << bladerf_strerror(status) << std::endl; bladerf_close(brf_dev); return; } if((status = bladerf_set_gain(brf_dev, BLADERF_CHANNEL_RX(i), 20)) != 0) { std::cerr << "failed to set bladeRF gain: " << bladerf_strerror(status) << std::endl; bladerf_close(brf_dev); return; } } if((status = bladerf_init_stream(&brf_stream, brf_dev, brf_dispatch, &brf_buffers, 16, BLADERF_FORMAT_SC16_Q11, 2*block_len, 8, NULL)) != 0) { std::cerr << "failed to init bladeRF stream: " << bladerf_strerror(status) << std::endl; return; } if((status = bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(0), true) != 0)) { std::cerr << "failed to enable bladeRF RX: " << bladerf_strerror(status) << std::endl; bladerf_deinit_stream(brf_stream); bladerf_close(brf_dev); return; } if((status = bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(1), true) != 0)) { std::cerr << "failed to enable bladeRF RX: " << bladerf_strerror(status) << std::endl; bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(0), false); bladerf_deinit_stream(brf_stream); bladerf_close(brf_dev); return; } brf_last_second = std::chrono::steady_clock::now(); if((status = bladerf_stream(brf_stream, BLADERF_RX_X2)) != 0) { std::cerr << "bladeRF stream failed: " << bladerf_strerror(status) << std::endl; bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(1), false); bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(0), false); bladerf_deinit_stream(brf_stream); bladerf_close(brf_dev); return; }; bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(1), false); bladerf_enable_module(brf_dev, BLADERF_CHANNEL_RX(0), false); bladerf_deinit_stream(brf_stream); bladerf_close(brf_dev); } int main(int argc, char* argv[]) { if(!glfwInit()) { std::cerr << "failed to initialize GLFW" << std::endl; return 1; } std::atexit(glfwTerminate); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0); static GLFWwindow* window = glfwCreateWindow(1500, 2200, "fastsa", nullptr, nullptr); if(window == nullptr) { std::cerr << "failed to create GLFW window" << std::endl; return 1; } static auto DestroyWindow = []() { glfwDestroyWindow(window); }; std::atexit(DestroyWindow); glfwMakeContextCurrent(window); glfwSwapInterval(1); IMGUI_CHECKVERSION(); ImGui::CreateContext(); static auto ImGuiDestroyContext = []() { ImGui::DestroyContext(); }; std::atexit(ImGuiDestroyContext); ImGuiIO& io = ImGui::GetIO(); io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard; ImGui::StyleColorsDark(); ImGui_ImplGlfw_InitForOpenGL(window, true); std::atexit(ImGui_ImplGlfw_Shutdown); ImGui_ImplOpenGL3_Init("#version 130"); std::atexit(ImGui_ImplOpenGL3_Shutdown); GLuint wftex[2]; for(size_t i=0;i<2;i++) { glGenTextures(1, &wftex[i]); glBindTexture(GL_TEXTURE_2D, wftex[i]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } static std::thread brf_thread_h = std::thread(brf_thread); static auto JoinBRF = []() { brf_thread_h.join(); }; std::atexit(JoinBRF); static std::thread poh_thread_h = std::thread(poh_thread); static auto JoinPOH = []() { poh_thread_h.join(); }; std::atexit(JoinPOH); static std::thread tec_thread_h = std::thread(tec_thread); static auto JoinTEC = []() { tec_thread_h.join(); }; std::atexit(JoinTEC); shutdown_threads = false; static auto SetShutdown = []() { shutdown_threads = true; }; std::atexit(SetShutdown); bool exit = false; bool update_wf = true; float freq_setpoint_local = 0.0f; float tec_bias_local = 0.02f; float tec_p_local = 0.001f; while(!exit && !glfwWindowShouldClose(window)) { glfwPollEvents(); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); if(update_wf) { #if defined(GL_UNPACK_ROW_LENGTH) && !defined(__EMSCRIPTEN__) glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); #endif glBindTexture(GL_TEXTURE_2D, wftex[0]); { std::lock_guard guard(wf_poh_mutex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, wf_width, wf_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, wf_poh); } glBindTexture(GL_TEXTURE_2D, wftex[1]); { std::lock_guard guard(wf_poh_mutex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, wf_width, wf_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, wf_poh); } } ImGui_ImplOpenGL3_NewFrame(); ImGui_ImplGlfw_NewFrame(); ImGui::NewFrame(); ImGui::SetNextWindowPos(ImVec2(0.0f, 0.0f)); ImGui::SetNextWindowSize(io.DisplaySize); ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f); ImGui::Begin("fastsa", nullptr, ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoResize); ImGui::BeginTable("fastsa", 3, ImGuiTableFlags_SizingStretchSame | ImGuiTableFlags_Resizable); ImGui::TableSetupColumn("SBS laser control", 0, 280.0f); ImGui::TableSetupColumn("Pump/output heterodyne", 0, 1000.0f); ImGui::TableSetupColumn("Lineshape", 0, 1000.0f); ImGui::TableHeadersRow(); ImGui::TableNextColumn(); ImGui::Checkbox("Update waterfall plots", &update_wf); ImGui::Text("Baseband peak: %.3f MHz", (float)freq_peak); ImGui::Text("TEC current: %.6f mA", (float)tec_current); ImGui::SliderFloat("Setpoint", &freq_setpoint_local, 0.0f, 40.0f); ImGui::SliderFloat("TEC bias", &tec_bias_local, 0.0f, 0.5f); ImGui::SliderFloat("TEC P", &tec_p_local, -1.0f, 1.0f); freq_setpoint = freq_setpoint_local; tec_bias = tec_bias_local; tec_p = 0.05f*tec_p_local; if(ImGui::Button("Exit")) exit = true; ImGui::Text("Frames processed: %d", (int)frames_processed); ImGui::Text("Frames dropped: %d", (int)frames_dropped); ImGui::TableNextColumn(); ImGui::Image((void*)(intptr_t)wftex[0], ImVec2(wf_width, wf_height)); ImGui::TableNextColumn(); ImGui::Image((void*)(intptr_t)wftex[1], ImVec2(wf_width, wf_height)); ImGui::EndTable(); ImGui::End(); ImGui::PopStyleVar(1); ImGui::Render(); ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData()); int display_w, display_h; glfwGetFramebufferSize(window, &display_w, &display_h); glViewport(0, 0, display_w, display_h); glfwSwapBuffers(window); } return 0; }