Add a slot map implementation

A slot map is a linear container similar to a vector but the indices
contain are invalidated when the element is removed, and can not (or are
very unlikely to) incidentally refer to a valid element again even if
new elements are inserted.

This implementation differs from allocating slot maps as it does not
prefer value semantics for inserting and removing elements but rather
offers a reserve and remove interface based on mutable references. This
makes it easier for a user to avoid dropping any instances as any
initialization and de-initialization can be freely chosen to write or
swap. This is important if instances may contain costly resources such
as allocations that are hard to recover.
master
Andreas Molzer 2020-01-25 02:20:22 +01:00 committed by whitequark
parent 29066a94f8
commit 35864e38fa
2 changed files with 496 additions and 0 deletions

View File

@ -11,11 +11,17 @@ extern crate alloc;
mod object;
mod slice;
mod slotmap;
#[cfg(feature = "map")]
mod map;
pub use object::Managed;
pub use slice::ManagedSlice;
pub use slotmap::{
Key as SlotKey,
Slot as SlotIndex,
SlotMap,
};
#[cfg(feature = "map")]
pub use map::{ManagedMap,
Iter as ManagedMapIter,

490
src/slotmap.rs Normal file
View File

@ -0,0 +1,490 @@
//! A slotmap, a vector-like container with unique keys instead of indices.
//!
//! See the documentation of [`SlotMap`] for details.
//!
//! [`SlotMap`]: struct.SlotMap.html
use super::{ManagedSlice as Slice};
/// Provides links between slots and elements.
///
/// The benefit of separating this struct from the elements is that it is unconditionally `Copy`
/// and `Default`. It also provides better locality for both the indices and the elements which
/// could help with iteration or very large structs.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Slot {
/// The id of this slot.
///
/// If the given out index mismatches the `generation_id` then the element was removed already
/// and we can return `None` on lookup.
///
/// If the slot is currently unused we will instead provide the index to the previous slot in
/// the slot-free-list.
generation_id: GenerationOrFreelink,
}
/// Provides a slotmap based on external memory.
///
/// A slotmap provides a `Vec`-like interface where each entry is associated with a stable
/// index-like key. Lookup with the key will detect if an entry has been removed but does not
/// require a lifetime relation. Compared to other slotmap implementations this does not internally
/// allocate any memory on its own but only relies on the [`Slice`] arguments in the constructor.
///
/// [`Slice`]: ../enum.Slice.html
///
/// ## Usage
///
/// The important aspect is that the slotmap does not create the storage of its own elements, it
/// merely manages one given to it at construction time.
///
/// ```
/// # use managed::{ManagedSlice, SlotMap, SlotIndex};
///
/// let mut elements = [0usize; 1024];
/// let mut slots = [SlotIndex::default(); 1024];
///
/// let mut map = SlotMap::new(
/// ManagedSlice::Borrowed(&mut elements[..]),
/// ManagedSlice::Borrowed(&mut slots[..]));
/// let index = map.insert(42).unwrap();
/// assert_eq!(map.get(index).cloned(), Some(42));
/// ```
pub struct SlotMap<'a, T> {
/// The slice where elements are placed.
/// All of them are initialized at all times but not all are logically part of the map.
elements: Slice<'a, T>,
/// The logical list of used slots.
/// Note that a slot is never remove from this list but instead used to track the generation_id
/// and the link in the free list.
slots: Partial<'a, Slot>,
/// The source of generation ids.
/// Generation ids are a positive, non-zero value.
generation: Generation,
/// An index to the top element of the free list.
/// Refers to the one-past-the-end index of `slots` if there are no elements.
free_top: usize,
/// An abstraction around computing wrapped indices in the free list.
indices: IndexComputer,
}
/// A backing slice tracking an index how far it is logically initialized.
struct Partial<'a, T> {
slice: Slice<'a, T>,
next_idx: usize,
}
/// An index into a slotmap.
///
/// The index remains valid until the entry is removed. If accessing the slotmap with the index
/// again after the entry was removed will fail, even if the index where the element was previously
/// stored has been reused for another element.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Key {
idx: usize,
generation: Generation,
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
struct GenerationOrFreelink(isize);
/// Newtype wrapper around the index of a free slot.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
struct FreeIndex(usize);
/// The generation counter.
///
/// Has a strictly positive value.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct Generation(isize);
/// Offset of a freelist entry to the next entry.
///
/// Has a negative or zero value. Represents the negative of the offset to the next element in the
/// free list, wrapping around at the capacity.
/// The base for the offset is the *next* element for two reasons:
/// * Offset of `0` points to the natural successor.
/// * Offset of `len` would point to the element itself and should not occur.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Offset(isize);
/// Links FreeIndex and Offset.
struct IndexComputer(usize);
impl<T> SlotMap<'_, T> {
/// Retrieve a value by index.
pub fn get(&self, index: Key) -> Option<&T> {
let slot_generation = self.slots
.get(index.idx)?
.generation_id
.generation().ok()?;
if slot_generation != index.generation {
return None;
}
self.elements.get(index.idx)
}
/// Retrieve a mutable value by index.
pub fn get_mut(&mut self, index: Key) -> Option<&mut T> {
let slot_generation = self.slots
.get(index.idx)?
.generation_id
.generation().ok()?;
if slot_generation != index.generation {
return None;
}
self.elements.get_mut(index.idx)
}
/// Reserve a new entry.
///
/// In case of success, the returned key refers to the entry until it is removed. The entry
/// itself is not initialized with any particular value but instead retains the value it had in
/// the backing slice. It is only logically placed into the slot map.
pub fn reserve(&mut self) -> Option<(Key, &mut T)> {
let index = self.next_free_slot()?;
let slot = self.slots.get_mut(index.0).unwrap();
let element = &mut self.elements[index.0];
let offset = slot.generation_id
.free_link()
.expect("Free link should be free");
slot.generation_id = self.generation.into();
let key = Key {
idx: index.0,
generation: self.generation,
};
self.free_top = self.indices.free_list_next(index, offset);
self.generation.advance();
Some((key, element))
}
/// Try to insert a value into the map.
///
/// This will fail if there is not enough space. Sugar wrapper around `reserve` for inserting
/// values. Note that on success, an old value stored in the backing slice will be overwritten.
/// Use `reserve` directly if it is vital that no old value is dropped.
pub fn insert(&mut self, value: T) -> Option<Key> {
// Insertion must work but we don't care about the value.
let (index, element) = self.reserve()?;
*element = value;
Some(index)
}
/// Remove an element.
///
/// If successful, return a mutable reference to the removed element so that the caller can
/// swap it with a logically empty value. Returns `None` if the provided index did not refer to
/// an element that could be freed.
pub fn remove(&mut self, index: Key) -> Option<&mut T> {
if self.get(index).is_none() {
return None
}
// The slot can be freed.
let free = FreeIndex(index.idx);
let slot = self.slots.get_mut(index.idx).unwrap();
assert!(slot.generation_id.generation().is_ok());
let offset = self.indices.free_list_offset(free, self.free_top);
slot.generation_id = offset.into();
self.free_top = index.idx;
Some(&mut self.elements[index.idx])
}
/// Get the next free slot.
fn next_free_slot(&mut self) -> Option<FreeIndex> {
// If free_top is one-past-the-end marker one of those is going to fail. Note that this
// also means extracting one of these statements out of the function may change the
// semantics if `elements.len() != slots.len()`.
// Ensure the index refers to an element within the slice or try to allocate a new slot
// wherein we can fit the element.
let free = match self.slots.get_mut(self.free_top) {
// There is a free element in our free list.
Some(_) => {
// Ensure that there is also a real element there.
let _= self.elements.get_mut(self.free_top)?;
FreeIndex(self.free_top)
},
// Need to try an get a new element from the slot slice.
None => { // Try to get the next one
// Will not actually wrap if pushing is successful.
let new_index = self.slots.len();
// Ensure there is an element where we want to push to.
let _ = self.elements.get_mut(new_index)?;
let free_slot = self.slots.try_reserve()?;
let free_index = FreeIndex(new_index);
// New top is the new one-past-the-end.
let new_top = new_index.checked_add(1).unwrap();
let offset = self.indices.free_list_offset(free_index, new_top);
free_slot.generation_id = offset.into();
self.free_top = free_index.0;
free_index
}
};
// index refers to elements within the slices
Some(free)
}
}
impl<'a, T> SlotMap<'a, T> {
/// Create a slot map.
///
/// The capacity is the minimum of the capacity of the element and slot slices.
pub fn new(elements: Slice<'a, T>, slots: Slice<'a, Slot>) -> Self {
let capacity = elements.len().min(slots.len());
SlotMap {
elements,
slots: Partial {
slice: slots,
next_idx: 0,
},
generation: Generation::default(),
free_top: 0,
indices: IndexComputer::from_capacity(capacity),
}
}
}
impl<'a, T> Partial<'a, T> {
fn get(&self, idx: usize) -> Option<&T> {
if idx >= self.next_idx {
None
} else {
Some(&self.slice[idx])
}
}
fn get_mut(&mut self, idx: usize) -> Option<&mut T> {
if idx >= self.next_idx {
None
} else {
Some(&mut self.slice[idx])
}
}
fn len(&self) -> usize {
self.next_idx
}
fn try_reserve(&mut self) -> Option<&mut T> {
if self.next_idx == self.slice.len() {
None
} else {
let idx = self.next_idx;
self.next_idx += 1;
Some(&mut self.slice[idx])
}
}
}
impl GenerationOrFreelink {
pub(crate) fn free_link(self) -> Result<Offset, Generation> {
if self.0 > 0 {
Err(Generation(self.0))
} else {
Ok(Offset(self.0))
}
}
pub(crate) fn generation(self) -> Result<Generation, Offset> {
match self.free_link() {
Ok(offset) => Err(offset),
Err(generation) => Ok(generation),
}
}
}
impl IndexComputer {
pub(crate) fn from_capacity(capacity: usize) -> Self {
assert!(capacity < isize::max_value() as usize);
IndexComputer(capacity)
}
/// Get the next free list entry.
/// This applies the offset to the base index, wrapping around if required.
///
/// This is the reverse of `free_list_offset`.
fn free_list_next(&self, FreeIndex(base): FreeIndex, offset: Offset)
-> usize
{
let capacity = self.0;
let offset = offset.int_offset();
assert!(base < capacity);
assert!(offset <= capacity);
let base = base + 1;
if capacity - offset >= base {
offset + base // Fine within the range
} else {
// Mathematically, capacity < offset + base < 2*capacity
// Wrap once, mod (capacity + 1), result again in range
offset
.wrapping_add(base)
.wrapping_sub(capacity + 1)
}
}
/// Get the offset difference between the index and the next element.
/// Computes a potentially wrapping positive offset where zero is the element following the
/// base.
///
/// This is the reverse of `free_list_next`.
fn free_list_offset(&self, FreeIndex(base): FreeIndex, to: usize)
-> Offset
{
let capacity = self.0;
assert!(base != to, "Cant offset element to itself");
assert!(base < capacity, "Should never have to offset the end-of-list marker");
assert!(to <= capacity, "Can only offset to the end-of-list marker");
let base = base + 1;
Offset::from_int_offset(if base <= to {
to - base
} else {
// Wrap once, mod (capacity + 1), result again in range
to
.wrapping_add(capacity + 1)
.wrapping_sub(base)
})
}
}
impl Generation {
pub(crate) fn advance(&mut self) {
assert!(self.0 > 0);
self.0 = self.0.wrapping_add(1).max(1)
}
}
impl Offset {
pub(crate) fn from_int_offset(offset: usize) -> Self {
assert!(offset < isize::max_value() as usize);
Offset((offset as isize).checked_neg().unwrap())
}
pub(crate) fn int_offset(self) -> usize {
self.0.checked_neg().unwrap() as usize
}
}
impl Default for Generation {
fn default() -> Self {
Generation(1)
}
}
impl From<Generation> for GenerationOrFreelink {
fn from(gen: Generation) -> GenerationOrFreelink {
GenerationOrFreelink(gen.0)
}
}
impl From<Offset> for GenerationOrFreelink {
fn from(offset: Offset) -> GenerationOrFreelink {
GenerationOrFreelink(offset.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::slice::ManagedSlice as Slice;
#[test]
fn simple() {
let mut elements = [0u32; 2];
let mut slots = [Slot::default(); 2];
let mut map = SlotMap::new(
Slice::Borrowed(&mut elements[..]),
Slice::Borrowed(&mut slots[..]));
let key42 = map.insert(42).unwrap();
let keylo = map.insert('K' as _).unwrap();
assert_eq!(map.insert(0x9999), None);
assert_eq!(map.get(key42).cloned(), Some(42));
assert_eq!(map.get(keylo).cloned(), Some('K' as _));
assert!(map.remove(key42).is_some());
assert_eq!(map.get(key42), None);
let lastkey = map.insert(0x9999).unwrap();
assert_eq!(map.get(lastkey).cloned(), Some(0x9999));
*map.remove(keylo).unwrap() = 0;
assert_eq!(map.get(lastkey).cloned(), Some(0x9999));
assert!(map.remove(lastkey).is_some());
}
#[test]
fn retained() {
let mut elements = [0u32; 1];
let mut slots = [Slot::default(); 1];
let mut map = SlotMap::new(
Slice::Borrowed(&mut elements[..]),
Slice::Borrowed(&mut slots[..]));
let key = map.insert(0xde).unwrap();
map.remove(key).unwrap();
assert_eq!(map.get(key), None);
let new_key = map.insert(0xad).unwrap();
assert_eq!(map.get(key), None);
assert_eq!(map.get(new_key).cloned(), Some(0xad));
assert_eq!(map.remove(key), None);
map.remove(new_key).unwrap();
assert_eq!(map.get(key), None);
assert_eq!(map.get(new_key), None);
}
#[test]
fn non_simple_free_list() {
// Check the free list implementation
let mut elements = [0u32; 3];
let mut slots = [Slot::default(); 3];
let mut map = SlotMap::new(
Slice::Borrowed(&mut elements[..]),
Slice::Borrowed(&mut slots[..]));
let key0 = map.insert(0).unwrap();
let key1 = map.insert(1).unwrap();
let key2 = map.insert(2).unwrap();
*map.remove(key1).unwrap() = 0xF;
assert_eq!(map.free_top, 1);
assert_eq!(map.get(key0).cloned(), Some(0));
assert_eq!(map.get(key2).cloned(), Some(2));
*map.remove(key2).unwrap() = 0xF;
assert_eq!(map.free_top, 2);
assert_eq!(map.get(key0).cloned(), Some(0));
*map.remove(key0).unwrap() = 0xF;
assert_eq!(map.free_top, 0);
let key0 = map.insert(0).unwrap();
assert_eq!(map.free_top, 2);
let key1 = map.insert(1).unwrap();
let key2 = map.insert(2).unwrap();
assert_eq!(map.get(key0).cloned(), Some(0));
assert_eq!(map.get(key1).cloned(), Some(1));
assert_eq!(map.get(key2).cloned(), Some(2));
}
}