renet/src/socket/udp.rs

688 lines
25 KiB
Rust

use core::cmp::min;
use managed::ManagedSlice;
use {Error, Result};
use socket::{Socket, SocketMeta, SocketHandle};
use storage::RingBuffer;
use time::Instant;
use wire::{IpProtocol, IpRepr, IpEndpoint, UdpRepr};
/// Endpoint and size of an UDP packet.
#[derive(Debug, Clone, Copy, Default)]
pub struct PacketMetadata {
endpoint: IpEndpoint,
size: usize,
/// Padding packets can be used to avoid wrap-arounds of packets in the payload buffer
padding: bool,
}
/// An UDP packet ring buffer.
#[derive(Debug)]
pub struct SocketBuffer<'a, 'b> {
metadata_buffer: RingBuffer<'a, PacketMetadata>,
payload_buffer: RingBuffer<'b, u8>,
}
impl<'a, 'b> SocketBuffer<'a, 'b> {
/// Create a new socket buffer with the provided metadata and payload storage.
///
/// Metadata storage limits the maximum _number_ of UDP packets in the buffer and payload
/// storage limits the maximum _cumulated size_ of UDP packets.
pub fn new<MS, PS>(metadata_storage: MS, payload_storage: PS) -> SocketBuffer<'a, 'b>
where MS: Into<ManagedSlice<'a, PacketMetadata>>, PS: Into<ManagedSlice<'b, u8>>,
{
SocketBuffer {
metadata_buffer: RingBuffer::new(metadata_storage),
payload_buffer: RingBuffer::new(payload_storage),
}
}
fn is_full(&self) -> bool {
self.metadata_buffer.is_full() || self.payload_buffer.is_full()
}
fn is_empty(&self) -> bool {
self.metadata_buffer.is_empty()
}
fn enqueue(&mut self, required_size: usize, endpoint: IpEndpoint) -> Result<&mut [u8]> {
let window = self.payload_buffer.window();
let contig_window = self.payload_buffer.contiguous_window();
if self.metadata_buffer.is_full() || self.payload_buffer.window() < required_size {
return Err(Error::Exhausted);
}
if contig_window < required_size {
// we reached the end of buffer, so the data does not fit without wrap-around
// -> insert padding and try again
self.payload_buffer.enqueue_many(required_size);
let metadata_buf = self.metadata_buffer.enqueue_one()?;
metadata_buf.padding = true;
metadata_buf.size = required_size;
metadata_buf.endpoint = IpEndpoint::default();
if window - contig_window < required_size {
return Err(Error::Exhausted);
}
}
let metadata_buf = self.metadata_buffer.enqueue_one()?;
metadata_buf.endpoint = endpoint;
metadata_buf.size = required_size;
metadata_buf.padding = false;
Ok(self.payload_buffer.enqueue_many(required_size))
}
}
/// An User Datagram Protocol socket.
///
/// An UDP socket is bound to a specific endpoint, and owns transmit and receive
/// packet buffers.
#[derive(Debug)]
pub struct UdpSocket<'a, 'b: 'a> {
pub(crate) meta: SocketMeta,
endpoint: IpEndpoint,
rx_buffer: SocketBuffer<'a, 'b>,
tx_buffer: SocketBuffer<'a, 'b>,
/// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
hop_limit: Option<u8>
}
impl<'a, 'b> UdpSocket<'a, 'b> {
/// Create an UDP socket with the given buffers.
pub fn new(rx_buffer: SocketBuffer<'a, 'b>,
tx_buffer: SocketBuffer<'a, 'b>) -> UdpSocket<'a, 'b> {
UdpSocket {
meta: SocketMeta::default(),
endpoint: IpEndpoint::default(),
rx_buffer: rx_buffer,
tx_buffer: tx_buffer,
hop_limit: None
}
}
/// Return the socket handle.
#[inline]
pub fn handle(&self) -> SocketHandle {
self.meta.handle
}
/// Return the bound endpoint.
#[inline]
pub fn endpoint(&self) -> IpEndpoint {
self.endpoint
}
/// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// See also the [set_hop_limit](#method.set_hop_limit) method
pub fn hop_limit(&self) -> Option<u8> {
self.hop_limit
}
/// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// A socket without an explicitly set hop limit value uses the default [IANA recommended]
/// value (64).
///
/// # Panics
///
/// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7].
///
/// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
/// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
// A host MUST NOT send a datagram with a hop limit value of 0
if let Some(0) = hop_limit {
panic!("the time-to-live value of a packet must not be zero")
}
self.hop_limit = hop_limit
}
/// Bind the socket to the given endpoint.
///
/// This function returns `Err(Error::Illegal)` if the socket was open
/// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)`
/// if the port in the given endpoint is zero.
pub fn bind<T: Into<IpEndpoint>>(&mut self, endpoint: T) -> Result<()> {
let endpoint = endpoint.into();
if endpoint.port == 0 { return Err(Error::Unaddressable) }
if self.is_open() { return Err(Error::Illegal) }
self.endpoint = endpoint;
Ok(())
}
/// Check whether the socket is open.
#[inline]
pub fn is_open(&self) -> bool {
self.endpoint.port != 0
}
/// Check whether the transmit buffer is full.
#[inline]
pub fn can_send(&self) -> bool {
!self.tx_buffer.is_full()
}
/// Check whether the receive buffer is not empty.
#[inline]
pub fn can_recv(&self) -> bool {
!self.rx_buffer.is_empty()
}
/// Enqueue a packet to be sent to a given remote endpoint, and return a pointer
/// to its payload.
///
/// This function returns `Err(Error::Exhausted)` if the transmit buffer is full and
/// `Err(Error::Unaddressable)` if local or remote port, or remote address are unspecified.
pub fn send(&mut self, size: usize, endpoint: IpEndpoint) -> Result<&mut [u8]> {
if self.endpoint.port == 0 { return Err(Error::Unaddressable) }
if !endpoint.is_specified() { return Err(Error::Unaddressable) }
let payload_buf = self.tx_buffer.enqueue(size, endpoint)?;
debug_assert_eq!(payload_buf.len(), size);
net_trace!("{}:{}:{}: buffer to send {} octets",
self.meta.handle, self.endpoint, endpoint, size);
Ok(payload_buf)
}
/// Enqueue a packet to be sent to a given remote endpoint, and fill it from a slice.
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, data: &[u8], endpoint: IpEndpoint) -> Result<()> {
self.send(data.len(), endpoint)?.copy_from_slice(data);
Ok(())
}
/// Dequeue a packet received from a remote endpoint, and return the endpoint as well
/// as a pointer to the payload.
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn recv(&mut self) -> Result<(&[u8], IpEndpoint)> {
let mut metadata_buf = *self.rx_buffer.metadata_buffer.dequeue_one()?;
if metadata_buf.padding {
// packet is padding packet -> drop it and try again
self.rx_buffer.payload_buffer.dequeue_many(metadata_buf.size);
metadata_buf = *self.rx_buffer.metadata_buffer.dequeue_one()?;
}
debug_assert!(!metadata_buf.padding);
let payload_buf = self.rx_buffer.payload_buffer.dequeue_many(metadata_buf.size);
debug_assert_eq!(metadata_buf.size, payload_buf.len()); // ensured by inserting logic
net_trace!("{}:{}:{}: receive {} buffered octets",
self.meta.handle, self.endpoint,
metadata_buf.endpoint, metadata_buf.size);
Ok((payload_buf, metadata_buf.endpoint))
}
/// Dequeue a packet received from a remote endpoint, copy the payload into the given slice,
/// and return the amount of octets copied as well as the endpoint.
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(usize, IpEndpoint)> {
let (buffer, endpoint) = self.recv()?;
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok((length, endpoint))
}
pub(crate) fn accepts(&self, ip_repr: &IpRepr, repr: &UdpRepr) -> bool {
if self.endpoint.port != repr.dst_port { return false }
if !self.endpoint.addr.is_unspecified() &&
self.endpoint.addr != ip_repr.dst_addr() { return false }
true
}
pub(crate) fn process(&mut self, ip_repr: &IpRepr, repr: &UdpRepr) -> Result<()> {
debug_assert!(self.accepts(ip_repr, repr));
let size = repr.payload.len();
let endpoint = IpEndpoint { addr: ip_repr.src_addr(), port: repr.src_port };
let payload_buf = self.rx_buffer.enqueue(size, endpoint)?;
assert_eq!(payload_buf.len(), size);
payload_buf.copy_from_slice(repr.payload);
net_trace!("{}:{}:{}: receiving {} octets",
self.meta.handle, self.endpoint,
endpoint, size);
Ok(())
}
pub(crate) fn dispatch<F>(&mut self, emit: F) -> Result<()>
where F: FnOnce((IpRepr, UdpRepr)) -> Result<()> {
let handle = self.handle();
let endpoint = self.endpoint;
let hop_limit = self.hop_limit.unwrap_or(64);
let SocketBuffer { ref mut metadata_buffer, ref mut payload_buffer } = self.tx_buffer;
// dequeue potential padding packet
let result = metadata_buffer.dequeue_one_with(|metadata_buf| {
if metadata_buf.padding {
Ok(metadata_buf.size) // dequeue metadata
} else {
Err(Error::Exhausted) // don't dequeue metadata
}
});
if let Ok(size) = result {
payload_buffer.dequeue_many(size); // dequeue padding payload
}
metadata_buffer.dequeue_one_with(move |metadata_buf| {
debug_assert!(!metadata_buf.padding);
payload_buffer.dequeue_many_with(|payload_buf| {
let payload_buf = &payload_buf[..metadata_buf.size];
net_trace!("{}:{}:{}: sending {} octets",
handle, endpoint,
metadata_buf.endpoint, metadata_buf.size);
let repr = UdpRepr {
src_port: endpoint.port,
dst_port: metadata_buf.endpoint.port,
payload: payload_buf,
};
let ip_repr = IpRepr::Unspecified {
src_addr: endpoint.addr,
dst_addr: metadata_buf.endpoint.addr,
protocol: IpProtocol::Udp,
payload_len: repr.buffer_len(),
hop_limit: hop_limit,
};
match emit((ip_repr, repr)) {
Ok(ret) => (metadata_buf.size, Ok(ret)),
Err(ret) => (0, Err(ret)),
}
}).1
})
}
pub(crate) fn poll_at(&self) -> Option<Instant> {
if self.tx_buffer.is_empty() {
None
} else {
Some(Instant::from_millis(0))
}
}
}
impl<'a, 'b> Into<Socket<'a, 'b>> for UdpSocket<'a, 'b> {
fn into(self) -> Socket<'a, 'b> {
Socket::Udp(self)
}
}
#[cfg(test)]
mod test {
use wire::{IpAddress, IpRepr, UdpRepr};
#[cfg(feature = "proto-ipv4")]
use wire::Ipv4Repr;
#[cfg(feature = "proto-ipv6")]
use wire::Ipv6Repr;
use wire::ip::test::{MOCK_IP_ADDR_1, MOCK_IP_ADDR_2, MOCK_IP_ADDR_3};
use super::*;
fn buffer(packets: usize) -> SocketBuffer<'static, 'static> {
SocketBuffer::new(vec![Default::default(); packets], vec![0; 16 * packets])
}
fn socket(rx_buffer: SocketBuffer<'static, 'static>,
tx_buffer: SocketBuffer<'static, 'static>)
-> UdpSocket<'static, 'static> {
UdpSocket::new(rx_buffer, tx_buffer)
}
const LOCAL_PORT: u16 = 53;
const REMOTE_PORT: u16 = 49500;
pub const LOCAL_END: IpEndpoint = IpEndpoint { addr: MOCK_IP_ADDR_1, port: LOCAL_PORT };
pub const REMOTE_END: IpEndpoint = IpEndpoint { addr: MOCK_IP_ADDR_2, port: REMOTE_PORT };
pub const LOCAL_IP_REPR: IpRepr = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_1,
dst_addr: MOCK_IP_ADDR_2,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64,
};
const LOCAL_UDP_REPR: UdpRepr = UdpRepr {
src_port: LOCAL_PORT,
dst_port: REMOTE_PORT,
payload: b"abcdef"
};
const REMOTE_UDP_REPR: UdpRepr = UdpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
payload: b"abcdef"
};
fn remote_ip_repr() -> IpRepr {
match (MOCK_IP_ADDR_2, MOCK_IP_ADDR_1) {
#[cfg(feature = "proto-ipv4")]
(IpAddress::Ipv4(src), IpAddress::Ipv4(dst)) => IpRepr::Ipv4(Ipv4Repr {
src_addr: src,
dst_addr: dst,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
#[cfg(feature = "proto-ipv6")]
(IpAddress::Ipv6(src), IpAddress::Ipv6(dst)) => IpRepr::Ipv6(Ipv6Repr {
src_addr: src,
dst_addr: dst,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
_ => unreachable!()
}
}
#[test]
fn test_bind_unaddressable() {
let mut socket = socket(buffer(0), buffer(0));
assert_eq!(socket.bind(0), Err(Error::Unaddressable));
}
#[test]
fn test_bind_twice() {
let mut socket = socket(buffer(0), buffer(0));
assert_eq!(socket.bind(1), Ok(()));
assert_eq!(socket.bind(2), Err(Error::Illegal));
}
#[test]
#[should_panic(expected = "the time-to-live value of a packet must not be zero")]
fn test_set_hop_limit_zero() {
let mut s = socket(buffer(0), buffer(1));
s.set_hop_limit(Some(0));
}
#[test]
fn test_send_unaddressable() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Err(Error::Unaddressable));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(socket.send_slice(b"abcdef",
IpEndpoint { addr: IpAddress::Unspecified, ..REMOTE_END }),
Err(Error::Unaddressable));
assert_eq!(socket.send_slice(b"abcdef",
IpEndpoint { port: 0, ..REMOTE_END }),
Err(Error::Unaddressable));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(()));
}
#[test]
fn test_send_dispatch() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
assert!(socket.can_send());
assert_eq!(socket.dispatch(|_| unreachable!()),
Err(Error::Exhausted));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(()));
assert_eq!(socket.send_slice(b"123456", REMOTE_END), Err(Error::Exhausted));
assert!(!socket.can_send());
assert_eq!(socket.dispatch(|(ip_repr, udp_repr)| {
assert_eq!(ip_repr, LOCAL_IP_REPR);
assert_eq!(udp_repr, LOCAL_UDP_REPR);
Err(Error::Unaddressable)
}), Err(Error::Unaddressable));
assert!(!socket.can_send());
assert_eq!(socket.dispatch(|(ip_repr, udp_repr)| {
assert_eq!(ip_repr, LOCAL_IP_REPR);
assert_eq!(udp_repr, LOCAL_UDP_REPR);
Ok(())
}), Ok(()));
assert!(socket.can_send());
}
#[test]
fn test_recv_process() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(!socket.can_recv());
assert_eq!(socket.recv(), Err(Error::Exhausted));
assert!(socket.accepts(&remote_ip_repr(), &REMOTE_UDP_REPR));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Ok(()));
assert!(socket.can_recv());
assert!(socket.accepts(&remote_ip_repr(), &REMOTE_UDP_REPR));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Err(Error::Exhausted));
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
assert!(!socket.can_recv());
}
#[test]
fn test_recv_truncated_slice() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(socket.accepts(&remote_ip_repr(), &REMOTE_UDP_REPR));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Ok(()));
let mut slice = [0; 4];
assert_eq!(socket.recv_slice(&mut slice[..]), Ok((4, REMOTE_END)));
assert_eq!(&slice, b"abcd");
}
#[test]
fn test_set_hop_limit() {
let mut s = socket(buffer(0), buffer(1));
assert_eq!(s.bind(LOCAL_END), Ok(()));
s.set_hop_limit(Some(0x2a));
assert_eq!(s.send_slice(b"abcdef", REMOTE_END), Ok(()));
assert_eq!(s.dispatch(|(ip_repr, _)| {
assert_eq!(ip_repr, IpRepr::Unspecified{
src_addr: MOCK_IP_ADDR_1,
dst_addr: MOCK_IP_ADDR_2,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 0x2a,
});
Ok(())
}), Ok(()));
}
#[test]
fn test_doesnt_accept_wrong_port() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
let mut udp_repr = REMOTE_UDP_REPR;
assert!(socket.accepts(&remote_ip_repr(), &udp_repr));
udp_repr.dst_port += 1;
assert!(!socket.accepts(&remote_ip_repr(), &udp_repr));
}
#[test]
fn test_doesnt_accept_wrong_ip() {
fn generate_bad_repr() -> IpRepr {
match (MOCK_IP_ADDR_2, MOCK_IP_ADDR_3) {
#[cfg(feature = "proto-ipv4")]
(IpAddress::Ipv4(src), IpAddress::Ipv4(dst)) => IpRepr::Ipv4(Ipv4Repr {
src_addr: src,
dst_addr: dst,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
#[cfg(feature = "proto-ipv6")]
(IpAddress::Ipv6(src), IpAddress::Ipv6(dst)) => IpRepr::Ipv6(Ipv6Repr {
src_addr: src,
dst_addr: dst,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
_ => unreachable!()
}
}
let mut port_bound_socket = socket(buffer(1), buffer(0));
assert_eq!(port_bound_socket.bind(LOCAL_PORT), Ok(()));
assert!(port_bound_socket.accepts(&generate_bad_repr(), &REMOTE_UDP_REPR));
let mut ip_bound_socket = socket(buffer(1), buffer(0));
assert_eq!(ip_bound_socket.bind(LOCAL_END), Ok(()));
assert!(!ip_bound_socket.accepts(&generate_bad_repr(), &REMOTE_UDP_REPR));
}
#[test]
fn test_send_large_packet() {
// buffer(4) creates a payload buffer of size 16*4
let mut socket = socket(buffer(0), buffer(4));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
let too_large = b"0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdefx";
assert_eq!(socket.send_slice(too_large, REMOTE_END), Err(Error::Exhausted));
assert_eq!(socket.send_slice(&too_large[..16*4], REMOTE_END), Ok(()));
}
#[test]
fn test_send_wraparound_1() {
let mut socket = socket(buffer(0), buffer(3));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
let large = b"0123456789abcdef0123456789abcdef0123456789abcdef";
assert_eq!(socket.send_slice(&large[..15], REMOTE_END), Ok(()));
assert_eq!(socket.send_slice(&large[..16*2], REMOTE_END), Ok(()));
// no padding should be inserted because capacity does not suffice
assert_eq!(socket.send_slice(b"12", REMOTE_END), Err(Error::Exhausted));
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 2);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 16*3-1);
assert_eq!(socket.dispatch(|_| Ok(())), Ok(()));
// insert padding
assert_eq!(socket.send_slice(&large[..16], REMOTE_END), Err(Error::Exhausted));
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 2);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 16*3-15);
assert_eq!(socket.dispatch(|_| Ok(())), Ok(()));
// packet dequed, but padding is still there
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 1);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 1);
assert_eq!(socket.dispatch(|_| Ok(())), Err(Error::Exhausted));
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 0);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 0);
}
#[test]
fn test_send_wraparound_2() {
let mut socket = socket(buffer(0), buffer(3));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
let large = b"0123456789abcdef0123456789abcdef0123456789abcdef";
assert_eq!(socket.send_slice(&large[..16*2], REMOTE_END), Ok(()));
assert_eq!(socket.send_slice(&large[..15], REMOTE_END), Ok(()));
// no padding should be inserted because capacity does not suffice
assert_eq!(socket.send_slice(b"12", REMOTE_END), Err(Error::Exhausted));
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 2);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 16*3-1);
assert_eq!(socket.dispatch(|_| Ok(())), Ok(()));
// insert padding and slice
assert_eq!(socket.send_slice(&large[..16*2], REMOTE_END), Ok(()));
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 3);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 16*3);
assert_eq!(socket.dispatch(|_| Ok(())), Ok(()));
// packet dequed, but padding is still there
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 2);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 16*3-15);
assert_eq!(socket.dispatch(|_| Ok(())), Ok(()));
// padding and packet dequeued
assert_eq!(socket.tx_buffer.metadata_buffer.len(), 0);
assert_eq!(socket.tx_buffer.payload_buffer.len(), 0);
}
#[test]
fn test_process_wraparound() {
// every packet will be 6 bytes
let recv_buffer = SocketBuffer::new(vec![Default::default(); 4], vec![0; 6*3 + 2]);
let mut socket = socket(recv_buffer, buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR), Ok(()));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR), Ok(()));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR), Ok(()));
assert_eq!(socket.rx_buffer.metadata_buffer.len(), 3);
assert_eq!(socket.rx_buffer.payload_buffer.len(), 6*3);
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Err(Error::Exhausted));
// no padding inserted because capacity does not suffice
assert_eq!(socket.rx_buffer.metadata_buffer.len(), 3);
assert_eq!(socket.rx_buffer.payload_buffer.len(), 6*3);
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR), Ok(()));
// padding inserted
assert_eq!(socket.rx_buffer.metadata_buffer.len(), 4);
assert_eq!(socket.rx_buffer.payload_buffer.len(), 6*3 + 2);
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
// two packets dequed, last packet and padding still there
assert_eq!(socket.rx_buffer.metadata_buffer.len(), 2);
assert_eq!(socket.rx_buffer.payload_buffer.len(), 6 + 2);
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
// everything dequed
assert_eq!(socket.rx_buffer.metadata_buffer.len(), 0);
assert_eq!(socket.rx_buffer.payload_buffer.len(), 0);
}
#[test]
fn test_process_empty_payload() {
// every packet will be 6 bytes
let recv_buffer = SocketBuffer::new(vec![Default::default(); 1], vec![]);
let mut socket = socket(recv_buffer, buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
let repr = UdpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
payload: &[]
};
assert_eq!(socket.process(&remote_ip_repr(), &repr), Ok(()));
assert_eq!(socket.rx_buffer.metadata_buffer.len(), 1);
assert_eq!(socket.rx_buffer.payload_buffer.len(), 0);
// The metatdata has been queued into the metadata buffer
assert!(!socket.rx_buffer.metadata_buffer.is_empty());
// The no payload data has been queued into the payload buffer
assert!(socket.rx_buffer.payload_buffer.is_empty());
// The received packets buffer is not empty and we can recv
assert!(socket.can_recv());
assert_eq!(socket.recv(), Ok((&[][..], REMOTE_END)));
assert_eq!(socket.process(&remote_ip_repr(), &repr), Ok(()));
assert_eq!(socket.recv(), Ok((&[][..], REMOTE_END)));
}
}