renet/src/wire/ipv6option.rs

533 lines
17 KiB
Rust

use core::fmt;
use crate::{Error, Result};
enum_with_unknown! {
/// IPv6 Extension Header Option Type
pub doc enum Type(u8) {
/// 1 byte of padding
Pad1 = 0,
/// Multiple bytes of padding
PadN = 1
}
}
impl fmt::Display for Type {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Type::Pad1 => write!(f, "Pad1"),
Type::PadN => write!(f, "PadN"),
Type::Unknown(id) => write!(f, "{}", id)
}
}
}
enum_with_unknown! {
/// Action required when parsing the given IPv6 Extension
/// Header Option Type fails
pub doc enum FailureType(u8) {
/// Skip this option and continue processing the packet
Skip = 0b00000000,
/// Discard the containing packet
Discard = 0b01000000,
/// Discard the containing packet and notify the sender
DiscardSendAll = 0b10000000,
/// Discard the containing packet and only notify the sender
/// if the sender is a unicast address
DiscardSendUnicast = 0b11000000,
}
}
impl fmt::Display for FailureType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
FailureType::Skip => write!(f, "skip"),
FailureType::Discard => write!(f, "discard"),
FailureType::DiscardSendAll => write!(f, "discard and send error"),
FailureType::DiscardSendUnicast => write!(f, "discard and send error if unicast"),
FailureType::Unknown(id) => write!(f, "Unknown({})", id),
}
}
}
impl From<Type> for FailureType {
fn from(other: Type) -> FailureType {
let raw: u8 = other.into();
Self::from(raw & 0b11000000u8)
}
}
/// A read/write wrapper around an IPv6 Extension Header Option.
#[derive(Debug, PartialEq)]
pub struct Ipv6Option<T: AsRef<[u8]>> {
buffer: T
}
// Format of Option
//
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
// | Option Type | Opt Data Len | Option Data
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
//
//
// See https://tools.ietf.org/html/rfc8200#section-4.2 for details.
mod field {
#![allow(non_snake_case)]
use crate::wire::field::*;
// 8-bit identifier of the type of option.
pub const TYPE: usize = 0;
// 8-bit unsigned integer. Length of the DATA field of this option, in octets.
pub const LENGTH: usize = 1;
// Variable-length field. Option-Type-specific data.
pub fn DATA(length: u8) -> Field {
2..length as usize + 2
}
}
impl<T: AsRef<[u8]>> Ipv6Option<T> {
/// Create a raw octet buffer with an IPv6 Extension Header Option structure.
pub fn new_unchecked(buffer: T) -> Ipv6Option<T> {
Ipv6Option { buffer }
}
/// Shorthand for a combination of [new_unchecked] and [check_len].
///
/// [new_unchecked]: #method.new_unchecked
/// [check_len]: #method.check_len
pub fn new_checked(buffer: T) -> Result<Ipv6Option<T>> {
let opt = Self::new_unchecked(buffer);
opt.check_len()?;
Ok(opt)
}
/// Ensure that no accessor method will panic if called.
/// Returns `Err(Error::Truncated)` if the buffer is too short.
///
/// The result of this check is invalidated by calling [set_data_len].
///
/// [set_data_len]: #method.set_data_len
pub fn check_len(&self) -> Result<()> {
let data = self.buffer.as_ref();
let len = data.len();
if len < field::LENGTH {
return Err(Error::Truncated);
}
if self.option_type() == Type::Pad1 {
return Ok(());
}
if len == field::LENGTH {
return Err(Error::Truncated);
}
let df = field::DATA(data[field::LENGTH]);
if len < df.end {
return Err(Error::Truncated);
}
Ok(())
}
/// Consume the ipv6 option, returning the underlying buffer.
pub fn into_inner(self) -> T {
self.buffer
}
/// Return the option type.
#[inline]
pub fn option_type(&self) -> Type {
let data = self.buffer.as_ref();
Type::from(data[field::TYPE])
}
/// Return the length of the data.
///
/// # Panics
/// This function panics if this is an 1-byte padding option.
#[inline]
pub fn data_len(&self) -> u8 {
let data = self.buffer.as_ref();
data[field::LENGTH]
}
}
impl<'a, T: AsRef<[u8]> + ?Sized> Ipv6Option<&'a T> {
/// Return the option data.
///
/// # Panics
/// This function panics if this is an 1-byte padding option.
#[inline]
pub fn data(&self) -> &'a [u8] {
let len = self.data_len();
let data = self.buffer.as_ref();
&data[field::DATA(len)]
}
}
impl<T: AsRef<[u8]> + AsMut<[u8]>> Ipv6Option<T> {
/// Set the option type.
#[inline]
pub fn set_option_type(&mut self, value: Type) {
let data = self.buffer.as_mut();
data[field::TYPE] = value.into();
}
/// Set the option data length.
///
/// # Panics
/// This function panics if this is an 1-byte padding option.
#[inline]
pub fn set_data_len(&mut self, value: u8) {
let data = self.buffer.as_mut();
data[field::LENGTH] = value;
}
}
impl<'a, T: AsRef<[u8]> + AsMut<[u8]> + ?Sized> Ipv6Option<&'a mut T> {
/// Return a mutable pointer to the option data.
///
/// # Panics
/// This function panics if this is an 1-byte padding option.
#[inline]
pub fn data_mut(&mut self) -> &mut [u8] {
let len = self.data_len();
let data = self.buffer.as_mut();
&mut data[field::DATA(len)]
}
}
impl<'a, T: AsRef<[u8]> + ?Sized> fmt::Display for Ipv6Option<&'a T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match Repr::parse(self) {
Ok(repr) => write!(f, "{}", repr),
Err(err) => {
write!(f, "IPv6 Extension Option ({})", err)?;
Ok(())
}
}
}
}
/// A high-level representation of an IPv6 Extension Header Option.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum Repr<'a> {
Pad1,
PadN(u8),
Unknown {
type_: Type,
length: u8,
data: &'a [u8]
},
#[doc(hidden)]
__Nonexhaustive
}
impl<'a> Repr<'a> {
/// Parse an IPv6 Extension Header Option and return a high-level representation.
pub fn parse<T>(opt: &Ipv6Option<&'a T>) -> Result<Repr<'a>> where T: AsRef<[u8]> + ?Sized {
match opt.option_type() {
Type::Pad1 =>
Ok(Repr::Pad1),
Type::PadN =>
Ok(Repr::PadN(opt.data_len())),
unknown_type @ Type::Unknown(_) => {
Ok(Repr::Unknown {
type_: unknown_type,
length: opt.data_len(),
data: opt.data(),
})
}
}
}
/// Return the length of a header that will be emitted from this high-level representation.
pub fn buffer_len(&self) -> usize {
match *self {
Repr::Pad1 => 1,
Repr::PadN(length) =>
field::DATA(length).end,
Repr::Unknown{ length, .. } =>
field::DATA(length).end,
Repr::__Nonexhaustive => unreachable!()
}
}
/// Emit a high-level representation into an IPv6 Extension Header Option.
pub fn emit<T: AsRef<[u8]> + AsMut<[u8]> + ?Sized>(&self, opt: &mut Ipv6Option<&'a mut T>) {
match *self {
Repr::Pad1 =>
opt.set_option_type(Type::Pad1),
Repr::PadN(len) => {
opt.set_option_type(Type::PadN);
opt.set_data_len(len);
// Ensure all padding bytes are set to zero.
for x in opt.data_mut().iter_mut() {
*x = 0
}
}
Repr::Unknown{ type_, length, data } => {
opt.set_option_type(type_);
opt.set_data_len(length);
opt.data_mut().copy_from_slice(&data[..length as usize]);
}
Repr::__Nonexhaustive => unreachable!()
}
}
}
/// A iterator for IPv6 options.
#[derive(Debug)]
pub struct Ipv6OptionsIterator<'a> {
pos: usize,
length: usize,
data: &'a [u8],
hit_error: bool
}
impl<'a> Ipv6OptionsIterator<'a> {
/// Create a new `Ipv6OptionsIterator`, used to iterate over the
/// options contained in a IPv6 Extension Header (e.g. the Hop-by-Hop
/// header).
///
/// # Panics
/// This function panics if the `length` provided is larger than the
/// length of the `data` buffer.
pub fn new(data: &'a [u8], length: usize) -> Ipv6OptionsIterator<'a> {
assert!(length <= data.len());
Ipv6OptionsIterator {
pos: 0,
hit_error: false,
length, data
}
}
/// Helper function to return an error in the implementation
/// of `Iterator`.
#[inline]
fn return_err(&mut self, err: Error) -> Option<Result<Repr<'a>>> {
self.hit_error = true;
Some(Err(err))
}
}
impl<'a> Iterator for Ipv6OptionsIterator<'a> {
type Item = Result<Repr<'a>>;
fn next(&mut self) -> Option<Self::Item> {
if self.pos < self.length && !self.hit_error {
// If we still have data to parse and we have not previously
// hit an error, attempt to parse the next option.
match Ipv6Option::new_checked(&self.data[self.pos..]) {
Ok(hdr) => {
match Repr::parse(&hdr) {
Ok(repr) => {
self.pos += repr.buffer_len();
Some(Ok(repr))
}
Err(e) => {
self.return_err(e)
}
}
}
Err(e) => {
self.return_err(e)
}
}
} else {
// If we failed to parse a previous option or hit the end of the
// buffer, we do not continue to iterate.
None
}
}
}
impl<'a> fmt::Display for Repr<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "IPv6 Option ")?;
match *self {
Repr::Pad1 =>
write!(f, "{} ", Type::Pad1),
Repr::PadN(len) =>
write!(f, "{} length={} ", Type::PadN, len),
Repr::Unknown{ type_, length, .. } =>
write!(f, "{} length={} ", type_, length),
Repr::__Nonexhaustive => unreachable!()
}
}
}
#[cfg(test)]
mod test {
use super::*;
static IPV6OPTION_BYTES_PAD1: [u8; 1] = [0x0];
static IPV6OPTION_BYTES_PADN: [u8; 3] = [0x1, 0x1, 0x0];
static IPV6OPTION_BYTES_UNKNOWN: [u8; 5] = [0xff, 0x3, 0x0, 0x0, 0x0];
#[test]
fn test_check_len() {
let bytes = [0u8];
// zero byte buffer
assert_eq!(Err(Error::Truncated),
Ipv6Option::new_unchecked(&bytes[..0]).check_len());
// pad1
assert_eq!(Ok(()),
Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PAD1).check_len());
// padn with truncated data
assert_eq!(Err(Error::Truncated),
Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PADN[..2]).check_len());
// padn
assert_eq!(Ok(()),
Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PADN).check_len());
// unknown option type with truncated data
assert_eq!(Err(Error::Truncated),
Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_UNKNOWN[..4]).check_len());
assert_eq!(Err(Error::Truncated),
Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_UNKNOWN[..1]).check_len());
// unknown type
assert_eq!(Ok(()),
Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_UNKNOWN).check_len());
}
#[test]
#[should_panic(expected = "index out of bounds")]
fn test_data_len() {
let opt = Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PAD1);
opt.data_len();
}
#[test]
fn test_option_deconstruct() {
// one octet of padding
let opt = Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PAD1);
assert_eq!(opt.option_type(), Type::Pad1);
// two octets of padding
let bytes: [u8; 2] = [0x1, 0x0];
let opt = Ipv6Option::new_unchecked(&bytes);
assert_eq!(opt.option_type(), Type::PadN);
assert_eq!(opt.data_len(), 0);
// three octets of padding
let opt = Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PADN);
assert_eq!(opt.option_type(), Type::PadN);
assert_eq!(opt.data_len(), 1);
assert_eq!(opt.data(), &[0]);
// extra bytes in buffer
let bytes: [u8; 10] = [0x1, 0x7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xff];
let opt = Ipv6Option::new_unchecked(&bytes);
assert_eq!(opt.option_type(), Type::PadN);
assert_eq!(opt.data_len(), 7);
assert_eq!(opt.data(), &[0, 0, 0, 0, 0, 0, 0]);
// unrecognized option
let bytes: [u8; 1] = [0xff];
let opt = Ipv6Option::new_unchecked(&bytes);
assert_eq!(opt.option_type(), Type::Unknown(255));
// unrecognized option without length and data
assert_eq!(Ipv6Option::new_checked(&bytes), Err(Error::Truncated));
}
#[test]
fn test_option_parse() {
// one octet of padding
let opt = Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PAD1);
let pad1 = Repr::parse(&opt).unwrap();
assert_eq!(pad1, Repr::Pad1);
assert_eq!(pad1.buffer_len(), 1);
// two or more octets of padding
let opt = Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_PADN);
let padn = Repr::parse(&opt).unwrap();
assert_eq!(padn, Repr::PadN(1));
assert_eq!(padn.buffer_len(), 3);
// unrecognized option type
let data = [0u8; 3];
let opt = Ipv6Option::new_unchecked(&IPV6OPTION_BYTES_UNKNOWN);
let unknown = Repr::parse(&opt).unwrap();
assert_eq!(unknown, Repr::Unknown { type_: Type::Unknown(255), length: 3, data: &data });
}
#[test]
fn test_option_emit() {
let repr = Repr::Pad1;
let mut bytes = [255u8; 1]; // don't assume bytes are initialized to zero
let mut opt = Ipv6Option::new_unchecked(&mut bytes);
repr.emit(&mut opt);
assert_eq!(opt.into_inner(), &IPV6OPTION_BYTES_PAD1);
let repr = Repr::PadN(1);
let mut bytes = [255u8; 3]; // don't assume bytes are initialized to zero
let mut opt = Ipv6Option::new_unchecked(&mut bytes);
repr.emit(&mut opt);
assert_eq!(opt.into_inner(), &IPV6OPTION_BYTES_PADN);
let data = [0u8; 3];
let repr = Repr::Unknown { type_: Type::Unknown(255), length: 3, data: &data };
let mut bytes = [254u8; 5]; // don't assume bytes are initialized to zero
let mut opt = Ipv6Option::new_unchecked(&mut bytes);
repr.emit(&mut opt);
assert_eq!(opt.into_inner(), &IPV6OPTION_BYTES_UNKNOWN);
}
#[test]
fn test_failure_type() {
let mut failure_type: FailureType = Type::Pad1.into();
assert_eq!(failure_type, FailureType::Skip);
failure_type = Type::PadN.into();
assert_eq!(failure_type, FailureType::Skip);
failure_type = Type::Unknown(0b01000001).into();
assert_eq!(failure_type, FailureType::Discard);
failure_type = Type::Unknown(0b10100000).into();
assert_eq!(failure_type, FailureType::DiscardSendAll);
failure_type = Type::Unknown(0b11000100).into();
assert_eq!(failure_type, FailureType::DiscardSendUnicast);
}
#[test]
fn test_options_iter() {
let options = [0x00, 0x01, 0x01, 0x00,
0x01, 0x02, 0x00, 0x00,
0x01, 0x00, 0x00, 0x11,
0x00, 0x01, 0x08, 0x00];
let mut iterator = Ipv6OptionsIterator::new(&options, 0);
assert_eq!(iterator.next(), None);
iterator = Ipv6OptionsIterator::new(&options, 16);
for (i, opt) in iterator.enumerate() {
match (i, opt) {
(0, Ok(Repr::Pad1)) => continue,
(1, Ok(Repr::PadN(1))) => continue,
(2, Ok(Repr::PadN(2))) => continue,
(3, Ok(Repr::PadN(0))) => continue,
(4, Ok(Repr::Pad1)) => continue,
(5, Ok(Repr::Unknown { type_: Type::Unknown(0x11), length: 0, .. })) =>
continue,
(6, Err(Error::Truncated)) => continue,
(i, res) => panic!("Unexpected option `{:?}` at index {}", res, i),
}
}
}
#[test]
#[should_panic(expected = "length <= data.len()")]
fn test_options_iter_truncated() {
let options = [0x01, 0x02, 0x00, 0x00];
let _ = Ipv6OptionsIterator::new(&options, 5);
}
}