renet/src/socket/udp.rs

628 lines
22 KiB
Rust

use core::cmp::min;
#[cfg(feature = "async")]
use core::task::Waker;
use crate::{Error, Result};
use crate::socket::{Socket, SocketMeta, SocketHandle, PollAt};
use crate::storage::{PacketBuffer, PacketMetadata};
use crate::wire::{IpProtocol, IpRepr, IpEndpoint, UdpRepr};
#[cfg(feature = "async")]
use crate::socket::WakerRegistration;
/// A UDP packet metadata.
pub type UdpPacketMetadata = PacketMetadata<IpEndpoint>;
/// A UDP packet ring buffer.
pub type UdpSocketBuffer<'a, 'b> = PacketBuffer<'a, 'b, IpEndpoint>;
/// A User Datagram Protocol socket.
///
/// A UDP socket is bound to a specific endpoint, and owns transmit and receive
/// packet buffers.
#[derive(Debug)]
pub struct UdpSocket<'a, 'b: 'a> {
pub(crate) meta: SocketMeta,
endpoint: IpEndpoint,
rx_buffer: UdpSocketBuffer<'a, 'b>,
tx_buffer: UdpSocketBuffer<'a, 'b>,
/// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
hop_limit: Option<u8>,
#[cfg(feature = "async")]
rx_waker: WakerRegistration,
#[cfg(feature = "async")]
tx_waker: WakerRegistration,
}
impl<'a, 'b> UdpSocket<'a, 'b> {
/// Create an UDP socket with the given buffers.
pub fn new(rx_buffer: UdpSocketBuffer<'a, 'b>,
tx_buffer: UdpSocketBuffer<'a, 'b>) -> UdpSocket<'a, 'b> {
UdpSocket {
meta: SocketMeta::default(),
endpoint: IpEndpoint::default(),
rx_buffer: rx_buffer,
tx_buffer: tx_buffer,
hop_limit: None,
#[cfg(feature = "async")]
rx_waker: WakerRegistration::new(),
#[cfg(feature = "async")]
tx_waker: WakerRegistration::new(),
}
}
/// Register a waker for receive operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `recv` method calls, such as receiving data, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_recv_waker(&mut self, waker: &Waker) {
self.rx_waker.register(waker)
}
/// Register a waker for send operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `send` method calls, such as space becoming available in the transmit
/// buffer, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_send_waker(&mut self, waker: &Waker) {
self.tx_waker.register(waker)
}
/// Return the socket handle.
#[inline]
pub fn handle(&self) -> SocketHandle {
self.meta.handle
}
/// Return the bound endpoint.
#[inline]
pub fn endpoint(&self) -> IpEndpoint {
self.endpoint
}
/// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// See also the [set_hop_limit](#method.set_hop_limit) method
pub fn hop_limit(&self) -> Option<u8> {
self.hop_limit
}
/// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// A socket without an explicitly set hop limit value uses the default [IANA recommended]
/// value (64).
///
/// # Panics
///
/// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7].
///
/// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
/// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
// A host MUST NOT send a datagram with a hop limit value of 0
if let Some(0) = hop_limit {
panic!("the time-to-live value of a packet must not be zero")
}
self.hop_limit = hop_limit
}
/// Bind the socket to the given endpoint.
///
/// This function returns `Err(Error::Illegal)` if the socket was open
/// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)`
/// if the port in the given endpoint is zero.
pub fn bind<T: Into<IpEndpoint>>(&mut self, endpoint: T) -> Result<()> {
let endpoint = endpoint.into();
if endpoint.port == 0 { return Err(Error::Unaddressable) }
if self.is_open() { return Err(Error::Illegal) }
self.endpoint = endpoint;
#[cfg(feature = "async")]
{
self.rx_waker.wake();
self.tx_waker.wake();
}
Ok(())
}
/// Check whether the socket is open.
#[inline]
pub fn is_open(&self) -> bool {
self.endpoint.port != 0
}
/// Check whether the transmit buffer is full.
#[inline]
pub fn can_send(&self) -> bool {
!self.tx_buffer.is_full()
}
/// Check whether the receive buffer is not empty.
#[inline]
pub fn can_recv(&self) -> bool {
!self.rx_buffer.is_empty()
}
/// Return the maximum number packets the socket can receive.
#[inline]
pub fn packet_recv_capacity(&self) -> usize {
self.rx_buffer.packet_capacity()
}
/// Return the maximum number packets the socket can transmit.
#[inline]
pub fn packet_send_capacity(&self) -> usize {
self.tx_buffer.packet_capacity()
}
/// Return the maximum number of bytes inside the recv buffer.
#[inline]
pub fn payload_recv_capacity(&self) -> usize {
self.rx_buffer.payload_capacity()
}
/// Return the maximum number of bytes inside the transmit buffer.
#[inline]
pub fn payload_send_capacity(&self) -> usize {
self.tx_buffer.payload_capacity()
}
/// Enqueue a packet to be sent to a given remote endpoint, and return a pointer
/// to its payload.
///
/// This function returns `Err(Error::Exhausted)` if the transmit buffer is full,
/// `Err(Error::Unaddressable)` if local or remote port, or remote address are unspecified,
/// and `Err(Error::Truncated)` if there is not enough transmit buffer capacity
/// to ever send this packet.
pub fn send(&mut self, size: usize, endpoint: IpEndpoint) -> Result<&mut [u8]> {
if self.endpoint.port == 0 { return Err(Error::Unaddressable) }
if !endpoint.is_specified() { return Err(Error::Unaddressable) }
let payload_buf = self.tx_buffer.enqueue(size, endpoint)?;
net_trace!("{}:{}:{}: buffer to send {} octets",
self.meta.handle, self.endpoint, endpoint, size);
Ok(payload_buf)
}
/// Enqueue a packet to be sent to a given remote endpoint, and fill it from a slice.
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, data: &[u8], endpoint: IpEndpoint) -> Result<()> {
self.send(data.len(), endpoint)?.copy_from_slice(data);
Ok(())
}
/// Dequeue a packet received from a remote endpoint, and return the endpoint as well
/// as a pointer to the payload.
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn recv(&mut self) -> Result<(&[u8], IpEndpoint)> {
let (endpoint, payload_buf) = self.rx_buffer.dequeue()?;
net_trace!("{}:{}:{}: receive {} buffered octets",
self.meta.handle, self.endpoint,
endpoint, payload_buf.len());
Ok((payload_buf, endpoint))
}
/// Dequeue a packet received from a remote endpoint, copy the payload into the given slice,
/// and return the amount of octets copied as well as the endpoint.
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(usize, IpEndpoint)> {
let (buffer, endpoint) = self.recv()?;
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok((length, endpoint))
}
/// Peek at a packet received from a remote endpoint, and return the endpoint as well
/// as a pointer to the payload without removing the packet from the receive buffer.
/// This function otherwise behaves identically to [recv](#method.recv).
///
/// It returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn peek(&mut self) -> Result<(&[u8], &IpEndpoint)> {
let handle = self.meta.handle;
let endpoint = self.endpoint;
self.rx_buffer.peek().map(|(remote_endpoint, payload_buf)| {
net_trace!("{}:{}:{}: peek {} buffered octets",
handle, endpoint,
remote_endpoint, payload_buf.len());
(payload_buf, remote_endpoint)
})
}
/// Peek at a packet received from a remote endpoint, copy the payload into the given slice,
/// and return the amount of octets copied as well as the endpoint without removing the
/// packet from the receive buffer.
/// This function otherwise behaves identically to [recv_slice](#method.recv_slice).
///
/// See also [peek](#method.peek).
pub fn peek_slice(&mut self, data: &mut [u8]) -> Result<(usize, &IpEndpoint)> {
let (buffer, endpoint) = self.peek()?;
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok((length, endpoint))
}
pub(crate) fn accepts(&self, ip_repr: &IpRepr, repr: &UdpRepr) -> bool {
if self.endpoint.port != repr.dst_port { return false }
if !self.endpoint.addr.is_unspecified() &&
self.endpoint.addr != ip_repr.dst_addr() &&
!ip_repr.dst_addr().is_broadcast() &&
!ip_repr.dst_addr().is_multicast() { return false }
true
}
pub(crate) fn process(&mut self, ip_repr: &IpRepr, repr: &UdpRepr) -> Result<()> {
debug_assert!(self.accepts(ip_repr, repr));
let size = repr.payload.len();
let endpoint = IpEndpoint { addr: ip_repr.src_addr(), port: repr.src_port };
self.rx_buffer.enqueue(size, endpoint)?.copy_from_slice(repr.payload);
net_trace!("{}:{}:{}: receiving {} octets",
self.meta.handle, self.endpoint,
endpoint, size);
#[cfg(feature = "async")]
self.rx_waker.wake();
Ok(())
}
pub(crate) fn dispatch<F>(&mut self, emit: F) -> Result<()>
where F: FnOnce((IpRepr, UdpRepr)) -> Result<()> {
let handle = self.handle();
let endpoint = self.endpoint;
let hop_limit = self.hop_limit.unwrap_or(64);
self.tx_buffer.dequeue_with(|remote_endpoint, payload_buf| {
net_trace!("{}:{}:{}: sending {} octets",
handle, endpoint,
endpoint, payload_buf.len());
let repr = UdpRepr {
src_port: endpoint.port,
dst_port: remote_endpoint.port,
payload: payload_buf,
};
let ip_repr = IpRepr::Unspecified {
src_addr: endpoint.addr,
dst_addr: remote_endpoint.addr,
protocol: IpProtocol::Udp,
payload_len: repr.buffer_len(),
hop_limit: hop_limit,
};
emit((ip_repr, repr))
})?;
#[cfg(feature = "async")]
self.tx_waker.wake();
Ok(())
}
pub(crate) fn poll_at(&self) -> PollAt {
if self.tx_buffer.is_empty() {
PollAt::Ingress
} else {
PollAt::Now
}
}
}
impl<'a, 'b> Into<Socket<'a, 'b>> for UdpSocket<'a, 'b> {
fn into(self) -> Socket<'a, 'b> {
Socket::Udp(self)
}
}
#[cfg(test)]
mod test {
use crate::wire::{IpAddress, IpRepr, UdpRepr};
#[cfg(feature = "proto-ipv4")]
use crate::wire::Ipv4Repr;
#[cfg(feature = "proto-ipv6")]
use crate::wire::Ipv6Repr;
use crate::wire::ip::test::{MOCK_IP_ADDR_1, MOCK_IP_ADDR_2, MOCK_IP_ADDR_3};
use super::*;
fn buffer(packets: usize) -> UdpSocketBuffer<'static, 'static> {
UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY; packets], vec![0; 16 * packets])
}
fn socket(rx_buffer: UdpSocketBuffer<'static, 'static>,
tx_buffer: UdpSocketBuffer<'static, 'static>)
-> UdpSocket<'static, 'static> {
UdpSocket::new(rx_buffer, tx_buffer)
}
const LOCAL_PORT: u16 = 53;
const REMOTE_PORT: u16 = 49500;
pub const LOCAL_END: IpEndpoint = IpEndpoint { addr: MOCK_IP_ADDR_1, port: LOCAL_PORT };
pub const REMOTE_END: IpEndpoint = IpEndpoint { addr: MOCK_IP_ADDR_2, port: REMOTE_PORT };
pub const LOCAL_IP_REPR: IpRepr = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_1,
dst_addr: MOCK_IP_ADDR_2,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64,
};
const LOCAL_UDP_REPR: UdpRepr = UdpRepr {
src_port: LOCAL_PORT,
dst_port: REMOTE_PORT,
payload: b"abcdef"
};
const REMOTE_UDP_REPR: UdpRepr = UdpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
payload: b"abcdef"
};
fn remote_ip_repr() -> IpRepr {
match (MOCK_IP_ADDR_2, MOCK_IP_ADDR_1) {
#[cfg(feature = "proto-ipv4")]
(IpAddress::Ipv4(src), IpAddress::Ipv4(dst)) => IpRepr::Ipv4(Ipv4Repr {
src_addr: src,
dst_addr: dst,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
#[cfg(feature = "proto-ipv6")]
(IpAddress::Ipv6(src), IpAddress::Ipv6(dst)) => IpRepr::Ipv6(Ipv6Repr {
src_addr: src,
dst_addr: dst,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
_ => unreachable!()
}
}
#[test]
fn test_bind_unaddressable() {
let mut socket = socket(buffer(0), buffer(0));
assert_eq!(socket.bind(0), Err(Error::Unaddressable));
}
#[test]
fn test_bind_twice() {
let mut socket = socket(buffer(0), buffer(0));
assert_eq!(socket.bind(1), Ok(()));
assert_eq!(socket.bind(2), Err(Error::Illegal));
}
#[test]
#[should_panic(expected = "the time-to-live value of a packet must not be zero")]
fn test_set_hop_limit_zero() {
let mut s = socket(buffer(0), buffer(1));
s.set_hop_limit(Some(0));
}
#[test]
fn test_send_unaddressable() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Err(Error::Unaddressable));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(socket.send_slice(b"abcdef",
IpEndpoint { addr: IpAddress::Unspecified, ..REMOTE_END }),
Err(Error::Unaddressable));
assert_eq!(socket.send_slice(b"abcdef",
IpEndpoint { port: 0, ..REMOTE_END }),
Err(Error::Unaddressable));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(()));
}
#[test]
fn test_send_dispatch() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
assert!(socket.can_send());
assert_eq!(socket.dispatch(|_| unreachable!()),
Err(Error::Exhausted));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(()));
assert_eq!(socket.send_slice(b"123456", REMOTE_END), Err(Error::Exhausted));
assert!(!socket.can_send());
assert_eq!(socket.dispatch(|(ip_repr, udp_repr)| {
assert_eq!(ip_repr, LOCAL_IP_REPR);
assert_eq!(udp_repr, LOCAL_UDP_REPR);
Err(Error::Unaddressable)
}), Err(Error::Unaddressable));
assert!(!socket.can_send());
assert_eq!(socket.dispatch(|(ip_repr, udp_repr)| {
assert_eq!(ip_repr, LOCAL_IP_REPR);
assert_eq!(udp_repr, LOCAL_UDP_REPR);
Ok(())
}), Ok(()));
assert!(socket.can_send());
}
#[test]
fn test_recv_process() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(!socket.can_recv());
assert_eq!(socket.recv(), Err(Error::Exhausted));
assert!(socket.accepts(&remote_ip_repr(), &REMOTE_UDP_REPR));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Ok(()));
assert!(socket.can_recv());
assert!(socket.accepts(&remote_ip_repr(), &REMOTE_UDP_REPR));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Err(Error::Exhausted));
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
assert!(!socket.can_recv());
}
#[test]
fn test_peek_process() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(socket.peek(), Err(Error::Exhausted));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Ok(()));
assert_eq!(socket.peek(), Ok((&b"abcdef"[..], &REMOTE_END)));
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END)));
assert_eq!(socket.peek(), Err(Error::Exhausted));
}
#[test]
fn test_recv_truncated_slice() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(socket.accepts(&remote_ip_repr(), &REMOTE_UDP_REPR));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Ok(()));
let mut slice = [0; 4];
assert_eq!(socket.recv_slice(&mut slice[..]), Ok((4, REMOTE_END)));
assert_eq!(&slice, b"abcd");
}
#[test]
fn test_peek_truncated_slice() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(socket.process(&remote_ip_repr(), &REMOTE_UDP_REPR),
Ok(()));
let mut slice = [0; 4];
assert_eq!(socket.peek_slice(&mut slice[..]), Ok((4, &REMOTE_END)));
assert_eq!(&slice, b"abcd");
assert_eq!(socket.recv_slice(&mut slice[..]), Ok((4, REMOTE_END)));
assert_eq!(&slice, b"abcd");
assert_eq!(socket.peek_slice(&mut slice[..]), Err(Error::Exhausted));
}
#[test]
fn test_set_hop_limit() {
let mut s = socket(buffer(0), buffer(1));
assert_eq!(s.bind(LOCAL_END), Ok(()));
s.set_hop_limit(Some(0x2a));
assert_eq!(s.send_slice(b"abcdef", REMOTE_END), Ok(()));
assert_eq!(s.dispatch(|(ip_repr, _)| {
assert_eq!(ip_repr, IpRepr::Unspecified{
src_addr: MOCK_IP_ADDR_1,
dst_addr: MOCK_IP_ADDR_2,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 0x2a,
});
Ok(())
}), Ok(()));
}
#[test]
fn test_doesnt_accept_wrong_port() {
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
let mut udp_repr = REMOTE_UDP_REPR;
assert!(socket.accepts(&remote_ip_repr(), &udp_repr));
udp_repr.dst_port += 1;
assert!(!socket.accepts(&remote_ip_repr(), &udp_repr));
}
#[test]
fn test_doesnt_accept_wrong_ip() {
fn generate_bad_repr() -> IpRepr {
match (MOCK_IP_ADDR_2, MOCK_IP_ADDR_3) {
#[cfg(feature = "proto-ipv4")]
(IpAddress::Ipv4(src), IpAddress::Ipv4(dst)) => IpRepr::Ipv4(Ipv4Repr {
src_addr: src,
dst_addr: dst,
protocol: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
#[cfg(feature = "proto-ipv6")]
(IpAddress::Ipv6(src), IpAddress::Ipv6(dst)) => IpRepr::Ipv6(Ipv6Repr {
src_addr: src,
dst_addr: dst,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64
}),
_ => unreachable!()
}
}
let mut port_bound_socket = socket(buffer(1), buffer(0));
assert_eq!(port_bound_socket.bind(LOCAL_PORT), Ok(()));
assert!(port_bound_socket.accepts(&generate_bad_repr(), &REMOTE_UDP_REPR));
let mut ip_bound_socket = socket(buffer(1), buffer(0));
assert_eq!(ip_bound_socket.bind(LOCAL_END), Ok(()));
assert!(!ip_bound_socket.accepts(&generate_bad_repr(), &REMOTE_UDP_REPR));
}
#[test]
fn test_send_large_packet() {
// buffer(4) creates a payload buffer of size 16*4
let mut socket = socket(buffer(0), buffer(4));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
let too_large = b"0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdefx";
assert_eq!(socket.send_slice(too_large, REMOTE_END), Err(Error::Truncated));
assert_eq!(socket.send_slice(&too_large[..16*4], REMOTE_END), Ok(()));
}
#[test]
fn test_process_empty_payload() {
let recv_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY; 1], vec![]);
let mut socket = socket(recv_buffer, buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
let repr = UdpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
payload: &[]
};
assert_eq!(socket.process(&remote_ip_repr(), &repr), Ok(()));
assert_eq!(socket.recv(), Ok((&[][..], REMOTE_END)));
}
}