renet/src/socket/icmp.rs

884 lines
33 KiB
Rust

use core::cmp;
#[cfg(feature = "async")]
use core::task::Waker;
use crate::{Error, Result};
use crate::phy::{ChecksumCapabilities, DeviceCapabilities};
use crate::socket::{Socket, SocketMeta, SocketHandle, PollAt};
use crate::storage::{PacketBuffer, PacketMetadata};
#[cfg(feature = "async")]
use crate::socket::WakerRegistration;
#[cfg(feature = "proto-ipv4")]
use crate::wire::{Ipv4Address, Ipv4Repr, Icmpv4Packet, Icmpv4Repr};
#[cfg(feature = "proto-ipv6")]
use crate::wire::{Ipv6Address, Ipv6Repr, Icmpv6Packet, Icmpv6Repr};
use crate::wire::IcmpRepr;
use crate::wire::{UdpPacket, UdpRepr};
use crate::wire::{IpAddress, IpEndpoint, IpProtocol, IpRepr};
/// Type of endpoint to bind the ICMP socket to. See [IcmpSocket::bind] for
/// more details.
///
/// [IcmpSocket::bind]: struct.IcmpSocket.html#method.bind
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub enum Endpoint {
Unspecified,
Ident(u16),
Udp(IpEndpoint)
}
impl Endpoint {
pub fn is_specified(&self) -> bool {
match *self {
Endpoint::Ident(_) => true,
Endpoint::Udp(endpoint) => endpoint.port != 0,
Endpoint::Unspecified => false
}
}
}
impl Default for Endpoint {
fn default() -> Endpoint { Endpoint::Unspecified }
}
/// An ICMP packet metadata.
pub type IcmpPacketMetadata = PacketMetadata<IpAddress>;
/// An ICMP packet ring buffer.
pub type IcmpSocketBuffer<'a, 'b> = PacketBuffer<'a, 'b, IpAddress>;
/// A ICMP socket
///
/// An ICMP socket is bound to a specific [IcmpEndpoint] which may
/// be a sepecific UDP port to listen for ICMP error messages related
/// to the port or a specific ICMP identifier value. See [bind] for
/// more details.
///
/// [IcmpEndpoint]: enum.IcmpEndpoint.html
/// [bind]: #method.bind
#[derive(Debug)]
pub struct IcmpSocket<'a, 'b: 'a> {
pub(crate) meta: SocketMeta,
rx_buffer: IcmpSocketBuffer<'a, 'b>,
tx_buffer: IcmpSocketBuffer<'a, 'b>,
/// The endpoint this socket is communicating with
endpoint: Endpoint,
/// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
hop_limit: Option<u8>,
#[cfg(feature = "async")]
rx_waker: WakerRegistration,
#[cfg(feature = "async")]
tx_waker: WakerRegistration,
}
impl<'a, 'b> IcmpSocket<'a, 'b> {
/// Create an ICMP socket with the given buffers.
pub fn new(rx_buffer: IcmpSocketBuffer<'a, 'b>,
tx_buffer: IcmpSocketBuffer<'a, 'b>) -> IcmpSocket<'a, 'b> {
IcmpSocket {
meta: SocketMeta::default(),
rx_buffer: rx_buffer,
tx_buffer: tx_buffer,
endpoint: Endpoint::default(),
hop_limit: None,
#[cfg(feature = "async")]
rx_waker: WakerRegistration::new(),
#[cfg(feature = "async")]
tx_waker: WakerRegistration::new(),
}
}
/// Register a waker for receive operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `recv` method calls, such as receiving data, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_recv_waker(&mut self, waker: &Waker) {
self.rx_waker.register(waker)
}
/// Register a waker for send operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `send` method calls, such as space becoming available in the transmit
/// buffer, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_send_waker(&mut self, waker: &Waker) {
self.tx_waker.register(waker)
}
/// Return the socket handle.
#[inline]
pub fn handle(&self) -> SocketHandle {
self.meta.handle
}
/// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// See also the [set_hop_limit](#method.set_hop_limit) method
pub fn hop_limit(&self) -> Option<u8> {
self.hop_limit
}
/// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// A socket without an explicitly set hop limit value uses the default [IANA recommended]
/// value (64).
///
/// # Panics
///
/// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7].
///
/// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
/// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
// A host MUST NOT send a datagram with a hop limit value of 0
if let Some(0) = hop_limit {
panic!("the time-to-live value of a packet must not be zero")
}
self.hop_limit = hop_limit
}
/// Bind the socket to the given endpoint.
///
/// This function returns `Err(Error::Illegal)` if the socket was open
/// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)`
/// if `endpoint` is unspecified (see [is_specified]).
///
/// # Examples
///
/// ## Bind to ICMP Error messages associated with a specific UDP port:
///
/// To [recv] ICMP error messages that are associated with a specific local
/// UDP port, the socket may be bound to a given port using [IcmpEndpoint::Udp].
/// This may be useful for applications using UDP attempting to detect and/or
/// diagnose connection problems.
///
/// ```
/// # use smoltcp::socket::{Socket, IcmpSocket, IcmpSocketBuffer, IcmpPacketMetadata};
/// # let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]);
/// # let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]);
/// use smoltcp::wire::IpEndpoint;
/// use smoltcp::socket::IcmpEndpoint;
///
/// let mut icmp_socket = // ...
/// # IcmpSocket::new(rx_buffer, tx_buffer);
///
/// // Bind to ICMP error responses for UDP packets sent from port 53.
/// let endpoint = IpEndpoint::from(53);
/// icmp_socket.bind(IcmpEndpoint::Udp(endpoint)).unwrap();
/// ```
///
/// ## Bind to a specific ICMP identifier:
///
/// To [send] and [recv] ICMP packets that are not associated with a specific UDP
/// port, the socket may be bound to a specific ICMP identifier using
/// [IcmpEndpoint::Ident]. This is useful for sending and receiving Echo Request/Reply
/// messages.
///
/// ```
/// # use smoltcp::socket::{Socket, IcmpSocket, IcmpSocketBuffer, IcmpPacketMetadata};
/// # let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]);
/// # let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]);
/// use smoltcp::socket::IcmpEndpoint;
///
/// let mut icmp_socket = // ...
/// # IcmpSocket::new(rx_buffer, tx_buffer);
///
/// // Bind to ICMP messages with the ICMP identifier 0x1234
/// icmp_socket.bind(IcmpEndpoint::Ident(0x1234)).unwrap();
/// ```
///
/// [is_specified]: enum.IcmpEndpoint.html#method.is_specified
/// [IcmpEndpoint::Ident]: enum.IcmpEndpoint.html#variant.Ident
/// [IcmpEndpoint::Udp]: enum.IcmpEndpoint.html#variant.Udp
/// [send]: #method.send
/// [recv]: #method.recv
pub fn bind<T: Into<Endpoint>>(&mut self, endpoint: T) -> Result<()> {
let endpoint = endpoint.into();
if !endpoint.is_specified() {
return Err(Error::Unaddressable);
}
if self.is_open() { return Err(Error::Illegal) }
self.endpoint = endpoint;
#[cfg(feature = "async")]
{
self.rx_waker.wake();
self.tx_waker.wake();
}
Ok(())
}
/// Check whether the transmit buffer is full.
#[inline]
pub fn can_send(&self) -> bool {
!self.tx_buffer.is_full()
}
/// Check whether the receive buffer is not empty.
#[inline]
pub fn can_recv(&self) -> bool {
!self.rx_buffer.is_empty()
}
/// Return the maximum number packets the socket can receive.
#[inline]
pub fn packet_recv_capacity(&self) -> usize {
self.rx_buffer.packet_capacity()
}
/// Return the maximum number packets the socket can transmit.
#[inline]
pub fn packet_send_capacity(&self) -> usize {
self.tx_buffer.packet_capacity()
}
/// Return the maximum number of bytes inside the recv buffer.
#[inline]
pub fn payload_recv_capacity(&self) -> usize {
self.rx_buffer.payload_capacity()
}
/// Return the maximum number of bytes inside the transmit buffer.
#[inline]
pub fn payload_send_capacity(&self) -> usize {
self.tx_buffer.payload_capacity()
}
/// Check whether the socket is open.
#[inline]
pub fn is_open(&self) -> bool {
self.endpoint != Endpoint::Unspecified
}
/// Enqueue a packet to be sent to a given remote address, and return a pointer
/// to its payload.
///
/// This function returns `Err(Error::Exhausted)` if the transmit buffer is full,
/// `Err(Error::Truncated)` if the requested size is larger than the packet buffer
/// size, and `Err(Error::Unaddressable)` if the remote address is unspecified.
pub fn send(&mut self, size: usize, endpoint: IpAddress) -> Result<&mut [u8]> {
if endpoint.is_unspecified() {
return Err(Error::Unaddressable)
}
let packet_buf = self.tx_buffer.enqueue(size, endpoint)?;
net_trace!("{}:{}: buffer to send {} octets",
self.meta.handle, endpoint, size);
Ok(packet_buf)
}
/// Enqueue a packet to be sent to a given remote address, and fill it from a slice.
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, data: &[u8], endpoint: IpAddress) -> Result<()> {
let packet_buf = self.send(data.len(), endpoint)?;
packet_buf.copy_from_slice(data);
Ok(())
}
/// Dequeue a packet received from a remote endpoint, and return the `IpAddress` as well
/// as a pointer to the payload.
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn recv(&mut self) -> Result<(&[u8], IpAddress)> {
let (endpoint, packet_buf) = self.rx_buffer.dequeue()?;
net_trace!("{}:{}: receive {} buffered octets",
self.meta.handle, endpoint, packet_buf.len());
Ok((packet_buf, endpoint))
}
/// Dequeue a packet received from a remote endpoint, copy the payload into the given slice,
/// and return the amount of octets copied as well as the `IpAddress`
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(usize, IpAddress)> {
let (buffer, endpoint) = self.recv()?;
let length = cmp::min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok((length, endpoint))
}
/// Filter determining which packets received by the interface are appended to
/// the given sockets received buffer.
pub(crate) fn accepts(&self, ip_repr: &IpRepr, icmp_repr: &IcmpRepr,
cksum: &ChecksumCapabilities) -> bool {
match (&self.endpoint, icmp_repr) {
// If we are bound to ICMP errors associated to a UDP port, only
// accept Destination Unreachable messages with the data containing
// a UDP packet send from the local port we are bound to.
#[cfg(feature = "proto-ipv4")]
(&Endpoint::Udp(endpoint), &IcmpRepr::Ipv4(Icmpv4Repr::DstUnreachable { data, .. }))
if endpoint.addr.is_unspecified() || endpoint.addr == ip_repr.dst_addr() => {
let packet = UdpPacket::new_unchecked(data);
match UdpRepr::parse(&packet, &ip_repr.src_addr(), &ip_repr.dst_addr(), cksum) {
Ok(repr) => endpoint.port == repr.src_port,
Err(_) => false,
}
}
#[cfg(feature = "proto-ipv6")]
(&Endpoint::Udp(endpoint), &IcmpRepr::Ipv6(Icmpv6Repr::DstUnreachable { data, .. }))
if endpoint.addr.is_unspecified() || endpoint.addr == ip_repr.dst_addr() => {
let packet = UdpPacket::new_unchecked(data);
match UdpRepr::parse(&packet, &ip_repr.src_addr(), &ip_repr.dst_addr(), cksum) {
Ok(repr) => endpoint.port == repr.src_port,
Err(_) => false,
}
}
// If we are bound to a specific ICMP identifier value, only accept an
// Echo Request/Reply with the identifier field matching the endpoint
// port.
#[cfg(feature = "proto-ipv4")]
(&Endpoint::Ident(bound_ident),
&IcmpRepr::Ipv4(Icmpv4Repr::EchoRequest { ident, .. })) |
(&Endpoint::Ident(bound_ident),
&IcmpRepr::Ipv4(Icmpv4Repr::EchoReply { ident, .. })) =>
ident == bound_ident,
#[cfg(feature = "proto-ipv6")]
(&Endpoint::Ident(bound_ident),
&IcmpRepr::Ipv6(Icmpv6Repr::EchoRequest { ident, .. })) |
(&Endpoint::Ident(bound_ident),
&IcmpRepr::Ipv6(Icmpv6Repr::EchoReply { ident, .. })) =>
ident == bound_ident,
_ => false,
}
}
pub(crate) fn process(&mut self, ip_repr: &IpRepr, icmp_repr: &IcmpRepr,
_cksum: &ChecksumCapabilities) -> Result<()> {
match *icmp_repr {
#[cfg(feature = "proto-ipv4")]
IcmpRepr::Ipv4(ref icmp_repr) => {
let packet_buf = self.rx_buffer.enqueue(icmp_repr.buffer_len(),
ip_repr.src_addr())?;
icmp_repr.emit(&mut Icmpv4Packet::new_unchecked(packet_buf),
&ChecksumCapabilities::default());
net_trace!("{}:{}: receiving {} octets",
self.meta.handle, icmp_repr.buffer_len(), packet_buf.len());
},
#[cfg(feature = "proto-ipv6")]
IcmpRepr::Ipv6(ref icmp_repr) => {
let packet_buf = self.rx_buffer.enqueue(icmp_repr.buffer_len(),
ip_repr.src_addr())?;
icmp_repr.emit(&ip_repr.src_addr(), &ip_repr.dst_addr(),
&mut Icmpv6Packet::new_unchecked(packet_buf),
&ChecksumCapabilities::default());
net_trace!("{}:{}: receiving {} octets",
self.meta.handle, icmp_repr.buffer_len(), packet_buf.len());
},
}
#[cfg(feature = "async")]
self.rx_waker.wake();
Ok(())
}
pub(crate) fn dispatch<F>(&mut self, _caps: &DeviceCapabilities, emit: F) -> Result<()>
where F: FnOnce((IpRepr, IcmpRepr)) -> Result<()>
{
let handle = self.meta.handle;
let hop_limit = self.hop_limit.unwrap_or(64);
self.tx_buffer.dequeue_with(|remote_endpoint, packet_buf| {
net_trace!("{}:{}: sending {} octets",
handle, remote_endpoint, packet_buf.len());
match *remote_endpoint {
#[cfg(feature = "proto-ipv4")]
IpAddress::Ipv4(ipv4_addr) => {
let packet = Icmpv4Packet::new_unchecked(&*packet_buf);
let repr = Icmpv4Repr::parse(&packet, &ChecksumCapabilities::ignored())?;
let ip_repr = IpRepr::Ipv4(Ipv4Repr {
src_addr: Ipv4Address::default(),
dst_addr: ipv4_addr,
protocol: IpProtocol::Icmp,
payload_len: repr.buffer_len(),
hop_limit: hop_limit,
});
emit((ip_repr, IcmpRepr::Ipv4(repr)))
},
#[cfg(feature = "proto-ipv6")]
IpAddress::Ipv6(ipv6_addr) => {
let packet = Icmpv6Packet::new_unchecked(&*packet_buf);
let src_addr = Ipv6Address::default();
let repr = Icmpv6Repr::parse(&src_addr.into(), &ipv6_addr.into(), &packet, &ChecksumCapabilities::ignored())?;
let ip_repr = IpRepr::Ipv6(Ipv6Repr {
src_addr: src_addr,
dst_addr: ipv6_addr,
next_header: IpProtocol::Icmpv6,
payload_len: repr.buffer_len(),
hop_limit: hop_limit,
});
emit((ip_repr, IcmpRepr::Ipv6(repr)))
},
_ => Err(Error::Unaddressable)
}
})?;
#[cfg(feature = "async")]
self.tx_waker.wake();
Ok(())
}
pub(crate) fn poll_at(&self) -> PollAt {
if self.tx_buffer.is_empty() {
PollAt::Ingress
} else {
PollAt::Now
}
}
}
impl<'a, 'b> Into<Socket<'a, 'b>> for IcmpSocket<'a, 'b> {
fn into(self) -> Socket<'a, 'b> {
Socket::Icmp(self)
}
}
#[cfg(test)]
mod tests_common {
pub use crate::phy::DeviceCapabilities;
pub use crate::wire::IpAddress;
pub use super::*;
pub fn buffer(packets: usize) -> IcmpSocketBuffer<'static, 'static> {
IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY; packets], vec![0; 66 * packets])
}
pub fn socket(rx_buffer: IcmpSocketBuffer<'static, 'static>,
tx_buffer: IcmpSocketBuffer<'static, 'static>) -> IcmpSocket<'static, 'static> {
IcmpSocket::new(rx_buffer, tx_buffer)
}
pub const LOCAL_PORT: u16 = 53;
pub static UDP_REPR: UdpRepr = UdpRepr {
src_port: 53,
dst_port: 9090,
payload: &[0xff; 10]
};
}
#[cfg(all(test, feature = "proto-ipv4"))]
mod test_ipv4 {
use super::tests_common::*;
use crate::wire::Icmpv4DstUnreachable;
const REMOTE_IPV4: Ipv4Address = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
const LOCAL_IPV4: Ipv4Address = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
const LOCAL_END_V4: IpEndpoint = IpEndpoint { addr: IpAddress::Ipv4(LOCAL_IPV4), port: LOCAL_PORT };
static ECHOV4_REPR: Icmpv4Repr = Icmpv4Repr::EchoRequest {
ident: 0x1234,
seq_no: 0x5678,
data: &[0xff; 16]
};
static LOCAL_IPV4_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr {
src_addr: Ipv4Address::UNSPECIFIED,
dst_addr: REMOTE_IPV4,
protocol: IpProtocol::Icmp,
payload_len: 24,
hop_limit: 0x40
});
static REMOTE_IPV4_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr {
src_addr: REMOTE_IPV4,
dst_addr: LOCAL_IPV4,
protocol: IpProtocol::Icmp,
payload_len: 24,
hop_limit: 0x40
});
#[test]
fn test_send_unaddressable() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.send_slice(b"abcdef", IpAddress::default()),
Err(Error::Unaddressable));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_IPV4.into()), Ok(()));
}
#[test]
fn test_send_dispatch() {
let mut socket = socket(buffer(0), buffer(1));
let caps = DeviceCapabilities::default();
assert_eq!(socket.dispatch(&caps, |_| unreachable!()),
Err(Error::Exhausted));
// This buffer is too long
assert_eq!(socket.send_slice(&[0xff; 67], REMOTE_IPV4.into()), Err(Error::Truncated));
assert!(socket.can_send());
let mut bytes = [0xff; 24];
let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
ECHOV4_REPR.emit(&mut packet, &caps.checksum);
assert_eq!(socket.send_slice(&packet.into_inner()[..], REMOTE_IPV4.into()), Ok(()));
assert_eq!(socket.send_slice(b"123456", REMOTE_IPV4.into()), Err(Error::Exhausted));
assert!(!socket.can_send());
assert_eq!(socket.dispatch(&caps, |(ip_repr, icmp_repr)| {
assert_eq!(ip_repr, LOCAL_IPV4_REPR);
assert_eq!(icmp_repr, ECHOV4_REPR.into());
Err(Error::Unaddressable)
}), Err(Error::Unaddressable));
// buffer is not taken off of the tx queue due to the error
assert!(!socket.can_send());
assert_eq!(socket.dispatch(&caps, |(ip_repr, icmp_repr)| {
assert_eq!(ip_repr, LOCAL_IPV4_REPR);
assert_eq!(icmp_repr, ECHOV4_REPR.into());
Ok(())
}), Ok(()));
// buffer is taken off of the queue this time
assert!(socket.can_send());
}
#[test]
fn test_set_hop_limit_v4() {
let mut s = socket(buffer(0), buffer(1));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 24];
let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
ECHOV4_REPR.emit(&mut packet, &caps.checksum);
s.set_hop_limit(Some(0x2a));
assert_eq!(s.send_slice(&packet.into_inner()[..], REMOTE_IPV4.into()), Ok(()));
assert_eq!(s.dispatch(&caps, |(ip_repr, _)| {
assert_eq!(ip_repr, IpRepr::Ipv4(Ipv4Repr {
src_addr: Ipv4Address::UNSPECIFIED,
dst_addr: REMOTE_IPV4,
protocol: IpProtocol::Icmp,
payload_len: ECHOV4_REPR.buffer_len(),
hop_limit: 0x2a,
}));
Ok(())
}), Ok(()));
}
#[test]
fn test_recv_process() {
let mut socket = socket(buffer(1), buffer(1));
assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(()));
assert!(!socket.can_recv());
assert_eq!(socket.recv(), Err(Error::Exhausted));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 24];
let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
ECHOV4_REPR.emit(&mut packet, &caps.checksum);
let data = &packet.into_inner()[..];
assert!(socket.accepts(&REMOTE_IPV4_REPR, &ECHOV4_REPR.into(), &caps.checksum));
assert_eq!(socket.process(&REMOTE_IPV4_REPR, &ECHOV4_REPR.into(), &caps.checksum),
Ok(()));
assert!(socket.can_recv());
assert!(socket.accepts(&REMOTE_IPV4_REPR, &ECHOV4_REPR.into(), &caps.checksum));
assert_eq!(socket.process(&REMOTE_IPV4_REPR, &ECHOV4_REPR.into(), &caps.checksum),
Err(Error::Exhausted));
assert_eq!(socket.recv(), Ok((&data[..], REMOTE_IPV4.into())));
assert!(!socket.can_recv());
}
#[test]
fn test_accept_bad_id() {
let mut socket = socket(buffer(1), buffer(1));
assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(()));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 20];
let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
let icmp_repr = Icmpv4Repr::EchoRequest {
ident: 0x4321,
seq_no: 0x5678,
data: &[0xff; 16]
};
icmp_repr.emit(&mut packet, &caps.checksum);
// Ensure that a packet with an identifier that isn't the bound
// ID is not accepted
assert!(!socket.accepts(&REMOTE_IPV4_REPR, &icmp_repr.into(), &caps.checksum));
}
#[test]
fn test_accepts_udp() {
let mut socket = socket(buffer(1), buffer(1));
assert_eq!(socket.bind(Endpoint::Udp(LOCAL_END_V4)), Ok(()));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 18];
let mut packet = UdpPacket::new_unchecked(&mut bytes);
UDP_REPR.emit(&mut packet, &REMOTE_IPV4.into(), &LOCAL_IPV4.into(), &caps.checksum);
let data = &packet.into_inner()[..];
let icmp_repr = Icmpv4Repr::DstUnreachable {
reason: Icmpv4DstUnreachable::PortUnreachable,
header: Ipv4Repr {
src_addr: LOCAL_IPV4,
dst_addr: REMOTE_IPV4,
protocol: IpProtocol::Icmp,
payload_len: 12,
hop_limit: 0x40
},
data: data
};
let ip_repr = IpRepr::Unspecified {
src_addr: REMOTE_IPV4.into(),
dst_addr: LOCAL_IPV4.into(),
protocol: IpProtocol::Icmp,
payload_len: icmp_repr.buffer_len(),
hop_limit: 0x40
};
assert!(!socket.can_recv());
// Ensure we can accept ICMP error response to the bound
// UDP port
assert!(socket.accepts(&ip_repr, &icmp_repr.into(), &caps.checksum));
assert_eq!(socket.process(&ip_repr, &icmp_repr.into(), &caps.checksum),
Ok(()));
assert!(socket.can_recv());
let mut bytes = [0x00; 46];
let mut packet = Icmpv4Packet::new_unchecked(&mut bytes[..]);
icmp_repr.emit(&mut packet, &caps.checksum);
assert_eq!(socket.recv(), Ok((&packet.into_inner()[..], REMOTE_IPV4.into())));
assert!(!socket.can_recv());
}
}
#[cfg(all(test, feature = "proto-ipv6"))]
mod test_ipv6 {
use super::tests_common::*;
use crate::wire::Icmpv6DstUnreachable;
const REMOTE_IPV6: Ipv6Address = Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1]);
const LOCAL_IPV6: Ipv6Address = Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 2]);
const LOCAL_END_V6: IpEndpoint = IpEndpoint { addr: IpAddress::Ipv6(LOCAL_IPV6), port: LOCAL_PORT };
static ECHOV6_REPR: Icmpv6Repr = Icmpv6Repr::EchoRequest {
ident: 0x1234,
seq_no: 0x5678,
data: &[0xff; 16]
};
static LOCAL_IPV6_REPR: IpRepr = IpRepr::Ipv6(Ipv6Repr {
src_addr: Ipv6Address::UNSPECIFIED,
dst_addr: REMOTE_IPV6,
next_header: IpProtocol::Icmpv6,
payload_len: 24,
hop_limit: 0x40
});
static REMOTE_IPV6_REPR: IpRepr = IpRepr::Ipv6(Ipv6Repr {
src_addr: REMOTE_IPV6,
dst_addr: LOCAL_IPV6,
next_header: IpProtocol::Icmpv6,
payload_len: 24,
hop_limit: 0x40
});
#[test]
fn test_send_unaddressable() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.send_slice(b"abcdef", IpAddress::default()),
Err(Error::Unaddressable));
assert_eq!(socket.send_slice(b"abcdef", REMOTE_IPV6.into()), Ok(()));
}
#[test]
fn test_send_dispatch() {
let mut socket = socket(buffer(0), buffer(1));
let caps = DeviceCapabilities::default();
assert_eq!(socket.dispatch(&caps, |_| unreachable!()),
Err(Error::Exhausted));
// This buffer is too long
assert_eq!(socket.send_slice(&[0xff; 67], REMOTE_IPV6.into()), Err(Error::Truncated));
assert!(socket.can_send());
let mut bytes = vec![0xff; 24];
let mut packet = Icmpv6Packet::new_unchecked(&mut bytes);
ECHOV6_REPR.emit(&LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &caps.checksum);
assert_eq!(socket.send_slice(&packet.into_inner()[..], REMOTE_IPV6.into()), Ok(()));
assert_eq!(socket.send_slice(b"123456", REMOTE_IPV6.into()), Err(Error::Exhausted));
assert!(!socket.can_send());
assert_eq!(socket.dispatch(&caps, |(ip_repr, icmp_repr)| {
assert_eq!(ip_repr, LOCAL_IPV6_REPR);
assert_eq!(icmp_repr, ECHOV6_REPR.into());
Err(Error::Unaddressable)
}), Err(Error::Unaddressable));
// buffer is not taken off of the tx queue due to the error
assert!(!socket.can_send());
assert_eq!(socket.dispatch(&caps, |(ip_repr, icmp_repr)| {
assert_eq!(ip_repr, LOCAL_IPV6_REPR);
assert_eq!(icmp_repr, ECHOV6_REPR.into());
Ok(())
}), Ok(()));
// buffer is taken off of the queue this time
assert!(socket.can_send());
}
#[test]
fn test_set_hop_limit() {
let mut s = socket(buffer(0), buffer(1));
let caps = DeviceCapabilities::default();
let mut bytes = vec![0xff; 24];
let mut packet = Icmpv6Packet::new_unchecked(&mut bytes);
ECHOV6_REPR.emit(&LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &caps.checksum);
s.set_hop_limit(Some(0x2a));
assert_eq!(s.send_slice(&packet.into_inner()[..], REMOTE_IPV6.into()), Ok(()));
assert_eq!(s.dispatch(&caps, |(ip_repr, _)| {
assert_eq!(ip_repr, IpRepr::Ipv6(Ipv6Repr {
src_addr: Ipv6Address::UNSPECIFIED,
dst_addr: REMOTE_IPV6,
next_header: IpProtocol::Icmpv6,
payload_len: ECHOV6_REPR.buffer_len(),
hop_limit: 0x2a,
}));
Ok(())
}), Ok(()));
}
#[test]
fn test_recv_process() {
let mut socket = socket(buffer(1), buffer(1));
assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(()));
assert!(!socket.can_recv());
assert_eq!(socket.recv(), Err(Error::Exhausted));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 24];
let mut packet = Icmpv6Packet::new_unchecked(&mut bytes);
ECHOV6_REPR.emit(&LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &caps.checksum);
let data = &packet.into_inner()[..];
assert!(socket.accepts(&REMOTE_IPV6_REPR, &ECHOV6_REPR.into(), &caps.checksum));
assert_eq!(socket.process(&REMOTE_IPV6_REPR, &ECHOV6_REPR.into(), &caps.checksum),
Ok(()));
assert!(socket.can_recv());
assert!(socket.accepts(&REMOTE_IPV6_REPR, &ECHOV6_REPR.into(), &caps.checksum));
assert_eq!(socket.process(&REMOTE_IPV6_REPR, &ECHOV6_REPR.into(), &caps.checksum),
Err(Error::Exhausted));
assert_eq!(socket.recv(), Ok((&data[..], REMOTE_IPV6.into())));
assert!(!socket.can_recv());
}
#[test]
fn test_accept_bad_id() {
let mut socket = socket(buffer(1), buffer(1));
assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(()));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 20];
let mut packet = Icmpv6Packet::new_unchecked(&mut bytes);
let icmp_repr = Icmpv6Repr::EchoRequest {
ident: 0x4321,
seq_no: 0x5678,
data: &[0xff; 16]
};
icmp_repr.emit(&LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &caps.checksum);
// Ensure that a packet with an identifier that isn't the bound
// ID is not accepted
assert!(!socket.accepts(&REMOTE_IPV6_REPR, &icmp_repr.into(), &caps.checksum));
}
#[test]
fn test_accepts_udp() {
let mut socket = socket(buffer(1), buffer(1));
assert_eq!(socket.bind(Endpoint::Udp(LOCAL_END_V6)), Ok(()));
let caps = DeviceCapabilities::default();
let mut bytes = [0xff; 18];
let mut packet = UdpPacket::new_unchecked(&mut bytes);
UDP_REPR.emit(&mut packet, &REMOTE_IPV6.into(), &LOCAL_IPV6.into(), &caps.checksum);
let data = &packet.into_inner()[..];
let icmp_repr = Icmpv6Repr::DstUnreachable {
reason: Icmpv6DstUnreachable::PortUnreachable,
header: Ipv6Repr {
src_addr: LOCAL_IPV6,
dst_addr: REMOTE_IPV6,
next_header: IpProtocol::Icmpv6,
payload_len: 12,
hop_limit: 0x40
},
data: data
};
let ip_repr = IpRepr::Unspecified {
src_addr: REMOTE_IPV6.into(),
dst_addr: LOCAL_IPV6.into(),
protocol: IpProtocol::Icmpv6,
payload_len: icmp_repr.buffer_len(),
hop_limit: 0x40
};
assert!(!socket.can_recv());
// Ensure we can accept ICMP error response to the bound
// UDP port
assert!(socket.accepts(&ip_repr, &icmp_repr.into(), &caps.checksum));
assert_eq!(socket.process(&ip_repr, &icmp_repr.into(), &caps.checksum),
Ok(()));
assert!(socket.can_recv());
let mut bytes = [0x00; 66];
let mut packet = Icmpv6Packet::new_unchecked(&mut bytes[..]);
icmp_repr.emit(&LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &caps.checksum);
assert_eq!(socket.recv(), Ok((&packet.into_inner()[..], REMOTE_IPV6.into())));
assert!(!socket.can_recv());
}
}