renet/src/phy/pcap_writer.rs

207 lines
6.5 KiB
Rust

#[cfg(feature = "std")]
use std::cell::RefCell;
#[cfg(feature = "std")]
use std::io::Write;
use byteorder::{ByteOrder, NativeEndian};
use crate::Result;
use crate::phy::{self, DeviceCapabilities, Device};
use crate::time::Instant;
enum_with_unknown! {
/// Captured packet header type.
pub doc enum PcapLinkType(u32) {
/// Ethernet frames
Ethernet = 1,
/// IPv4 or IPv6 packets (depending on the version field)
Ip = 101
}
}
/// Packet capture mode.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PcapMode {
/// Capture both received and transmitted packets.
Both,
/// Capture only received packets.
RxOnly,
/// Capture only transmitted packets.
TxOnly
}
/// A packet capture sink.
pub trait PcapSink {
/// Write data into the sink.
fn write(&self, data: &[u8]);
/// Write an `u16` into the sink, in native byte order.
fn write_u16(&self, value: u16) {
let mut bytes = [0u8; 2];
NativeEndian::write_u16(&mut bytes, value);
self.write(&bytes[..])
}
/// Write an `u32` into the sink, in native byte order.
fn write_u32(&self, value: u32) {
let mut bytes = [0u8; 4];
NativeEndian::write_u32(&mut bytes, value);
self.write(&bytes[..])
}
/// Write the libpcap global header into the sink.
///
/// This method may be overridden e.g. if special synchronization is necessary.
fn global_header(&self, link_type: PcapLinkType) {
self.write_u32(0xa1b2c3d4); // magic number
self.write_u16(2); // major version
self.write_u16(4); // minor version
self.write_u32(0); // timezone (= UTC)
self.write_u32(0); // accuracy (not used)
self.write_u32(65535); // maximum packet length
self.write_u32(link_type.into()); // link-layer header type
}
/// Write the libpcap packet header into the sink.
///
/// See also the note for [global_header](#method.global_header).
///
/// # Panics
/// This function panics if `length` is greater than 65535.
fn packet_header(&self, timestamp: Instant, length: usize) {
assert!(length <= 65535);
self.write_u32(timestamp.secs() as u32); // timestamp seconds
self.write_u32(timestamp.millis() as u32); // timestamp microseconds
self.write_u32(length as u32); // captured length
self.write_u32(length as u32); // original length
}
/// Write the libpcap packet header followed by packet data into the sink.
///
/// See also the note for [global_header](#method.global_header).
fn packet(&self, timestamp: Instant, packet: &[u8]) {
self.packet_header(timestamp, packet.len());
self.write(packet)
}
}
impl<T: AsRef<dyn PcapSink>> PcapSink for T {
fn write(&self, data: &[u8]) {
self.as_ref().write(data)
}
}
#[cfg(feature = "std")]
impl<T: Write> PcapSink for RefCell<T> {
fn write(&self, data: &[u8]) {
self.borrow_mut().write_all(data).expect("cannot write")
}
fn packet(&self, timestamp: Instant, packet: &[u8]) {
self.packet_header(timestamp, packet.len());
PcapSink::write(self, packet);
self.borrow_mut().flush().expect("cannot flush")
}
}
/// A packet capture writer device.
///
/// Every packet transmitted or received through this device is timestamped
/// and written (in the [libpcap] format) using the provided [sink].
/// Note that writes are fine-grained, and buffering is recommended.
///
/// The packet sink should be cheaply cloneable, as it is cloned on every
/// transmitted packet. For example, `&'a mut Vec<u8>` is cheaply cloneable
/// but `&std::io::File`
///
/// [libpcap]: https://wiki.wireshark.org/Development/LibpcapFileFormat
/// [sink]: trait.PcapSink.html
#[derive(Debug)]
pub struct PcapWriter<D, S>
where D: for<'a> Device<'a>,
S: PcapSink + Clone,
{
lower: D,
sink: S,
mode: PcapMode,
}
impl<D: for<'a> Device<'a>, S: PcapSink + Clone> PcapWriter<D, S> {
/// Creates a packet capture writer.
pub fn new(lower: D, sink: S, mode: PcapMode, link_type: PcapLinkType) -> PcapWriter<D, S> {
sink.global_header(link_type);
PcapWriter { lower, sink, mode }
}
}
impl<'a, D, S> Device<'a> for PcapWriter<D, S>
where D: for<'b> Device<'b>,
S: PcapSink + Clone + 'a,
{
type RxToken = RxToken<<D as Device<'a>>::RxToken, S>;
type TxToken = TxToken<<D as Device<'a>>::TxToken, S>;
fn capabilities(&self) -> DeviceCapabilities { self.lower.capabilities() }
fn receive(&'a mut self) -> Option<(Self::RxToken, Self::TxToken)> {
let &mut Self { ref mut lower, ref sink, mode, .. } = self;
lower.receive().map(|(rx_token, tx_token)| {
let rx = RxToken { token: rx_token, sink: sink.clone(), mode: mode };
let tx = TxToken { token: tx_token, sink: sink.clone(), mode: mode };
(rx, tx)
})
}
fn transmit(&'a mut self) -> Option<Self::TxToken> {
let &mut Self { ref mut lower, ref sink, mode } = self;
lower.transmit().map(|token| {
TxToken { token, sink: sink.clone(), mode: mode }
})
}
}
#[doc(hidden)]
pub struct RxToken<Rx: phy::RxToken, S: PcapSink> {
token: Rx,
sink: S,
mode: PcapMode,
}
impl<Rx: phy::RxToken, S: PcapSink> phy::RxToken for RxToken<Rx, S> {
fn consume<R, F: FnOnce(&mut [u8]) -> Result<R>>(self, timestamp: Instant, f: F) -> Result<R> {
let Self { token, sink, mode } = self;
token.consume(timestamp, |buffer| {
match mode {
PcapMode::Both | PcapMode::RxOnly =>
sink.packet(timestamp, buffer.as_ref()),
PcapMode::TxOnly => ()
}
f(buffer)
})
}
}
#[doc(hidden)]
pub struct TxToken<Tx: phy::TxToken, S: PcapSink> {
token: Tx,
sink: S,
mode: PcapMode
}
impl<Tx: phy::TxToken, S: PcapSink> phy::TxToken for TxToken<Tx, S> {
fn consume<R, F>(self, timestamp: Instant, len: usize, f: F) -> Result<R>
where F: FnOnce(&mut [u8]) -> Result<R>
{
let Self { token, sink, mode } = self;
token.consume(timestamp, len, |buffer| {
let result = f(buffer);
match mode {
PcapMode::Both | PcapMode::TxOnly =>
sink.packet(timestamp, &buffer),
PcapMode::RxOnly => ()
};
result
})
}
}