renet/src/socket/udp.rs

260 lines
8.9 KiB
Rust

use Error;
use Managed;
use wire::{IpProtocol, IpEndpoint};
use wire::{UdpPacket, UdpRepr};
use socket::{Socket, IpRepr, IpPayload};
/// A buffered UDP packet.
#[derive(Debug)]
pub struct PacketBuffer<'a> {
endpoint: IpEndpoint,
size: usize,
payload: Managed<'a, [u8]>
}
impl<'a> PacketBuffer<'a> {
/// Create a buffered packet.
pub fn new<T>(payload: T) -> PacketBuffer<'a>
where T: Into<Managed<'a, [u8]>> {
PacketBuffer {
endpoint: IpEndpoint::default(),
size: 0,
payload: payload.into()
}
}
fn as_ref<'b>(&'b self) -> &'b [u8] {
&self.payload[..self.size]
}
fn as_mut<'b>(&'b mut self) -> &'b mut [u8] {
&mut self.payload[..self.size]
}
}
/// An UDP packet ring buffer.
#[derive(Debug)]
pub struct SocketBuffer<'a, 'b: 'a> {
storage: Managed<'a, [PacketBuffer<'b>]>,
read_at: usize,
length: usize
}
impl<'a, 'b> SocketBuffer<'a, 'b> {
/// Create a packet buffer with the given storage.
pub fn new<T>(storage: T) -> SocketBuffer<'a, 'b>
where T: Into<Managed<'a, [PacketBuffer<'b>]>> {
let mut storage = storage.into();
for elem in storage.iter_mut() {
elem.endpoint = Default::default();
elem.size = 0;
}
SocketBuffer {
storage: storage,
read_at: 0,
length: 0
}
}
fn mask(&self, index: usize) -> usize {
index % self.storage.len()
}
fn incr(&self, index: usize) -> usize {
self.mask(index + 1)
}
fn empty(&self) -> bool {
self.length == 0
}
fn full(&self) -> bool {
self.length == self.storage.len()
}
/// Enqueue an element into the buffer, and return a pointer to it, or return
/// `Err(Error::Exhausted)` if the buffer is full.
pub fn enqueue(&mut self) -> Result<&mut PacketBuffer<'b>, Error> {
if self.full() {
Err(Error::Exhausted)
} else {
let index = self.mask(self.read_at + self.length);
let result = &mut self.storage[index];
self.length += 1;
Ok(result)
}
}
/// Dequeue an element from the buffer, and return a pointer to it, or return
/// `Err(Error::Exhausted)` if the buffer is empty.
pub fn dequeue(&mut self) -> Result<&PacketBuffer<'b>, Error> {
if self.empty() {
Err(Error::Exhausted)
} else {
self.length -= 1;
let result = &self.storage[self.read_at];
self.read_at = self.incr(self.read_at);
Ok(result)
}
}
}
/// An User Datagram Protocol socket.
///
/// An UDP socket is bound to a specific endpoint, and owns transmit and receive
/// packet buffers.
pub struct UdpSocket<'a, 'b: 'a> {
endpoint: IpEndpoint,
rx_buffer: SocketBuffer<'a, 'b>,
tx_buffer: SocketBuffer<'a, 'b>
}
impl<'a, 'b> UdpSocket<'a, 'b> {
/// Create an UDP socket with the given buffers.
pub fn new(endpoint: IpEndpoint,
rx_buffer: SocketBuffer<'a, 'b>, tx_buffer: SocketBuffer<'a, 'b>)
-> Socket<'a, 'b> {
Socket::Udp(UdpSocket {
endpoint: endpoint,
rx_buffer: rx_buffer,
tx_buffer: tx_buffer
})
}
/// Enqueue a packet to be sent to a given remote endpoint, and return a pointer
/// to its payload.
///
/// This function returns `Err(Error::Exhausted)` if the size is greater than what
/// the transmit buffer can accomodate.
pub fn send(&mut self, endpoint: IpEndpoint, size: usize) -> Result<&mut [u8], Error> {
let packet_buf = try!(self.tx_buffer.enqueue());
packet_buf.endpoint = endpoint;
packet_buf.size = size;
net_trace!("udp:{}:{}: buffer to send {} octets",
self.endpoint, packet_buf.endpoint, packet_buf.size);
Ok(&mut packet_buf.as_mut()[..size])
}
/// Enqueue a packet to be sent to a given remote endpoint, and fill it from a slice.
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, endpoint: IpEndpoint, data: &[u8]) -> Result<(), Error> {
let buffer = try!(self.send(endpoint, data.len()));
Ok(buffer.copy_from_slice(data))
}
/// Dequeue a packet received from a remote endpoint, and return the endpoint as well
/// as a pointer to the payload.
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn recv(&mut self) -> Result<(IpEndpoint, &[u8]), Error> {
let packet_buf = try!(self.rx_buffer.dequeue());
net_trace!("udp:{}:{}: receive {} buffered octets",
self.endpoint, packet_buf.endpoint, packet_buf.size);
Ok((packet_buf.endpoint, &packet_buf.as_ref()[..packet_buf.size]))
}
/// Dequeue a packet received from a remote endpoint, and return the endpoint as well
/// as copy the payload into the given slice.
///
/// This function returns `Err(Error::Exhausted)` if the received packet has payload
/// larger than the provided slice. See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(IpEndpoint, usize), Error> {
let (endpoint, buffer) = try!(self.recv());
if data.len() < buffer.len() { return Err(Error::Exhausted) }
data[..buffer.len()].copy_from_slice(buffer);
Ok((endpoint, buffer.len()))
}
/// See [Socket::process](enum.Socket.html#method.process).
pub fn process(&mut self, ip_repr: &IpRepr, payload: &[u8]) -> Result<(), Error> {
if ip_repr.protocol() != IpProtocol::Udp { return Err(Error::Rejected) }
let packet = try!(UdpPacket::new(payload));
let repr = try!(UdpRepr::parse(&packet, &ip_repr.src_addr(), &ip_repr.dst_addr()));
if repr.dst_port != self.endpoint.port { return Err(Error::Rejected) }
if !self.endpoint.addr.is_unspecified() {
if self.endpoint.addr != ip_repr.dst_addr() { return Err(Error::Rejected) }
}
let packet_buf = try!(self.rx_buffer.enqueue());
packet_buf.endpoint = IpEndpoint { addr: ip_repr.src_addr(), port: repr.src_port };
packet_buf.size = repr.payload.len();
packet_buf.as_mut()[..repr.payload.len()].copy_from_slice(repr.payload);
net_trace!("udp:{}:{}: receiving {} octets",
self.endpoint, packet_buf.endpoint, packet_buf.size);
Ok(())
}
/// See [Socket::dispatch](enum.Socket.html#method.dispatch).
pub fn dispatch<F, R>(&mut self, emit: &mut F) -> Result<R, Error>
where F: FnMut(&IpRepr, &IpPayload) -> Result<R, Error> {
let packet_buf = try!(self.tx_buffer.dequeue());
net_trace!("udp:{}:{}: sending {} octets",
self.endpoint, packet_buf.endpoint, packet_buf.size);
let ip_repr = IpRepr::Unspecified {
src_addr: self.endpoint.addr,
dst_addr: packet_buf.endpoint.addr,
protocol: IpProtocol::Udp
};
let payload = UdpRepr {
src_port: self.endpoint.port,
dst_port: packet_buf.endpoint.port,
payload: &packet_buf.as_ref()[..]
};
emit(&ip_repr, &payload)
}
}
impl<'a> IpPayload for UdpRepr<'a> {
fn buffer_len(&self) -> usize {
self.buffer_len()
}
fn emit(&self, repr: &IpRepr, payload: &mut [u8]) {
let mut packet = UdpPacket::new(payload).expect("undersized payload");
self.emit(&mut packet, &repr.src_addr(), &repr.dst_addr())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
pub fn test_buffer() {
let mut storage = vec![];
for _ in 0..5 {
storage.push(PacketBuffer::new(vec![0]))
}
let mut buffer = SocketBuffer::new(&mut storage[..]);
assert_eq!(buffer.empty(), true);
assert_eq!(buffer.full(), false);
buffer.enqueue().unwrap().size = 1;
assert_eq!(buffer.empty(), false);
assert_eq!(buffer.full(), false);
buffer.enqueue().unwrap().size = 2;
buffer.enqueue().unwrap().size = 3;
assert_eq!(buffer.dequeue().unwrap().size, 1);
assert_eq!(buffer.dequeue().unwrap().size, 2);
buffer.enqueue().unwrap().size = 4;
buffer.enqueue().unwrap().size = 5;
buffer.enqueue().unwrap().size = 6;
buffer.enqueue().unwrap().size = 7;
assert_eq!(buffer.enqueue().unwrap_err(), Error::Exhausted);
assert_eq!(buffer.empty(), false);
assert_eq!(buffer.full(), true);
assert_eq!(buffer.dequeue().unwrap().size, 3);
assert_eq!(buffer.dequeue().unwrap().size, 4);
assert_eq!(buffer.dequeue().unwrap().size, 5);
assert_eq!(buffer.dequeue().unwrap().size, 6);
assert_eq!(buffer.dequeue().unwrap().size, 7);
assert_eq!(buffer.dequeue().unwrap_err(), Error::Exhausted);
assert_eq!(buffer.empty(), true);
assert_eq!(buffer.full(), false);
}
}