renet/src/socket/tcp.rs

7039 lines
230 KiB
Rust

// Heads up! Before working on this file you should read, at least, RFC 793 and
// the parts of RFC 1122 that discuss TCP. Consult RFC 7414 when implementing
// a new feature.
#[cfg(feature = "async")]
use core::task::Waker;
use core::{cmp, fmt, mem};
#[cfg(feature = "async")]
use crate::socket::WakerRegistration;
use crate::socket::{Context, PollAt, Socket, SocketHandle, SocketMeta};
use crate::storage::{Assembler, RingBuffer};
use crate::time::{Duration, Instant};
use crate::wire::{
IpAddress, IpEndpoint, IpProtocol, IpRepr, TcpControl, TcpRepr, TcpSeqNumber, TCP_HEADER_LEN,
};
use crate::{Error, Result};
/// A TCP socket ring buffer.
pub type SocketBuffer<'a> = RingBuffer<'a, u8>;
/// The state of a TCP socket, according to [RFC 793].
///
/// [RFC 793]: https://tools.ietf.org/html/rfc793
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum State {
Closed,
Listen,
SynSent,
SynReceived,
Established,
FinWait1,
FinWait2,
CloseWait,
Closing,
LastAck,
TimeWait,
}
impl fmt::Display for State {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
State::Closed => write!(f, "CLOSED"),
State::Listen => write!(f, "LISTEN"),
State::SynSent => write!(f, "SYN-SENT"),
State::SynReceived => write!(f, "SYN-RECEIVED"),
State::Established => write!(f, "ESTABLISHED"),
State::FinWait1 => write!(f, "FIN-WAIT-1"),
State::FinWait2 => write!(f, "FIN-WAIT-2"),
State::CloseWait => write!(f, "CLOSE-WAIT"),
State::Closing => write!(f, "CLOSING"),
State::LastAck => write!(f, "LAST-ACK"),
State::TimeWait => write!(f, "TIME-WAIT"),
}
}
}
// Conservative initial RTT estimate.
const RTTE_INITIAL_RTT: u32 = 300;
const RTTE_INITIAL_DEV: u32 = 100;
// Minimum "safety margin" for the RTO that kicks in when the
// variance gets very low.
const RTTE_MIN_MARGIN: u32 = 5;
const RTTE_MIN_RTO: u32 = 10;
const RTTE_MAX_RTO: u32 = 10000;
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
struct RttEstimator {
// Using u32 instead of Duration to save space (Duration is i64)
rtt: u32,
deviation: u32,
timestamp: Option<(Instant, TcpSeqNumber)>,
max_seq_sent: Option<TcpSeqNumber>,
rto_count: u8,
}
impl Default for RttEstimator {
fn default() -> Self {
Self {
rtt: RTTE_INITIAL_RTT,
deviation: RTTE_INITIAL_DEV,
timestamp: None,
max_seq_sent: None,
rto_count: 0,
}
}
}
impl RttEstimator {
fn retransmission_timeout(&self) -> Duration {
let margin = RTTE_MIN_MARGIN.max(self.deviation * 4);
let ms = (self.rtt + margin).max(RTTE_MIN_RTO).min(RTTE_MAX_RTO);
Duration::from_millis(ms as u64)
}
fn sample(&mut self, new_rtt: u32) {
// "Congestion Avoidance and Control", Van Jacobson, Michael J. Karels, 1988
self.rtt = (self.rtt * 7 + new_rtt + 7) / 8;
let diff = (self.rtt as i32 - new_rtt as i32).abs() as u32;
self.deviation = (self.deviation * 3 + diff + 3) / 4;
self.rto_count = 0;
let rto = self.retransmission_timeout().total_millis();
net_trace!(
"rtte: sample={:?} rtt={:?} dev={:?} rto={:?}",
new_rtt,
self.rtt,
self.deviation,
rto
);
}
fn on_send(&mut self, timestamp: Instant, seq: TcpSeqNumber) {
if self
.max_seq_sent
.map(|max_seq_sent| seq > max_seq_sent)
.unwrap_or(true)
{
self.max_seq_sent = Some(seq);
if self.timestamp.is_none() {
self.timestamp = Some((timestamp, seq));
net_trace!("rtte: sampling at seq={:?}", seq);
}
}
}
fn on_ack(&mut self, timestamp: Instant, seq: TcpSeqNumber) {
if let Some((sent_timestamp, sent_seq)) = self.timestamp {
if seq >= sent_seq {
self.sample((timestamp - sent_timestamp).total_millis() as u32);
self.timestamp = None;
}
}
}
fn on_retransmit(&mut self) {
if self.timestamp.is_some() {
net_trace!("rtte: abort sampling due to retransmit");
}
self.timestamp = None;
self.rto_count = self.rto_count.saturating_add(1);
if self.rto_count >= 3 {
// This happens in 2 scenarios:
// - The RTT is higher than the initial estimate
// - The network conditions change, suddenly making the RTT much higher
// In these cases, the estimator can get stuck, because it can't sample because
// all packets sent would incur a retransmit. To avoid this, force an estimate
// increase if we see 3 consecutive retransmissions without any successful sample.
self.rto_count = 0;
self.rtt = RTTE_MAX_RTO.min(self.rtt * 2);
let rto = self.retransmission_timeout().total_millis();
net_trace!(
"rtte: too many retransmissions, increasing: rtt={:?} dev={:?} rto={:?}",
self.rtt,
self.deviation,
rto
);
}
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
enum Timer {
Idle {
keep_alive_at: Option<Instant>,
},
Retransmit {
expires_at: Instant,
delay: Duration,
},
FastRetransmit,
Close {
expires_at: Instant,
},
}
const ACK_DELAY_DEFAULT: Duration = Duration::from_millis(10);
const CLOSE_DELAY: Duration = Duration::from_millis(10_000);
impl Timer {
fn new() -> Timer {
Timer::Idle {
keep_alive_at: None,
}
}
fn should_keep_alive(&self, timestamp: Instant) -> bool {
match *self {
Timer::Idle {
keep_alive_at: Some(keep_alive_at),
} if timestamp >= keep_alive_at => true,
_ => false,
}
}
fn should_retransmit(&self, timestamp: Instant) -> Option<Duration> {
match *self {
Timer::Retransmit { expires_at, delay } if timestamp >= expires_at => {
Some(timestamp - expires_at + delay)
}
Timer::FastRetransmit => Some(Duration::from_millis(0)),
_ => None,
}
}
fn should_close(&self, timestamp: Instant) -> bool {
match *self {
Timer::Close { expires_at } if timestamp >= expires_at => true,
_ => false,
}
}
fn poll_at(&self) -> PollAt {
match *self {
Timer::Idle {
keep_alive_at: Some(keep_alive_at),
} => PollAt::Time(keep_alive_at),
Timer::Idle {
keep_alive_at: None,
} => PollAt::Ingress,
Timer::Retransmit { expires_at, .. } => PollAt::Time(expires_at),
Timer::FastRetransmit => PollAt::Now,
Timer::Close { expires_at } => PollAt::Time(expires_at),
}
}
fn set_for_idle(&mut self, timestamp: Instant, interval: Option<Duration>) {
*self = Timer::Idle {
keep_alive_at: interval.map(|interval| timestamp + interval),
}
}
fn set_keep_alive(&mut self) {
if let Timer::Idle {
ref mut keep_alive_at,
} = *self
{
if keep_alive_at.is_none() {
*keep_alive_at = Some(Instant::from_millis(0))
}
}
}
fn rewind_keep_alive(&mut self, timestamp: Instant, interval: Option<Duration>) {
if let Timer::Idle {
ref mut keep_alive_at,
} = *self
{
*keep_alive_at = interval.map(|interval| timestamp + interval)
}
}
fn set_for_retransmit(&mut self, timestamp: Instant, delay: Duration) {
match *self {
Timer::Idle { .. } | Timer::FastRetransmit { .. } => {
*self = Timer::Retransmit {
expires_at: timestamp + delay,
delay: delay,
}
}
Timer::Retransmit { expires_at, delay } if timestamp >= expires_at => {
*self = Timer::Retransmit {
expires_at: timestamp + delay,
delay: delay * 2,
}
}
Timer::Retransmit { .. } => (),
Timer::Close { .. } => (),
}
}
fn set_for_fast_retransmit(&mut self) {
*self = Timer::FastRetransmit
}
fn set_for_close(&mut self, timestamp: Instant) {
*self = Timer::Close {
expires_at: timestamp + CLOSE_DELAY,
}
}
fn is_retransmit(&self) -> bool {
match *self {
Timer::Retransmit { .. } | Timer::FastRetransmit => true,
_ => false,
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
enum AckDelayTimer {
Idle,
Waiting(Instant),
Immediate,
}
/// A Transmission Control Protocol socket.
///
/// A TCP socket may passively listen for connections or actively connect to another endpoint.
/// Note that, for listening sockets, there is no "backlog"; to be able to simultaneously
/// accept several connections, as many sockets must be allocated, or any new connection
/// attempts will be reset.
#[derive(Debug)]
pub struct TcpSocket<'a> {
pub(crate) meta: SocketMeta,
state: State,
timer: Timer,
rtte: RttEstimator,
assembler: Assembler,
rx_buffer: SocketBuffer<'a>,
rx_fin_received: bool,
tx_buffer: SocketBuffer<'a>,
/// Interval after which, if no inbound packets are received, the connection is aborted.
timeout: Option<Duration>,
/// Interval at which keep-alive packets will be sent.
keep_alive: Option<Duration>,
/// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
hop_limit: Option<u8>,
/// Address passed to listen(). Listen address is set when listen() is called and
/// used every time the socket is reset back to the LISTEN state.
listen_address: IpAddress,
/// Current local endpoint. This is used for both filtering the incoming packets and
/// setting the source address. When listening or initiating connection on/from
/// an unspecified address, this field is updated with the chosen source address before
/// any packets are sent.
local_endpoint: IpEndpoint,
/// Current remote endpoint. This is used for both filtering the incoming packets and
/// setting the destination address. If the remote endpoint is unspecified, it means that
/// aborting the connection will not send an RST, and, in TIME-WAIT state, will not
/// send an ACK.
remote_endpoint: IpEndpoint,
/// The sequence number corresponding to the beginning of the transmit buffer.
/// I.e. an ACK(local_seq_no+n) packet removes n bytes from the transmit buffer.
local_seq_no: TcpSeqNumber,
/// The sequence number corresponding to the beginning of the receive buffer.
/// I.e. userspace reading n bytes adds n to remote_seq_no.
remote_seq_no: TcpSeqNumber,
/// The last sequence number sent.
/// I.e. in an idle socket, local_seq_no+tx_buffer.len().
remote_last_seq: TcpSeqNumber,
/// The last acknowledgement number sent.
/// I.e. in an idle socket, remote_seq_no+rx_buffer.len().
remote_last_ack: Option<TcpSeqNumber>,
/// The last window length sent.
remote_last_win: u16,
/// The sending window scaling factor advertised to remotes which support RFC 1323.
/// It is zero if the window <= 64KiB and/or the remote does not support it.
remote_win_shift: u8,
/// The remote window size, relative to local_seq_no
/// I.e. we're allowed to send octets until local_seq_no+remote_win_len
remote_win_len: usize,
/// The receive window scaling factor for remotes which support RFC 1323, None if unsupported.
remote_win_scale: Option<u8>,
/// Whether or not the remote supports selective ACK as described in RFC 2018.
remote_has_sack: bool,
/// The maximum number of data octets that the remote side may receive.
remote_mss: usize,
/// The timestamp of the last packet received.
remote_last_ts: Option<Instant>,
/// The sequence number of the last packet recived, used for sACK
local_rx_last_seq: Option<TcpSeqNumber>,
/// The ACK number of the last packet recived.
local_rx_last_ack: Option<TcpSeqNumber>,
/// The number of packets recived directly after
/// each other which have the same ACK number.
local_rx_dup_acks: u8,
/// Duration for Delayed ACK. If None no ACKs will be delayed.
ack_delay: Option<Duration>,
/// Delayed ack timer. If set, packets containing exclusively
/// ACK or window updates (ie, no data) won't be sent until expiry.
ack_delay_timer: AckDelayTimer,
/// Used for rate-limiting: No more challenge ACKs will be sent until this instant.
challenge_ack_timer: Instant,
/// Nagle's Algorithm enabled.
nagle: bool,
#[cfg(feature = "async")]
rx_waker: WakerRegistration,
#[cfg(feature = "async")]
tx_waker: WakerRegistration,
}
const DEFAULT_MSS: usize = 536;
impl<'a> TcpSocket<'a> {
#[allow(unused_comparisons)] // small usize platforms always pass rx_capacity check
/// Create a socket using the given buffers.
pub fn new<T>(rx_buffer: T, tx_buffer: T) -> TcpSocket<'a>
where
T: Into<SocketBuffer<'a>>,
{
let (rx_buffer, tx_buffer) = (rx_buffer.into(), tx_buffer.into());
let rx_capacity = rx_buffer.capacity();
// From RFC 1323:
// [...] the above constraints imply that 2 * the max window size must be less
// than 2**31 [...] Thus, the shift count must be limited to 14 (which allows
// windows of 2**30 = 1 Gbyte).
if rx_capacity > (1 << 30) {
panic!("receiving buffer too large, cannot exceed 1 GiB")
}
let rx_cap_log2 = mem::size_of::<usize>() * 8 - rx_capacity.leading_zeros() as usize;
TcpSocket {
meta: SocketMeta::default(),
state: State::Closed,
timer: Timer::new(),
rtte: RttEstimator::default(),
assembler: Assembler::new(rx_buffer.capacity()),
tx_buffer: tx_buffer,
rx_buffer: rx_buffer,
rx_fin_received: false,
timeout: None,
keep_alive: None,
hop_limit: None,
listen_address: IpAddress::default(),
local_endpoint: IpEndpoint::default(),
remote_endpoint: IpEndpoint::default(),
local_seq_no: TcpSeqNumber::default(),
remote_seq_no: TcpSeqNumber::default(),
remote_last_seq: TcpSeqNumber::default(),
remote_last_ack: None,
remote_last_win: 0,
remote_win_len: 0,
remote_win_shift: rx_cap_log2.saturating_sub(16) as u8,
remote_win_scale: None,
remote_has_sack: false,
remote_mss: DEFAULT_MSS,
remote_last_ts: None,
local_rx_last_ack: None,
local_rx_last_seq: None,
local_rx_dup_acks: 0,
ack_delay: Some(ACK_DELAY_DEFAULT),
ack_delay_timer: AckDelayTimer::Idle,
challenge_ack_timer: Instant::from_secs(0),
nagle: true,
#[cfg(feature = "async")]
rx_waker: WakerRegistration::new(),
#[cfg(feature = "async")]
tx_waker: WakerRegistration::new(),
}
}
/// Register a waker for receive operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `recv` method calls, such as receiving data, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_recv_waker(&mut self, waker: &Waker) {
self.rx_waker.register(waker)
}
/// Register a waker for send operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `send` method calls, such as space becoming available in the transmit
/// buffer, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_send_waker(&mut self, waker: &Waker) {
self.tx_waker.register(waker)
}
/// Return the socket handle.
#[inline]
pub fn handle(&self) -> SocketHandle {
self.meta.handle
}
/// Return the timeout duration.
///
/// See also the [set_timeout](#method.set_timeout) method.
pub fn timeout(&self) -> Option<Duration> {
self.timeout
}
/// Return the ACK delay duration.
///
/// See also the [set_ack_delay](#method.set_ack_delay) method.
pub fn ack_delay(&self) -> Option<Duration> {
self.ack_delay
}
/// Return whether Nagle's Algorithm is enabled.
///
/// See also the [set_nagle_enabled](#method.set_nagle_enabled) method.
pub fn nagle_enabled(&self) -> Option<Duration> {
self.ack_delay
}
/// Return the current window field value, including scaling according to RFC 1323.
///
/// Used in internal calculations as well as packet generation.
///
#[inline]
fn scaled_window(&self) -> u16 {
cmp::min(
self.rx_buffer.window() >> self.remote_win_shift as usize,
(1 << 16) - 1,
) as u16
}
/// Set the timeout duration.
///
/// A socket with a timeout duration set will abort the connection if either of the following
/// occurs:
///
/// * After a [connect](#method.connect) call, the remote endpoint does not respond within
/// the specified duration;
/// * After establishing a connection, there is data in the transmit buffer and the remote
/// endpoint exceeds the specified duration between any two packets it sends;
/// * After enabling [keep-alive](#method.set_keep_alive), the remote endpoint exceeds
/// the specified duration between any two packets it sends.
pub fn set_timeout(&mut self, duration: Option<Duration>) {
self.timeout = duration
}
/// Set the ACK delay duration.
///
/// By default, the ACK delay is set to 10ms.
pub fn set_ack_delay(&mut self, duration: Option<Duration>) {
self.ack_delay = duration
}
/// Enable or disable Nagle's Algorithm.
///
/// Also known as "tinygram prevention". By default, it is enabled.
/// Disabling it is equivalent to Linux's TCP_NODELAY flag.
///
/// When enabled, Nagle's Algorithm prevents sending segments smaller than MSS if
/// there is data in flight (sent but not acknowledged). In other words, it ensures
/// at most only one segment smaller than MSS is in flight at a time.
///
/// It ensures better network utilization by preventing sending many very small packets,
/// at the cost of increased latency in some situations, particularly when the remote peer
/// has ACK delay enabled.
pub fn set_nagle_enabled(&mut self, enabled: bool) {
self.nagle = enabled
}
/// Return the keep-alive interval.
///
/// See also the [set_keep_alive](#method.set_keep_alive) method.
pub fn keep_alive(&self) -> Option<Duration> {
self.keep_alive
}
/// Set the keep-alive interval.
///
/// An idle socket with a keep-alive interval set will transmit a "keep-alive ACK" packet
/// every time it receives no communication during that interval. As a result, three things
/// may happen:
///
/// * The remote endpoint is fine and answers with an ACK packet.
/// * The remote endpoint has rebooted and answers with an RST packet.
/// * The remote endpoint has crashed and does not answer.
///
/// The keep-alive functionality together with the timeout functionality allows to react
/// to these error conditions.
pub fn set_keep_alive(&mut self, interval: Option<Duration>) {
self.keep_alive = interval;
if self.keep_alive.is_some() {
// If the connection is idle and we've just set the option, it would not take effect
// until the next packet, unless we wind up the timer explicitly.
self.timer.set_keep_alive();
}
}
/// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// See also the [set_hop_limit](#method.set_hop_limit) method
pub fn hop_limit(&self) -> Option<u8> {
self.hop_limit
}
/// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// A socket without an explicitly set hop limit value uses the default [IANA recommended]
/// value (64).
///
/// # Panics
///
/// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7].
///
/// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
/// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
// A host MUST NOT send a datagram with a hop limit value of 0
if let Some(0) = hop_limit {
panic!("the time-to-live value of a packet must not be zero")
}
self.hop_limit = hop_limit
}
/// Return the local endpoint.
#[inline]
pub fn local_endpoint(&self) -> IpEndpoint {
self.local_endpoint
}
/// Return the remote endpoint.
#[inline]
pub fn remote_endpoint(&self) -> IpEndpoint {
self.remote_endpoint
}
/// Return the connection state, in terms of the TCP state machine.
#[inline]
pub fn state(&self) -> State {
self.state
}
fn reset(&mut self) {
let rx_cap_log2 =
mem::size_of::<usize>() * 8 - self.rx_buffer.capacity().leading_zeros() as usize;
self.state = State::Closed;
self.timer = Timer::new();
self.rtte = RttEstimator::default();
self.assembler = Assembler::new(self.rx_buffer.capacity());
self.tx_buffer.clear();
self.rx_buffer.clear();
self.rx_fin_received = false;
self.keep_alive = None;
self.timeout = None;
self.hop_limit = None;
self.listen_address = IpAddress::default();
self.local_endpoint = IpEndpoint::default();
self.remote_endpoint = IpEndpoint::default();
self.local_seq_no = TcpSeqNumber::default();
self.remote_seq_no = TcpSeqNumber::default();
self.remote_last_seq = TcpSeqNumber::default();
self.remote_last_ack = None;
self.remote_last_win = 0;
self.remote_win_len = 0;
self.remote_win_scale = None;
self.remote_win_shift = rx_cap_log2.saturating_sub(16) as u8;
self.remote_mss = DEFAULT_MSS;
self.remote_last_ts = None;
self.ack_delay = Some(ACK_DELAY_DEFAULT);
self.ack_delay_timer = AckDelayTimer::Idle;
self.challenge_ack_timer = Instant::from_secs(0);
self.nagle = true;
#[cfg(feature = "async")]
{
self.rx_waker.wake();
self.tx_waker.wake();
}
}
/// Start listening on the given endpoint.
///
/// This function returns `Err(Error::Illegal)` if the socket was already open
/// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)`
/// if the port in the given endpoint is zero.
pub fn listen<T>(&mut self, local_endpoint: T) -> Result<()>
where
T: Into<IpEndpoint>,
{
let local_endpoint = local_endpoint.into();
if local_endpoint.port == 0 {
return Err(Error::Unaddressable);
}
if self.is_open() {
return Err(Error::Illegal);
}
self.reset();
self.listen_address = local_endpoint.addr;
self.local_endpoint = local_endpoint;
self.remote_endpoint = IpEndpoint::default();
self.set_state(State::Listen);
Ok(())
}
/// Connect to a given endpoint.
///
/// The local port must be provided explicitly. Assuming `fn get_ephemeral_port() -> u16`
/// allocates a port between 49152 and 65535, a connection may be established as follows:
///
/// ```rust,ignore
/// socket.connect((IpAddress::v4(10, 0, 0, 1), 80), get_ephemeral_port())
/// ```
///
/// The local address may optionally be provided.
///
/// This function returns an error if the socket was open; see [is_open](#method.is_open).
/// It also returns an error if the local or remote port is zero, or if the remote address
/// is unspecified.
pub fn connect<T, U>(&mut self, remote_endpoint: T, local_endpoint: U) -> Result<()>
where
T: Into<IpEndpoint>,
U: Into<IpEndpoint>,
{
let remote_endpoint = remote_endpoint.into();
let local_endpoint = local_endpoint.into();
if self.is_open() {
return Err(Error::Illegal);
}
if !remote_endpoint.is_specified() {
return Err(Error::Unaddressable);
}
if local_endpoint.port == 0 {
return Err(Error::Unaddressable);
}
// If local address is not provided, use an unspecified address but a specified protocol.
// This lets us lower IpRepr later to determine IP header size and calculate MSS,
// but without committing to a specific address right away.
let local_addr = match local_endpoint.addr {
IpAddress::Unspecified => remote_endpoint.addr.as_unspecified(),
ip => ip,
};
let local_endpoint = IpEndpoint {
addr: local_addr,
..local_endpoint
};
self.reset();
self.local_endpoint = local_endpoint;
self.remote_endpoint = remote_endpoint;
self.set_state(State::SynSent);
let seq = Self::random_seq_no();
self.local_seq_no = seq;
self.remote_last_seq = seq;
Ok(())
}
fn random_seq_no() -> TcpSeqNumber {
#[cfg(test)]
return TcpSeqNumber(10000);
#[cfg(not(test))]
return TcpSeqNumber(crate::rand::rand_u32() as i32);
}
/// Close the transmit half of the full-duplex connection.
///
/// Note that there is no corresponding function for the receive half of the full-duplex
/// connection; only the remote end can close it. If you no longer wish to receive any
/// data and would like to reuse the socket right away, use [abort](#method.abort).
pub fn close(&mut self) {
match self.state {
// In the LISTEN state there is no established connection.
State::Listen => self.set_state(State::Closed),
// In the SYN-SENT state the remote endpoint is not yet synchronized and, upon
// receiving an RST, will abort the connection.
State::SynSent => self.set_state(State::Closed),
// In the SYN-RECEIVED, ESTABLISHED and CLOSE-WAIT states the transmit half
// of the connection is open, and needs to be explicitly closed with a FIN.
State::SynReceived | State::Established => self.set_state(State::FinWait1),
State::CloseWait => self.set_state(State::LastAck),
// In the FIN-WAIT-1, FIN-WAIT-2, CLOSING, LAST-ACK, TIME-WAIT and CLOSED states,
// the transmit half of the connection is already closed, and no further
// action is needed.
State::FinWait1
| State::FinWait2
| State::Closing
| State::TimeWait
| State::LastAck
| State::Closed => (),
}
}
/// Aborts the connection, if any.
///
/// This function instantly closes the socket. One reset packet will be sent to the remote
/// endpoint.
///
/// In terms of the TCP state machine, the socket may be in any state and is moved to
/// the `CLOSED` state.
pub fn abort(&mut self) {
self.set_state(State::Closed);
}
/// Return whether the socket is passively listening for incoming connections.
///
/// In terms of the TCP state machine, the socket must be in the `LISTEN` state.
#[inline]
pub fn is_listening(&self) -> bool {
match self.state {
State::Listen => true,
_ => false,
}
}
/// Return whether the socket is open.
///
/// This function returns true if the socket will process incoming or dispatch outgoing
/// packets. Note that this does not mean that it is possible to send or receive data through
/// the socket; for that, use [can_send](#method.can_send) or [can_recv](#method.can_recv).
///
/// In terms of the TCP state machine, the socket must not be in the `CLOSED`
/// or `TIME-WAIT` states.
#[inline]
pub fn is_open(&self) -> bool {
match self.state {
State::Closed => false,
State::TimeWait => false,
_ => true,
}
}
/// Return whether a connection is active.
///
/// This function returns true if the socket is actively exchanging packets with
/// a remote endpoint. Note that this does not mean that it is possible to send or receive
/// data through the socket; for that, use [can_send](#method.can_send) or
/// [can_recv](#method.can_recv).
///
/// If a connection is established, [abort](#method.close) will send a reset to
/// the remote endpoint.
///
/// In terms of the TCP state machine, the socket must not be in the `CLOSED`, `TIME-WAIT`,
/// or `LISTEN` state.
#[inline]
pub fn is_active(&self) -> bool {
match self.state {
State::Closed => false,
State::TimeWait => false,
State::Listen => false,
_ => true,
}
}
/// Return whether the transmit half of the full-duplex connection is open.
///
/// This function returns true if it's possible to send data and have it arrive
/// to the remote endpoint. However, it does not make any guarantees about the state
/// of the transmit buffer, and even if it returns true, [send](#method.send) may
/// not be able to enqueue any octets.
///
/// In terms of the TCP state machine, the socket must be in the `ESTABLISHED` or
/// `CLOSE-WAIT` state.
#[inline]
pub fn may_send(&self) -> bool {
match self.state {
State::Established => true,
// In CLOSE-WAIT, the remote endpoint has closed our receive half of the connection
// but we still can transmit indefinitely.
State::CloseWait => true,
_ => false,
}
}
/// Return whether the receive half of the full-duplex connection is open.
///
/// This function returns true if it's possible to receive data from the remote endpoint.
/// It will return true while there is data in the receive buffer, and if there isn't,
/// as long as the remote endpoint has not closed the connection.
///
/// In terms of the TCP state machine, the socket must be in the `ESTABLISHED`,
/// `FIN-WAIT-1`, or `FIN-WAIT-2` state, or have data in the receive buffer instead.
#[inline]
pub fn may_recv(&self) -> bool {
match self.state {
State::Established => true,
// In FIN-WAIT-1/2, we have closed our transmit half of the connection but
// we still can receive indefinitely.
State::FinWait1 | State::FinWait2 => true,
// If we have something in the receive buffer, we can receive that.
_ if !self.rx_buffer.is_empty() => true,
_ => false,
}
}
/// Check whether the transmit half of the full-duplex connection is open
/// (see [may_send](#method.may_send)), and the transmit buffer is not full.
#[inline]
pub fn can_send(&self) -> bool {
if !self.may_send() {
return false;
}
!self.tx_buffer.is_full()
}
/// Return the maximum number of bytes inside the recv buffer.
#[inline]
pub fn recv_capacity(&self) -> usize {
self.rx_buffer.capacity()
}
/// Return the maximum number of bytes inside the transmit buffer.
#[inline]
pub fn send_capacity(&self) -> usize {
self.tx_buffer.capacity()
}
/// Check whether the receive half of the full-duplex connection buffer is open
/// (see [may_recv](#method.may_recv)), and the receive buffer is not empty.
#[inline]
pub fn can_recv(&self) -> bool {
if !self.may_recv() {
return false;
}
!self.rx_buffer.is_empty()
}
fn send_impl<'b, F, R>(&'b mut self, f: F) -> Result<R>
where
F: FnOnce(&'b mut SocketBuffer<'a>) -> (usize, R),
{
if !self.may_send() {
return Err(Error::Illegal);
}
// The connection might have been idle for a long time, and so remote_last_ts
// would be far in the past. Unless we clear it here, we'll abort the connection
// down over in dispatch() by erroneously detecting it as timed out.
if self.tx_buffer.is_empty() {
self.remote_last_ts = None
}
let _old_length = self.tx_buffer.len();
let (size, result) = f(&mut self.tx_buffer);
if size > 0 {
#[cfg(any(test, feature = "verbose"))]
net_trace!(
"{}:{}:{}: tx buffer: enqueueing {} octets (now {})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
size,
_old_length + size
);
}
Ok(result)
}
/// Call `f` with the largest contiguous slice of octets in the transmit buffer,
/// and enqueue the amount of elements returned by `f`.
///
/// This function returns `Err(Error::Illegal)` if the transmit half of
/// the connection is not open; see [may_send](#method.may_send).
pub fn send<'b, F, R>(&'b mut self, f: F) -> Result<R>
where
F: FnOnce(&'b mut [u8]) -> (usize, R),
{
self.send_impl(|tx_buffer| tx_buffer.enqueue_many_with(f))
}
/// Enqueue a sequence of octets to be sent, and fill it from a slice.
///
/// This function returns the amount of octets actually enqueued, which is limited
/// by the amount of free space in the transmit buffer; down to zero.
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, data: &[u8]) -> Result<usize> {
self.send_impl(|tx_buffer| {
let size = tx_buffer.enqueue_slice(data);
(size, size)
})
}
fn recv_error_check(&mut self) -> Result<()> {
// We may have received some data inside the initial SYN, but until the connection
// is fully open we must not dequeue any data, as it may be overwritten by e.g.
// another (stale) SYN. (We do not support TCP Fast Open.)
if !self.may_recv() {
if self.rx_fin_received {
return Err(Error::Finished);
}
return Err(Error::Illegal);
}
Ok(())
}
fn recv_impl<'b, F, R>(&'b mut self, f: F) -> Result<R>
where
F: FnOnce(&'b mut SocketBuffer<'a>) -> (usize, R),
{
self.recv_error_check()?;
let _old_length = self.rx_buffer.len();
let (size, result) = f(&mut self.rx_buffer);
self.remote_seq_no += size;
if size > 0 {
#[cfg(any(test, feature = "verbose"))]
net_trace!(
"{}:{}:{}: rx buffer: dequeueing {} octets (now {})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
size,
_old_length - size
);
}
Ok(result)
}
/// Call `f` with the largest contiguous slice of octets in the receive buffer,
/// and dequeue the amount of elements returned by `f`.
///
/// This function errors if the receive half of the connection is not open.
///
/// If the receive half has been gracefully closed (with a FIN packet), `Err(Error::Finished)`
/// is returned. In this case, the previously received data is guaranteed to be complete.
///
/// In all other cases, `Err(Error::Illegal)` is returned and previously received data (if any)
/// may be incomplete (truncated).
pub fn recv<'b, F, R>(&'b mut self, f: F) -> Result<R>
where
F: FnOnce(&'b mut [u8]) -> (usize, R),
{
self.recv_impl(|rx_buffer| rx_buffer.dequeue_many_with(f))
}
/// Dequeue a sequence of received octets, and fill a slice from it.
///
/// This function returns the amount of octets actually dequeued, which is limited
/// by the amount of occupied space in the receive buffer; down to zero.
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<usize> {
self.recv_impl(|rx_buffer| {
let size = rx_buffer.dequeue_slice(data);
(size, size)
})
}
/// Peek at a sequence of received octets without removing them from
/// the receive buffer, and return a pointer to it.
///
/// This function otherwise behaves identically to [recv](#method.recv).
pub fn peek(&mut self, size: usize) -> Result<&[u8]> {
self.recv_error_check()?;
let buffer = self.rx_buffer.get_allocated(0, size);
if !buffer.is_empty() {
#[cfg(any(test, feature = "verbose"))]
net_trace!(
"{}:{}:{}: rx buffer: peeking at {} octets",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
buffer.len()
);
}
Ok(buffer)
}
/// Peek at a sequence of received octets without removing them from
/// the receive buffer, and fill a slice from it.
///
/// This function otherwise behaves identically to [recv_slice](#method.recv_slice).
pub fn peek_slice(&mut self, data: &mut [u8]) -> Result<usize> {
let buffer = self.peek(data.len())?;
let data = &mut data[..buffer.len()];
data.copy_from_slice(buffer);
Ok(buffer.len())
}
/// Return the amount of octets queued in the transmit buffer.
///
/// Note that the Berkeley sockets interface does not have an equivalent of this API.
pub fn send_queue(&self) -> usize {
self.tx_buffer.len()
}
/// Return the amount of octets queued in the receive buffer. This value can be larger than
/// the slice read by the next `recv` or `peek` call because it includes all queued octets,
/// and not only the octets that may be returned as a contiguous slice.
///
/// Note that the Berkeley sockets interface does not have an equivalent of this API.
pub fn recv_queue(&self) -> usize {
self.rx_buffer.len()
}
fn set_state(&mut self, state: State) {
if self.state != state {
if self.remote_endpoint.addr.is_unspecified() {
net_trace!(
"{}:{}: state={}=>{}",
self.meta.handle,
self.local_endpoint,
self.state,
state
);
} else {
net_trace!(
"{}:{}:{}: state={}=>{}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
self.state,
state
);
}
}
self.state = state;
#[cfg(feature = "async")]
{
// Wake all tasks waiting. Even if we haven't received/sent data, this
// is needed because return values of functions may change depending on the state.
// For example, a pending read has to fail with an error if the socket is closed.
self.rx_waker.wake();
self.tx_waker.wake();
}
}
pub(crate) fn reply(ip_repr: &IpRepr, repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) {
let reply_repr = TcpRepr {
src_port: repr.dst_port,
dst_port: repr.src_port,
control: TcpControl::None,
seq_number: TcpSeqNumber(0),
ack_number: None,
window_len: 0,
window_scale: None,
max_seg_size: None,
sack_permitted: false,
sack_ranges: [None, None, None],
payload: &[],
};
let ip_reply_repr = IpRepr::Unspecified {
src_addr: ip_repr.dst_addr(),
dst_addr: ip_repr.src_addr(),
protocol: IpProtocol::Tcp,
payload_len: reply_repr.buffer_len(),
hop_limit: 64,
};
(ip_reply_repr, reply_repr)
}
pub(crate) fn rst_reply(ip_repr: &IpRepr, repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) {
debug_assert!(repr.control != TcpControl::Rst);
let (ip_reply_repr, mut reply_repr) = Self::reply(ip_repr, repr);
// See https://www.snellman.net/blog/archive/2016-02-01-tcp-rst/ for explanation
// of why we sometimes send an RST and sometimes an RST|ACK
reply_repr.control = TcpControl::Rst;
reply_repr.seq_number = repr.ack_number.unwrap_or_default();
if repr.control == TcpControl::Syn && repr.ack_number.is_none() {
reply_repr.ack_number = Some(repr.seq_number + repr.segment_len());
}
(ip_reply_repr, reply_repr)
}
fn ack_reply(&mut self, ip_repr: &IpRepr, repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) {
let (mut ip_reply_repr, mut reply_repr) = Self::reply(ip_repr, repr);
// From RFC 793:
// [...] an empty acknowledgment segment containing the current send-sequence number
// and an acknowledgment indicating the next sequence number expected
// to be received.
reply_repr.seq_number = self.remote_last_seq;
reply_repr.ack_number = Some(self.remote_seq_no + self.rx_buffer.len());
self.remote_last_ack = reply_repr.ack_number;
// From RFC 1323:
// The window field [...] of every outgoing segment, with the exception of SYN
// segments, is right-shifted by [advertised scale value] bits[...]
reply_repr.window_len = self.scaled_window();
self.remote_last_win = reply_repr.window_len;
// If the remote supports selective acknowledgement, add the option to the outgoing
// segment.
if self.remote_has_sack {
net_debug!("sending sACK option with current assembler ranges");
// RFC 2018: The first SACK block (i.e., the one immediately following the kind and
// length fields in the option) MUST specify the contiguous block of data containing
// the segment which triggered this ACK, unless that segment advanced the
// Acknowledgment Number field in the header.
reply_repr.sack_ranges[0] = None;
if let Some(last_seg_seq) = self.local_rx_last_seq.map(|s| s.0 as u32) {
reply_repr.sack_ranges[0] = self
.assembler
.iter_data(reply_repr.ack_number.map(|s| s.0 as usize).unwrap_or(0))
.map(|(left, right)| (left as u32, right as u32))
.find(|(left, right)| *left <= last_seg_seq && *right >= last_seg_seq);
}
if reply_repr.sack_ranges[0].is_none() {
// The matching segment was removed from the assembler, meaning the acknowledgement
// number has advanced, or there was no previous sACK.
//
// While the RFC says we SHOULD keep a list of reported sACK ranges, and iterate
// through those, that is currently infeasable. Instead, we offer the range with
// the lowest sequence number (if one exists) to hint at what segments would
// most quickly advance the acknowledgement number.
reply_repr.sack_ranges[0] = self
.assembler
.iter_data(reply_repr.ack_number.map(|s| s.0 as usize).unwrap_or(0))
.map(|(left, right)| (left as u32, right as u32))
.next();
}
}
// Since the sACK option may have changed the length of the payload, update that.
ip_reply_repr.set_payload_len(reply_repr.buffer_len());
(ip_reply_repr, reply_repr)
}
fn challenge_ack_reply(
&mut self,
cx: &Context,
ip_repr: &IpRepr,
repr: &TcpRepr,
) -> Option<(IpRepr, TcpRepr<'static>)> {
if cx.now < self.challenge_ack_timer {
return None;
}
// Rate-limit to 1 per second max.
self.challenge_ack_timer = cx.now + Duration::from_secs(1);
return Some(self.ack_reply(ip_repr, repr));
}
pub(crate) fn accepts(&self, ip_repr: &IpRepr, repr: &TcpRepr) -> bool {
if self.state == State::Closed {
return false;
}
// If we're still listening for SYNs and the packet has an ACK, it cannot
// be destined to this socket, but another one may well listen on the same
// local endpoint.
if self.state == State::Listen && repr.ack_number.is_some() {
return false;
}
// Reject packets with a wrong destination.
if self.local_endpoint.port != repr.dst_port {
return false;
}
if !self.local_endpoint.addr.is_unspecified()
&& self.local_endpoint.addr != ip_repr.dst_addr()
{
return false;
}
// Reject packets from a source to which we aren't connected.
if self.remote_endpoint.port != 0 && self.remote_endpoint.port != repr.src_port {
return false;
}
if !self.remote_endpoint.addr.is_unspecified()
&& self.remote_endpoint.addr != ip_repr.src_addr()
{
return false;
}
true
}
pub(crate) fn process(
&mut self,
cx: &Context,
ip_repr: &IpRepr,
repr: &TcpRepr,
) -> Result<Option<(IpRepr, TcpRepr<'static>)>> {
debug_assert!(self.accepts(ip_repr, repr));
// Consider how much the sequence number space differs from the transmit buffer space.
let (sent_syn, sent_fin) = match self.state {
// In SYN-SENT or SYN-RECEIVED, we've just sent a SYN.
State::SynSent | State::SynReceived => (true, false),
// In FIN-WAIT-1, LAST-ACK, or CLOSING, we've just sent a FIN.
State::FinWait1 | State::LastAck | State::Closing => (false, true),
// In all other states we've already got acknowledgemetns for
// all of the control flags we sent.
_ => (false, false),
};
let control_len = (sent_syn as usize) + (sent_fin as usize);
// Reject unacceptable acknowledgements.
match (self.state, repr.control, repr.ack_number) {
// An RST received in response to initial SYN is acceptable if it acknowledges
// the initial SYN.
(State::SynSent, TcpControl::Rst, None) => {
net_debug!(
"{}:{}:{}: unacceptable RST (expecting RST|ACK) \
in response to initial SYN",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Err(Error::Dropped);
}
(State::SynSent, TcpControl::Rst, Some(ack_number)) => {
if ack_number != self.local_seq_no + 1 {
net_debug!(
"{}:{}:{}: unacceptable RST|ACK in response to initial SYN",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Err(Error::Dropped);
}
}
// Any other RST need only have a valid sequence number.
(_, TcpControl::Rst, _) => (),
// The initial SYN cannot contain an acknowledgement.
(State::Listen, _, None) => (),
// This case is handled in `accepts()`.
(State::Listen, _, Some(_)) => unreachable!(),
// Every packet after the initial SYN must be an acknowledgement.
(_, _, None) => {
net_debug!(
"{}:{}:{}: expecting an ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Err(Error::Dropped);
}
// SYN|ACK in the SYN-SENT state must have the exact ACK number.
(State::SynSent, TcpControl::Syn, Some(ack_number)) => {
if ack_number != self.local_seq_no + 1 {
net_debug!(
"{}:{}:{}: unacceptable SYN|ACK in response to initial SYN",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Ok(Some(Self::rst_reply(ip_repr, repr)));
}
}
// ACKs in the SYN-SENT state are invalid.
(State::SynSent, TcpControl::None, Some(ack_number)) => {
// If the sequence number matches, ignore it instead of RSTing.
// I'm not sure why, I think it may be a workaround for broken TCP
// servers, or a defense against reordering. Either way, if Linux
// does it, we do too.
if ack_number == self.local_seq_no + 1 {
net_debug!(
"{}:{}:{}: expecting a SYN|ACK, received an ACK with the right ack_number, ignoring.",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Err(Error::Dropped);
}
net_debug!(
"{}:{}:{}: expecting a SYN|ACK, received an ACK with the wrong ack_number, sending RST.",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Ok(Some(Self::rst_reply(ip_repr, repr)));
}
// Anything else in the SYN-SENT state is invalid.
(State::SynSent, _, _) => {
net_debug!(
"{}:{}:{}: expecting a SYN|ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Err(Error::Dropped);
}
// ACK in the SYN-RECEIVED state must have the exact ACK number, or we RST it.
(State::SynReceived, _, Some(ack_number)) => {
if ack_number != self.local_seq_no + 1 {
net_debug!(
"{}:{}:{}: unacceptable ACK in response to SYN|ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Ok(Some(Self::rst_reply(ip_repr, repr)));
}
}
// Every acknowledgement must be for transmitted but unacknowledged data.
(_, _, Some(ack_number)) => {
let unacknowledged = self.tx_buffer.len() + control_len;
// Acceptable ACK range (both inclusive)
let mut ack_min = self.local_seq_no;
let ack_max = self.local_seq_no + unacknowledged;
// If we have sent a SYN, it MUST be acknowledged.
if sent_syn {
ack_min += 1;
}
if ack_number < ack_min {
net_debug!(
"{}:{}:{}: duplicate ACK ({} not in {}...{})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
ack_number,
ack_min,
ack_max
);
return Err(Error::Dropped);
}
if ack_number > ack_max {
net_debug!(
"{}:{}:{}: unacceptable ACK ({} not in {}...{})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
ack_number,
ack_min,
ack_max
);
return Ok(self.challenge_ack_reply(cx, ip_repr, repr));
}
}
}
let window_start = self.remote_seq_no + self.rx_buffer.len();
let window_end = self.remote_seq_no + self.rx_buffer.capacity();
let segment_start = repr.seq_number;
let segment_end = repr.seq_number + repr.segment_len();
let payload_offset;
match self.state {
// In LISTEN and SYN-SENT states, we have not yet synchronized with the remote end.
State::Listen | State::SynSent => payload_offset = 0,
// In all other states, segments must occupy a valid portion of the receive window.
_ => {
let mut segment_in_window = true;
if window_start == window_end && segment_start != segment_end {
net_debug!(
"{}:{}:{}: non-zero-length segment with zero receive window, \
will only send an ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
segment_in_window = false;
}
if segment_start == segment_end && segment_end == window_start - 1 {
net_debug!(
"{}:{}:{}: received a keep-alive or window probe packet, \
will send an ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
segment_in_window = false;
} else if !((window_start <= segment_start && segment_start <= window_end)
&& (window_start <= segment_end && segment_end <= window_end))
{
net_debug!(
"{}:{}:{}: segment not in receive window \
({}..{} not intersecting {}..{}), will send challenge ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
segment_start,
segment_end,
window_start,
window_end
);
segment_in_window = false;
}
if segment_in_window {
// We've checked that segment_start >= window_start above.
payload_offset = (segment_start - window_start) as usize;
self.local_rx_last_seq = Some(repr.seq_number);
} else {
// If we're in the TIME-WAIT state, restart the TIME-WAIT timeout, since
// the remote end may not have realized we've closed the connection.
if self.state == State::TimeWait {
self.timer.set_for_close(cx.now);
}
return Ok(self.challenge_ack_reply(cx, ip_repr, repr));
}
}
}
// Compute the amount of acknowledged octets, removing the SYN and FIN bits
// from the sequence space.
let mut ack_len = 0;
let mut ack_of_fin = false;
if repr.control != TcpControl::Rst {
if let Some(ack_number) = repr.ack_number {
// Sequence number corresponding to the first byte in `tx_buffer`.
// This normally equals `local_seq_no`, but is 1 higher if we ahve sent a SYN,
// as the SYN occupies 1 sequence number "before" the data.
let tx_buffer_start_seq = self.local_seq_no + (sent_syn as usize);
if ack_number >= tx_buffer_start_seq {
ack_len = ack_number - tx_buffer_start_seq;
// We could've sent data before the FIN, so only remove FIN from the sequence
// space if all of that data is acknowledged.
if sent_fin && self.tx_buffer.len() + 1 == ack_len {
ack_len -= 1;
net_trace!(
"{}:{}:{}: received ACK of FIN",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
ack_of_fin = true;
}
}
self.rtte.on_ack(cx.now, ack_number);
}
}
// Disregard control flags we don't care about or shouldn't act on yet.
let mut control = repr.control;
control = control.quash_psh();
// If a FIN is received at the end of the current segment but the start of the segment
// is not at the start of the receive window, disregard this FIN.
if control == TcpControl::Fin && window_start != segment_start {
control = TcpControl::None;
}
// Validate and update the state.
match (self.state, control) {
// RSTs are not accepted in the LISTEN state.
(State::Listen, TcpControl::Rst) => return Err(Error::Dropped),
// RSTs in SYN-RECEIVED flip the socket back to the LISTEN state.
(State::SynReceived, TcpControl::Rst) => {
net_trace!(
"{}:{}:{}: received RST",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
self.local_endpoint.addr = self.listen_address;
self.remote_endpoint = IpEndpoint::default();
self.set_state(State::Listen);
return Ok(None);
}
// RSTs in any other state close the socket.
(_, TcpControl::Rst) => {
net_trace!(
"{}:{}:{}: received RST",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
self.set_state(State::Closed);
self.local_endpoint = IpEndpoint::default();
self.remote_endpoint = IpEndpoint::default();
return Ok(None);
}
// SYN packets in the LISTEN state change it to SYN-RECEIVED.
(State::Listen, TcpControl::Syn) => {
net_trace!("{}:{}: received SYN", self.meta.handle, self.local_endpoint);
if let Some(max_seg_size) = repr.max_seg_size {
if max_seg_size == 0 {
net_trace!(
"{}:{}:{}: received SYNACK with zero MSS, ignoring",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Ok(None);
}
self.remote_mss = max_seg_size as usize
}
self.local_endpoint = IpEndpoint::new(ip_repr.dst_addr(), repr.dst_port);
self.remote_endpoint = IpEndpoint::new(ip_repr.src_addr(), repr.src_port);
self.local_seq_no = Self::random_seq_no();
self.remote_seq_no = repr.seq_number + 1;
self.remote_last_seq = self.local_seq_no;
self.remote_has_sack = repr.sack_permitted;
self.remote_win_scale = repr.window_scale;
// Remote doesn't support window scaling, don't do it.
if self.remote_win_scale.is_none() {
self.remote_win_shift = 0;
}
self.set_state(State::SynReceived);
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// ACK packets in the SYN-RECEIVED state change it to ESTABLISHED.
(State::SynReceived, TcpControl::None) => {
self.set_state(State::Established);
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// FIN packets in the SYN-RECEIVED state change it to CLOSE-WAIT.
// It's not obvious from RFC 793 that this is permitted, but
// 7th and 8th steps in the "SEGMENT ARRIVES" event describe this behavior.
(State::SynReceived, TcpControl::Fin) => {
self.remote_seq_no += 1;
self.rx_fin_received = true;
self.set_state(State::CloseWait);
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// SYN|ACK packets in the SYN-SENT state change it to ESTABLISHED.
(State::SynSent, TcpControl::Syn) => {
net_trace!(
"{}:{}:{}: received SYN|ACK",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
if let Some(max_seg_size) = repr.max_seg_size {
if max_seg_size == 0 {
net_trace!(
"{}:{}:{}: received SYNACK with zero MSS, ignoring",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
return Ok(None);
}
self.remote_mss = max_seg_size as usize;
}
self.local_endpoint = IpEndpoint::new(ip_repr.dst_addr(), repr.dst_port);
self.remote_seq_no = repr.seq_number + 1;
self.remote_last_seq = self.local_seq_no + 1;
self.remote_last_ack = Some(repr.seq_number);
self.remote_win_scale = repr.window_scale;
// Remote doesn't support window scaling, don't do it.
if self.remote_win_scale.is_none() {
self.remote_win_shift = 0;
}
self.set_state(State::Established);
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// ACK packets in ESTABLISHED state reset the retransmit timer,
// except for duplicate ACK packets which preserve it.
(State::Established, TcpControl::None) => {
if !self.timer.is_retransmit() || ack_len != 0 {
self.timer.set_for_idle(cx.now, self.keep_alive);
}
}
// FIN packets in ESTABLISHED state indicate the remote side has closed.
(State::Established, TcpControl::Fin) => {
self.remote_seq_no += 1;
self.rx_fin_received = true;
self.set_state(State::CloseWait);
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// ACK packets in FIN-WAIT-1 state change it to FIN-WAIT-2, if we've already
// sent everything in the transmit buffer. If not, they reset the retransmit timer.
(State::FinWait1, TcpControl::None) => {
if ack_of_fin {
self.set_state(State::FinWait2);
}
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// FIN packets in FIN-WAIT-1 state change it to CLOSING, or to TIME-WAIT
// if they also acknowledge our FIN.
(State::FinWait1, TcpControl::Fin) => {
self.remote_seq_no += 1;
self.rx_fin_received = true;
if ack_of_fin {
self.set_state(State::TimeWait);
self.timer.set_for_close(cx.now);
} else {
self.set_state(State::Closing);
self.timer.set_for_idle(cx.now, self.keep_alive);
}
}
// Data packets in FIN-WAIT-2 reset the idle timer.
(State::FinWait2, TcpControl::None) => {
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// FIN packets in FIN-WAIT-2 state change it to TIME-WAIT.
(State::FinWait2, TcpControl::Fin) => {
self.remote_seq_no += 1;
self.rx_fin_received = true;
self.set_state(State::TimeWait);
self.timer.set_for_close(cx.now);
}
// ACK packets in CLOSING state change it to TIME-WAIT.
(State::Closing, TcpControl::None) => {
if ack_of_fin {
self.set_state(State::TimeWait);
self.timer.set_for_close(cx.now);
} else {
self.timer.set_for_idle(cx.now, self.keep_alive);
}
}
// ACK packets in CLOSE-WAIT state reset the retransmit timer.
(State::CloseWait, TcpControl::None) => {
self.timer.set_for_idle(cx.now, self.keep_alive);
}
// ACK packets in LAST-ACK state change it to CLOSED.
(State::LastAck, TcpControl::None) => {
if ack_of_fin {
// Clear the remote endpoint, or we'll send an RST there.
self.set_state(State::Closed);
self.local_endpoint = IpEndpoint::default();
self.remote_endpoint = IpEndpoint::default();
} else {
self.timer.set_for_idle(cx.now, self.keep_alive);
}
}
_ => {
net_debug!(
"{}:{}:{}: unexpected packet {}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
repr
);
return Err(Error::Dropped);
}
}
// Update remote state.
self.remote_last_ts = Some(cx.now);
// RFC 1323: The window field (SEG.WND) in the header of every incoming segment, with the
// exception of SYN segments, is left-shifted by Snd.Wind.Scale bits before updating SND.WND.
let scale = match repr.control {
TcpControl::Syn => 0,
_ => self.remote_win_scale.unwrap_or(0),
};
self.remote_win_len = (repr.window_len as usize) << (scale as usize);
if ack_len > 0 {
// Dequeue acknowledged octets.
debug_assert!(self.tx_buffer.len() >= ack_len);
net_trace!(
"{}:{}:{}: tx buffer: dequeueing {} octets (now {})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
ack_len,
self.tx_buffer.len() - ack_len
);
self.tx_buffer.dequeue_allocated(ack_len);
// There's new room available in tx_buffer, wake the waiting task if any.
#[cfg(feature = "async")]
self.tx_waker.wake();
}
if let Some(ack_number) = repr.ack_number {
// TODO: When flow control is implemented,
// refractor the following block within that implementation
// Detect and react to duplicate ACKs by:
// 1. Check if duplicate ACK and change self.local_rx_dup_acks accordingly
// 2. If exactly 3 duplicate ACKs recived, set for fast retransmit
// 3. Update the last received ACK (self.local_rx_last_ack)
match self.local_rx_last_ack {
// Duplicate ACK if payload empty and ACK doesn't move send window ->
// Increment duplicate ACK count and set for retransmit if we just recived
// the third duplicate ACK
Some(ref last_rx_ack)
if repr.payload.is_empty()
&& *last_rx_ack == ack_number
&& ack_number < self.remote_last_seq =>
{
// Increment duplicate ACK count
self.local_rx_dup_acks = self.local_rx_dup_acks.saturating_add(1);
net_debug!(
"{}:{}:{}: received duplicate ACK for seq {} (duplicate nr {}{})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
ack_number,
self.local_rx_dup_acks,
if self.local_rx_dup_acks == u8::max_value() {
"+"
} else {
""
}
);
if self.local_rx_dup_acks == 3 {
self.timer.set_for_fast_retransmit();
net_debug!(
"{}:{}:{}: started fast retransmit",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
}
}
// No duplicate ACK -> Reset state and update last recived ACK
_ => {
if self.local_rx_dup_acks > 0 {
self.local_rx_dup_acks = 0;
net_debug!(
"{}:{}:{}: reset duplicate ACK count",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
}
self.local_rx_last_ack = Some(ack_number);
}
};
// We've processed everything in the incoming segment, so advance the local
// sequence number past it.
self.local_seq_no = ack_number;
// During retransmission, if an earlier segment got lost but later was
// successfully received, self.local_seq_no can move past self.remote_last_seq.
// Do not attempt to retransmit the latter segments; not only this is pointless
// in theory but also impossible in practice, since they have been already
// deallocated from the buffer.
if self.remote_last_seq < self.local_seq_no {
self.remote_last_seq = self.local_seq_no
}
}
let payload_len = repr.payload.len();
if payload_len == 0 {
return Ok(None);
}
let assembler_was_empty = self.assembler.is_empty();
// Try adding payload octets to the assembler.
match self.assembler.add(payload_offset, payload_len) {
Ok(()) => {
debug_assert!(self.assembler.total_size() == self.rx_buffer.capacity());
// Place payload octets into the buffer.
net_trace!(
"{}:{}:{}: rx buffer: receiving {} octets at offset {}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
payload_len,
payload_offset
);
let len_written = self
.rx_buffer
.write_unallocated(payload_offset, repr.payload);
debug_assert!(len_written == payload_len);
}
Err(_) => {
net_debug!(
"{}:{}:{}: assembler: too many holes to add {} octets at offset {}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
payload_len,
payload_offset
);
return Err(Error::Dropped);
}
}
if let Some(contig_len) = self.assembler.remove_front() {
debug_assert!(self.assembler.total_size() == self.rx_buffer.capacity());
// Enqueue the contiguous data octets in front of the buffer.
net_trace!(
"{}:{}:{}: rx buffer: enqueueing {} octets (now {})",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
contig_len,
self.rx_buffer.len() + contig_len
);
self.rx_buffer.enqueue_unallocated(contig_len);
// There's new data in rx_buffer, notify waiting task if any.
#[cfg(feature = "async")]
self.rx_waker.wake();
}
if !self.assembler.is_empty() {
// Print the ranges recorded in the assembler.
net_trace!(
"{}:{}:{}: assembler: {}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
self.assembler
);
}
// Handle delayed acks
if let Some(ack_delay) = self.ack_delay {
if self.ack_to_transmit() || self.window_to_update() {
self.ack_delay_timer = match self.ack_delay_timer {
AckDelayTimer::Idle => {
net_trace!(
"{}:{}:{}: starting delayed ack timer",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
AckDelayTimer::Waiting(cx.now + ack_delay)
}
// RFC1122 says "in a stream of full-sized segments there SHOULD be an ACK
// for at least every second segment".
// For now, we send an ACK every second received packet, full-sized or not.
AckDelayTimer::Waiting(_) => {
net_trace!(
"{}:{}:{}: delayed ack timer already started, forcing expiry",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
AckDelayTimer::Immediate
}
AckDelayTimer::Immediate => {
net_trace!(
"{}:{}:{}: delayed ack timer already force-expired",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
AckDelayTimer::Immediate
}
};
}
}
// Per RFC 5681, we should send an immediate ACK when either:
// 1) an out-of-order segment is received, or
// 2) a segment arrives that fills in all or part of a gap in sequence space.
if !self.assembler.is_empty() || !assembler_was_empty {
// Note that we change the transmitter state here.
// This is fine because smoltcp assumes that it can always transmit zero or one
// packets for every packet it receives.
net_trace!(
"{}:{}:{}: ACKing incoming segment",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
Ok(Some(self.ack_reply(ip_repr, repr)))
} else {
Ok(None)
}
}
fn timed_out(&self, timestamp: Instant) -> bool {
match (self.remote_last_ts, self.timeout) {
(Some(remote_last_ts), Some(timeout)) => timestamp >= remote_last_ts + timeout,
(_, _) => false,
}
}
fn seq_to_transmit(&self, cx: &Context) -> bool {
let ip_header_len = match self.local_endpoint.addr {
#[cfg(feature = "proto-ipv4")]
IpAddress::Ipv4(_) => crate::wire::IPV4_HEADER_LEN,
#[cfg(feature = "proto-ipv6")]
IpAddress::Ipv6(_) => crate::wire::IPV6_HEADER_LEN,
IpAddress::Unspecified => unreachable!(),
};
// Max segment size we're able to send due to MTU limitations.
let local_mss = cx.caps.ip_mtu() - ip_header_len - TCP_HEADER_LEN;
// The effective max segment size, taking into account our and remote's limits.
let effective_mss = local_mss.min(self.remote_mss);
// Have we sent data that hasn't been ACKed yet?
let data_in_flight = self.remote_last_seq != self.local_seq_no;
// If we want to send a SYN and we haven't done so, do it!
if matches!(self.state, State::SynSent | State::SynReceived) && !data_in_flight {
return true;
}
// max sequence number we can send.
let max_send_seq =
self.local_seq_no + core::cmp::min(self.remote_win_len, self.tx_buffer.len());
// Max amount of octets we can send.
let max_send = if max_send_seq >= self.remote_last_seq {
max_send_seq - self.remote_last_seq
} else {
0
};
// Can we send at least 1 octet?
let mut can_send = max_send != 0;
// Can we send at least 1 full segment?
let can_send_full = max_send >= effective_mss;
// Do we have to send a FIN?
let want_fin = match self.state {
State::FinWait1 => true,
State::Closing => true,
State::LastAck => true,
_ => false,
};
if self.nagle && data_in_flight && !can_send_full {
can_send = false;
}
// Can we actually send the FIN? We can send it if:
// 1. We have unsent data that fits in the remote window.
// 2. We have no unsent data.
// This condition matches only if #2, because #1 is already covered by can_data and we're ORing them.
let can_fin = want_fin && self.remote_last_seq == self.local_seq_no + self.tx_buffer.len();
can_send || can_fin
}
fn delayed_ack_expired(&self, timestamp: Instant) -> bool {
match self.ack_delay_timer {
AckDelayTimer::Idle => true,
AckDelayTimer::Waiting(t) => t <= timestamp,
AckDelayTimer::Immediate => true,
}
}
fn ack_to_transmit(&self) -> bool {
if let Some(remote_last_ack) = self.remote_last_ack {
remote_last_ack < self.remote_seq_no + self.rx_buffer.len()
} else {
false
}
}
fn window_to_update(&self) -> bool {
match self.state {
State::SynSent
| State::SynReceived
| State::Established
| State::FinWait1
| State::FinWait2 => self.scaled_window() > self.remote_last_win,
_ => false,
}
}
pub(crate) fn dispatch<F>(&mut self, cx: &Context, emit: F) -> Result<()>
where
F: FnOnce((IpRepr, TcpRepr)) -> Result<()>,
{
if !self.remote_endpoint.is_specified() {
return Err(Error::Exhausted);
}
if self.remote_last_ts.is_none() {
// We get here in exactly two cases:
// 1) This socket just transitioned into SYN-SENT.
// 2) This socket had an empty transmit buffer and some data was added there.
// Both are similar in that the socket has been quiet for an indefinite
// period of time, it isn't anymore, and the local endpoint is talking.
// So, we start counting the timeout not from the last received packet
// but from the first transmitted one.
self.remote_last_ts = Some(cx.now);
}
// Check if any state needs to be changed because of a timer.
if self.timed_out(cx.now) {
// If a timeout expires, we should abort the connection.
net_debug!(
"{}:{}:{}: timeout exceeded",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
self.set_state(State::Closed);
} else if !self.seq_to_transmit(cx) {
if let Some(retransmit_delta) = self.timer.should_retransmit(cx.now) {
// If a retransmit timer expired, we should resend data starting at the last ACK.
net_debug!(
"{}:{}:{}: retransmitting at t+{}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
retransmit_delta
);
// Rewind "last sequence number sent", as if we never
// had sent them. This will cause all data in the queue
// to be sent again.
self.remote_last_seq = self.local_seq_no;
// Clear the `should_retransmit` state. If we can't retransmit right
// now for whatever reason (like zero window), this avoids an
// infinite polling loop where `poll_at` returns `Now` but `dispatch`
// can't actually do anything.
self.timer.set_for_idle(cx.now, self.keep_alive);
// Inform RTTE, so that it can avoid bogus measurements.
self.rtte.on_retransmit();
}
}
// Decide whether we're sending a packet.
if self.seq_to_transmit(cx) {
// If we have data to transmit and it fits into partner's window, do it.
net_trace!(
"{}:{}:{}: outgoing segment will send data or flags",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
} else if self.ack_to_transmit() && self.delayed_ack_expired(cx.now) {
// If we have data to acknowledge, do it.
net_trace!(
"{}:{}:{}: outgoing segment will acknowledge",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
} else if self.window_to_update() && self.delayed_ack_expired(cx.now) {
// If we have window length increase to advertise, do it.
net_trace!(
"{}:{}:{}: outgoing segment will update window",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
} else if self.state == State::Closed {
// If we need to abort the connection, do it.
net_trace!(
"{}:{}:{}: outgoing segment will abort connection",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
} else if self.timer.should_keep_alive(cx.now) {
// If we need to transmit a keep-alive packet, do it.
net_trace!(
"{}:{}:{}: keep-alive timer expired",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
} else if self.timer.should_close(cx.now) {
// If we have spent enough time in the TIME-WAIT state, close the socket.
net_trace!(
"{}:{}:{}: TIME-WAIT timer expired",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
self.reset();
return Err(Error::Exhausted);
} else {
return Err(Error::Exhausted);
}
// Construct the lowered IP representation.
// We might need this to calculate the MSS, so do it early.
let mut ip_repr = IpRepr::Unspecified {
src_addr: self.local_endpoint.addr,
dst_addr: self.remote_endpoint.addr,
protocol: IpProtocol::Tcp,
hop_limit: self.hop_limit.unwrap_or(64),
payload_len: 0,
}
.lower(&[])?;
// Construct the basic TCP representation, an empty ACK packet.
// We'll adjust this to be more specific as needed.
let mut repr = TcpRepr {
src_port: self.local_endpoint.port,
dst_port: self.remote_endpoint.port,
control: TcpControl::None,
seq_number: self.remote_last_seq,
ack_number: Some(self.remote_seq_no + self.rx_buffer.len()),
window_len: self.scaled_window(),
window_scale: None,
max_seg_size: None,
sack_permitted: false,
sack_ranges: [None, None, None],
payload: &[],
};
match self.state {
// We transmit an RST in the CLOSED state. If we ended up in the CLOSED state
// with a specified endpoint, it means that the socket was aborted.
State::Closed => {
repr.control = TcpControl::Rst;
}
// We never transmit anything in the LISTEN state.
State::Listen => return Err(Error::Exhausted),
// We transmit a SYN in the SYN-SENT state.
// We transmit a SYN|ACK in the SYN-RECEIVED state.
State::SynSent | State::SynReceived => {
repr.control = TcpControl::Syn;
// window len must NOT be scaled in SYNs.
repr.window_len = self.rx_buffer.window().min((1 << 16) - 1) as u16;
if self.state == State::SynSent {
repr.ack_number = None;
repr.window_scale = Some(self.remote_win_shift);
repr.sack_permitted = true;
} else {
repr.sack_permitted = self.remote_has_sack;
repr.window_scale = self.remote_win_scale.map(|_| self.remote_win_shift);
}
}
// We transmit data in all states where we may have data in the buffer,
// or the transmit half of the connection is still open.
State::Established
| State::FinWait1
| State::Closing
| State::CloseWait
| State::LastAck => {
// Extract as much data as the remote side can receive in this packet
// from the transmit buffer.
// Right edge of window, ie the max sequence number we're allowed to send.
let win_right_edge = self.local_seq_no + self.remote_win_len;
// Max amount of octets we're allowed to send according to the remote window.
let win_limit = if win_right_edge >= self.remote_last_seq {
win_right_edge - self.remote_last_seq
} else {
// This can happen if we've sent some data and later the remote side
// has shrunk its window so that data is no longer inside the window.
// This should be very rare and is strongly discouraged by the RFCs,
// but it does happen in practice.
// http://www.tcpipguide.com/free/t_TCPWindowManagementIssues.htm
0
};
// Maximum size we're allowed to send. This can be limited by 3 factors:
// 1. remote window
// 2. MSS the remote is willing to accept, probably determined by their MTU
// 3. MSS we can send, determined by our MTU.
let size = win_limit
.min(self.remote_mss)
.min(cx.caps.ip_mtu() - ip_repr.buffer_len() - TCP_HEADER_LEN);
let offset = self.remote_last_seq - self.local_seq_no;
repr.payload = self.tx_buffer.get_allocated(offset, size);
// If we've sent everything we had in the buffer, follow it with the PSH or FIN
// flags, depending on whether the transmit half of the connection is open.
if offset + repr.payload.len() == self.tx_buffer.len() {
match self.state {
State::FinWait1 | State::LastAck | State::Closing => {
repr.control = TcpControl::Fin
}
State::Established | State::CloseWait if !repr.payload.is_empty() => {
repr.control = TcpControl::Psh
}
_ => (),
}
}
}
// In FIN-WAIT-2 and TIME-WAIT states we may only transmit ACKs for incoming data or FIN
State::FinWait2 | State::TimeWait => {}
}
// There might be more than one reason to send a packet. E.g. the keep-alive timer
// has expired, and we also have data in transmit buffer. Since any packet that occupies
// sequence space will elicit an ACK, we only need to send an explicit packet if we
// couldn't fill the sequence space with anything.
let is_keep_alive;
if self.timer.should_keep_alive(cx.now) && repr.is_empty() {
repr.seq_number = repr.seq_number - 1;
repr.payload = b"\x00"; // RFC 1122 says we should do this
is_keep_alive = true;
} else {
is_keep_alive = false;
}
// Trace a summary of what will be sent.
if is_keep_alive {
net_trace!(
"{}:{}:{}: sending a keep-alive",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
);
} else if !repr.payload.is_empty() {
net_trace!(
"{}:{}:{}: tx buffer: sending {} octets at offset {}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
repr.payload.len(),
self.remote_last_seq - self.local_seq_no
);
}
if repr.control != TcpControl::None || repr.payload.is_empty() {
let flags = match (repr.control, repr.ack_number) {
(TcpControl::Syn, None) => "SYN",
(TcpControl::Syn, Some(_)) => "SYN|ACK",
(TcpControl::Fin, Some(_)) => "FIN|ACK",
(TcpControl::Rst, Some(_)) => "RST|ACK",
(TcpControl::Psh, Some(_)) => "PSH|ACK",
(TcpControl::None, Some(_)) => "ACK",
_ => "<unreachable>",
};
net_trace!(
"{}:{}:{}: sending {}",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint,
flags
);
}
if repr.control == TcpControl::Syn {
// Fill the MSS option. See RFC 6691 for an explanation of this calculation.
let max_segment_size = cx.caps.ip_mtu() - ip_repr.buffer_len() - TCP_HEADER_LEN;
repr.max_seg_size = Some(max_segment_size as u16);
}
// Actually send the packet. If this succeeds, it means the packet is in
// the device buffer, and its transmission is imminent. If not, we might have
// a number of problems, e.g. we need neighbor discovery.
//
// Bailing out if the packet isn't placed in the device buffer allows us
// to not waste time waiting for the retransmit timer on packets that we know
// for sure will not be successfully transmitted.
ip_repr.set_payload_len(repr.buffer_len());
emit((ip_repr, repr))?;
// We've sent something, whether useful data or a keep-alive packet, so rewind
// the keep-alive timer.
self.timer.rewind_keep_alive(cx.now, self.keep_alive);
// Reset delayed-ack timer
match self.ack_delay_timer {
AckDelayTimer::Idle => {}
AckDelayTimer::Waiting(_) => {
net_trace!(
"{}:{}:{}: stop delayed ack timer",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
)
}
AckDelayTimer::Immediate => {
net_trace!(
"{}:{}:{}: stop delayed ack timer (was force-expired)",
self.meta.handle,
self.local_endpoint,
self.remote_endpoint
)
}
}
self.ack_delay_timer = AckDelayTimer::Idle;
// Leave the rest of the state intact if sending a keep-alive packet, since those
// carry a fake segment.
if is_keep_alive {
return Ok(());
}
// We've sent a packet successfully, so we can update the internal state now.
self.remote_last_seq = repr.seq_number + repr.segment_len();
self.remote_last_ack = repr.ack_number;
self.remote_last_win = repr.window_len;
if repr.segment_len() > 0 {
self.rtte
.on_send(cx.now, repr.seq_number + repr.segment_len());
}
if !self.seq_to_transmit(cx) && repr.segment_len() > 0 {
// If we've transmitted all data we could (and there was something at all,
// data or flag, to transmit, not just an ACK), wind up the retransmit timer.
self.timer
.set_for_retransmit(cx.now, self.rtte.retransmission_timeout());
}
if self.state == State::Closed {
// When aborting a connection, forget about it after sending a single RST packet.
self.local_endpoint = IpEndpoint::default();
self.remote_endpoint = IpEndpoint::default();
}
Ok(())
}
#[allow(clippy::if_same_then_else)]
pub(crate) fn poll_at(&self, cx: &Context) -> PollAt {
// The logic here mirrors the beginning of dispatch() closely.
if !self.remote_endpoint.is_specified() {
// No one to talk to, nothing to transmit.
PollAt::Ingress
} else if self.remote_last_ts.is_none() {
// Socket stopped being quiet recently, we need to acquire a timestamp.
PollAt::Now
} else if self.state == State::Closed {
// Socket was aborted, we have an RST packet to transmit.
PollAt::Now
} else if self.seq_to_transmit(cx) {
// We have a data or flag packet to transmit.
PollAt::Now
} else {
let want_ack = self.ack_to_transmit() || self.window_to_update();
let delayed_ack_poll_at = match (want_ack, self.ack_delay_timer) {
(false, _) => PollAt::Ingress,
(true, AckDelayTimer::Idle) => PollAt::Now,
(true, AckDelayTimer::Waiting(t)) => PollAt::Time(t),
(true, AckDelayTimer::Immediate) => PollAt::Now,
};
let timeout_poll_at = match (self.remote_last_ts, self.timeout) {
// If we're transmitting or retransmitting data, we need to poll at the moment
// when the timeout would expire.
(Some(remote_last_ts), Some(timeout)) => PollAt::Time(remote_last_ts + timeout),
// Otherwise we have no timeout.
(_, _) => PollAt::Ingress,
};
// We wait for the earliest of our timers to fire.
*[self.timer.poll_at(), timeout_poll_at, delayed_ack_poll_at]
.iter()
.min()
.unwrap_or(&PollAt::Ingress)
}
}
}
impl<'a> From<TcpSocket<'a>> for Socket<'a> {
fn from(val: TcpSocket<'a>) -> Self {
Socket::Tcp(val)
}
}
impl<'a> fmt::Write for TcpSocket<'a> {
fn write_str(&mut self, slice: &str) -> fmt::Result {
let slice = slice.as_bytes();
if self.send_slice(slice) == Ok(slice.len()) {
Ok(())
} else {
Err(fmt::Error)
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::wire::ip::test::{MOCK_IP_ADDR_1, MOCK_IP_ADDR_2, MOCK_IP_ADDR_3, MOCK_UNSPECIFIED};
use crate::wire::{IpAddress, IpCidr, IpRepr};
use core::i32;
use std::vec::Vec;
// =========================================================================================//
// Constants
// =========================================================================================//
const LOCAL_PORT: u16 = 80;
const REMOTE_PORT: u16 = 49500;
const LOCAL_END: IpEndpoint = IpEndpoint {
addr: MOCK_IP_ADDR_1,
port: LOCAL_PORT,
};
const REMOTE_END: IpEndpoint = IpEndpoint {
addr: MOCK_IP_ADDR_2,
port: REMOTE_PORT,
};
const LOCAL_SEQ: TcpSeqNumber = TcpSeqNumber(10000);
const REMOTE_SEQ: TcpSeqNumber = TcpSeqNumber(-10001);
const SEND_IP_TEMPL: IpRepr = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_1,
dst_addr: MOCK_IP_ADDR_2,
protocol: IpProtocol::Tcp,
payload_len: 20,
hop_limit: 64,
};
const SEND_TEMPL: TcpRepr<'static> = TcpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
control: TcpControl::None,
seq_number: TcpSeqNumber(0),
ack_number: Some(TcpSeqNumber(0)),
window_len: 256,
window_scale: None,
max_seg_size: None,
sack_permitted: false,
sack_ranges: [None, None, None],
payload: &[],
};
const _RECV_IP_TEMPL: IpRepr = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_1,
dst_addr: MOCK_IP_ADDR_2,
protocol: IpProtocol::Tcp,
payload_len: 20,
hop_limit: 64,
};
const RECV_TEMPL: TcpRepr<'static> = TcpRepr {
src_port: LOCAL_PORT,
dst_port: REMOTE_PORT,
control: TcpControl::None,
seq_number: TcpSeqNumber(0),
ack_number: Some(TcpSeqNumber(0)),
window_len: 64,
window_scale: None,
max_seg_size: None,
sack_permitted: false,
sack_ranges: [None, None, None],
payload: &[],
};
#[cfg(feature = "proto-ipv6")]
const BASE_MSS: u16 = 1440;
#[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
const BASE_MSS: u16 = 1460;
// =========================================================================================//
// Helper functions
// =========================================================================================//
fn send(
socket: &mut TcpSocket,
timestamp: Instant,
repr: &TcpRepr,
) -> Result<Option<TcpRepr<'static>>> {
let ip_repr = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_2,
dst_addr: MOCK_IP_ADDR_1,
protocol: IpProtocol::Tcp,
payload_len: repr.buffer_len(),
hop_limit: 64,
};
net_trace!("send: {}", repr);
assert!(socket.accepts(&ip_repr, repr));
let mut cx = Context::DUMMY.clone();
cx.now = timestamp;
match socket.process(&cx, &ip_repr, repr) {
Ok(Some((_ip_repr, repr))) => {
net_trace!("recv: {}", repr);
Ok(Some(repr))
}
Ok(None) => Ok(None),
Err(err) => Err(err),
}
}
fn recv<F>(socket: &mut TcpSocket, timestamp: Instant, mut f: F)
where
F: FnMut(Result<TcpRepr>),
{
let mut cx = Context::DUMMY.clone();
cx.now = timestamp;
let result = socket.dispatch(&cx, |(ip_repr, tcp_repr)| {
let ip_repr = ip_repr.lower(&[IpCidr::new(LOCAL_END.addr, 24)]).unwrap();
assert_eq!(ip_repr.protocol(), IpProtocol::Tcp);
assert_eq!(ip_repr.src_addr(), MOCK_IP_ADDR_1);
assert_eq!(ip_repr.dst_addr(), MOCK_IP_ADDR_2);
assert_eq!(ip_repr.payload_len(), tcp_repr.buffer_len());
net_trace!("recv: {}", tcp_repr);
Ok(f(Ok(tcp_repr)))
});
match result {
Ok(()) => (),
Err(e) => f(Err(e)),
}
}
macro_rules! send {
($socket:ident, $repr:expr) =>
(send!($socket, time 0, $repr));
($socket:ident, $repr:expr, $result:expr) =>
(send!($socket, time 0, $repr, $result));
($socket:ident, time $time:expr, $repr:expr) =>
(send!($socket, time $time, $repr, Ok(None)));
($socket:ident, time $time:expr, $repr:expr, $result:expr) =>
(assert_eq!(send(&mut $socket, Instant::from_millis($time), &$repr), $result));
}
macro_rules! recv {
($socket:ident, [$( $repr:expr ),*]) => ({
$( recv!($socket, Ok($repr)); )*
recv!($socket, Err(Error::Exhausted))
});
($socket:ident, $result:expr) =>
(recv!($socket, time 0, $result));
($socket:ident, time $time:expr, $result:expr) =>
(recv(&mut $socket, Instant::from_millis($time), |result| {
// Most of the time we don't care about the PSH flag.
let result = result.map(|mut repr| {
repr.control = repr.control.quash_psh();
repr
});
assert_eq!(result, $result)
}));
($socket:ident, time $time:expr, $result:expr, exact) =>
(recv(&mut $socket, Instant::from_millis($time), |repr| assert_eq!(repr, $result)));
}
macro_rules! sanity {
($socket1:expr, $socket2:expr) => {{
let (s1, s2) = ($socket1, $socket2);
assert_eq!(s1.state, s2.state, "state");
assert_eq!(s1.listen_address, s2.listen_address, "listen_address");
assert_eq!(s1.local_endpoint, s2.local_endpoint, "local_endpoint");
assert_eq!(s1.remote_endpoint, s2.remote_endpoint, "remote_endpoint");
assert_eq!(s1.local_seq_no, s2.local_seq_no, "local_seq_no");
assert_eq!(s1.remote_seq_no, s2.remote_seq_no, "remote_seq_no");
assert_eq!(s1.remote_last_seq, s2.remote_last_seq, "remote_last_seq");
assert_eq!(s1.remote_last_ack, s2.remote_last_ack, "remote_last_ack");
assert_eq!(s1.remote_last_win, s2.remote_last_win, "remote_last_win");
assert_eq!(s1.remote_win_len, s2.remote_win_len, "remote_win_len");
assert_eq!(s1.timer, s2.timer, "timer");
}};
}
fn socket() -> TcpSocket<'static> {
socket_with_buffer_sizes(64, 64)
}
fn socket_with_buffer_sizes(tx_len: usize, rx_len: usize) -> TcpSocket<'static> {
let rx_buffer = SocketBuffer::new(vec![0; rx_len]);
let tx_buffer = SocketBuffer::new(vec![0; tx_len]);
let mut socket = TcpSocket::new(rx_buffer, tx_buffer);
socket.set_ack_delay(None);
socket
}
fn socket_syn_received_with_buffer_sizes(tx_len: usize, rx_len: usize) -> TcpSocket<'static> {
let mut s = socket_with_buffer_sizes(tx_len, rx_len);
s.state = State::SynReceived;
s.local_endpoint = LOCAL_END;
s.remote_endpoint = REMOTE_END;
s.local_seq_no = LOCAL_SEQ;
s.remote_seq_no = REMOTE_SEQ + 1;
s.remote_last_seq = LOCAL_SEQ;
s.remote_win_len = 256;
s
}
fn socket_syn_received() -> TcpSocket<'static> {
socket_syn_received_with_buffer_sizes(64, 64)
}
fn socket_syn_sent_with_buffer_sizes(tx_len: usize, rx_len: usize) -> TcpSocket<'static> {
let mut s = socket_with_buffer_sizes(tx_len, rx_len);
s.state = State::SynSent;
s.local_endpoint = IpEndpoint::new(MOCK_UNSPECIFIED, LOCAL_PORT);
s.remote_endpoint = REMOTE_END;
s.local_seq_no = LOCAL_SEQ;
s.remote_last_seq = LOCAL_SEQ;
s
}
fn socket_syn_sent() -> TcpSocket<'static> {
socket_syn_sent_with_buffer_sizes(64, 64)
}
fn socket_syn_sent_with_local_ipendpoint(local: IpEndpoint) -> TcpSocket<'static> {
let mut s = socket();
s.state = State::SynSent;
s.local_endpoint = local;
s.remote_endpoint = REMOTE_END;
s.local_seq_no = LOCAL_SEQ;
s.remote_last_seq = LOCAL_SEQ;
s
}
fn socket_established_with_buffer_sizes(tx_len: usize, rx_len: usize) -> TcpSocket<'static> {
let mut s = socket_syn_received_with_buffer_sizes(tx_len, rx_len);
s.state = State::Established;
s.local_seq_no = LOCAL_SEQ + 1;
s.remote_last_seq = LOCAL_SEQ + 1;
s.remote_last_ack = Some(REMOTE_SEQ + 1);
s.remote_last_win = 64;
s
}
fn socket_established() -> TcpSocket<'static> {
socket_established_with_buffer_sizes(64, 64)
}
fn socket_fin_wait_1() -> TcpSocket<'static> {
let mut s = socket_established();
s.state = State::FinWait1;
s
}
fn socket_fin_wait_2() -> TcpSocket<'static> {
let mut s = socket_fin_wait_1();
s.state = State::FinWait2;
s.local_seq_no = LOCAL_SEQ + 1 + 1;
s.remote_last_seq = LOCAL_SEQ + 1 + 1;
s
}
fn socket_closing() -> TcpSocket<'static> {
let mut s = socket_fin_wait_1();
s.state = State::Closing;
s.remote_last_seq = LOCAL_SEQ + 1 + 1;
s.remote_seq_no = REMOTE_SEQ + 1 + 1;
s
}
fn socket_time_wait(from_closing: bool) -> TcpSocket<'static> {
let mut s = socket_fin_wait_2();
s.state = State::TimeWait;
s.remote_seq_no = REMOTE_SEQ + 1 + 1;
if from_closing {
s.remote_last_ack = Some(REMOTE_SEQ + 1 + 1);
}
s.timer = Timer::Close {
expires_at: Instant::from_secs(1) + CLOSE_DELAY,
};
s
}
fn socket_close_wait() -> TcpSocket<'static> {
let mut s = socket_established();
s.state = State::CloseWait;
s.remote_seq_no = REMOTE_SEQ + 1 + 1;
s.remote_last_ack = Some(REMOTE_SEQ + 1 + 1);
s
}
fn socket_last_ack() -> TcpSocket<'static> {
let mut s = socket_close_wait();
s.state = State::LastAck;
s
}
fn socket_recved() -> TcpSocket<'static> {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
}]
);
s
}
// =========================================================================================//
// Tests for the CLOSED state.
// =========================================================================================//
#[test]
fn test_closed_reject() {
let s = socket();
assert_eq!(s.state, State::Closed);
let tcp_repr = TcpRepr {
control: TcpControl::Syn,
..SEND_TEMPL
};
assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr));
}
#[test]
fn test_closed_reject_after_listen() {
let mut s = socket();
s.listen(LOCAL_END).unwrap();
s.close();
let tcp_repr = TcpRepr {
control: TcpControl::Syn,
..SEND_TEMPL
};
assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr));
}
#[test]
fn test_closed_close() {
let mut s = socket();
s.close();
assert_eq!(s.state, State::Closed);
}
// =========================================================================================//
// Tests for the LISTEN state.
// =========================================================================================//
fn socket_listen() -> TcpSocket<'static> {
let mut s = socket();
s.state = State::Listen;
s.local_endpoint = IpEndpoint::new(IpAddress::default(), LOCAL_PORT);
s
}
#[test]
fn test_listen_sack_option() {
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
sack_permitted: false,
..SEND_TEMPL
}
);
assert!(!s.remote_has_sack);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
sack_permitted: true,
..SEND_TEMPL
}
);
assert!(s.remote_has_sack);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
sack_permitted: true,
..RECV_TEMPL
}]
);
}
#[test]
fn test_listen_syn_win_scale_buffers() {
for (buffer_size, shift_amt) in &[
(64, 0),
(128, 0),
(1024, 0),
(65535, 0),
(65536, 1),
(65537, 1),
(131071, 1),
(131072, 2),
(524287, 3),
(524288, 4),
(655350, 4),
(1048576, 5),
] {
let mut s = socket_with_buffer_sizes(64, *buffer_size);
s.state = State::Listen;
s.local_endpoint = IpEndpoint::new(IpAddress::default(), LOCAL_PORT);
assert_eq!(s.remote_win_shift, *shift_amt);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
window_scale: Some(0),
..SEND_TEMPL
}
);
assert_eq!(s.remote_win_shift, *shift_amt);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
window_scale: Some(*shift_amt),
window_len: cmp::min(*buffer_size, 65535) as u16,
..RECV_TEMPL
}]
);
}
}
#[test]
fn test_listen_sanity() {
let mut s = socket();
s.listen(LOCAL_PORT).unwrap();
sanity!(s, socket_listen());
}
#[test]
fn test_listen_validation() {
let mut s = socket();
assert_eq!(s.listen(0), Err(Error::Unaddressable));
}
#[test]
fn test_listen_twice() {
let mut s = socket();
assert_eq!(s.listen(80), Ok(()));
assert_eq!(s.listen(80), Err(Error::Illegal));
}
#[test]
fn test_listen_syn() {
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
..SEND_TEMPL
}
);
sanity!(s, socket_syn_received());
}
#[test]
fn test_listen_syn_reject_ack() {
let s = socket_listen();
let tcp_repr = TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ),
..SEND_TEMPL
};
assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr));
assert_eq!(s.state, State::Listen);
}
#[test]
fn test_listen_rst() {
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ,
ack_number: None,
..SEND_TEMPL
},
Err(Error::Dropped)
);
}
#[test]
fn test_listen_close() {
let mut s = socket_listen();
s.close();
assert_eq!(s.state, State::Closed);
}
// =========================================================================================//
// Tests for the SYN-RECEIVED state.
// =========================================================================================//
#[test]
fn test_syn_received_ack() {
let mut s = socket_syn_received();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Established);
sanity!(s, socket_established());
}
#[test]
fn test_syn_received_ack_too_low() {
let mut s = socket_syn_received();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ), // wrong
..SEND_TEMPL
},
Ok(Some(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ,
ack_number: None,
window_len: 0,
..RECV_TEMPL
}))
);
assert_eq!(s.state, State::SynReceived);
}
#[test]
fn test_syn_received_ack_too_high() {
let mut s = socket_syn_received();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 2), // wrong
..SEND_TEMPL
},
Ok(Some(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 2,
ack_number: None,
window_len: 0,
..RECV_TEMPL
}))
);
assert_eq!(s.state, State::SynReceived);
}
#[test]
fn test_syn_received_fin() {
let mut s = socket_syn_received();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6 + 1),
window_len: 58,
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::CloseWait);
sanity!(
s,
TcpSocket {
remote_last_ack: Some(REMOTE_SEQ + 1 + 6 + 1),
remote_last_win: 58,
..socket_close_wait()
}
);
}
#[test]
fn test_syn_received_rst() {
let mut s = socket_syn_received();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Listen);
assert_eq!(
s.local_endpoint,
IpEndpoint::new(IpAddress::Unspecified, LOCAL_END.port)
);
assert_eq!(s.remote_endpoint, IpEndpoint::default());
}
#[test]
fn test_syn_received_no_window_scaling() {
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
..SEND_TEMPL
}
);
assert_eq!(s.state(), State::SynReceived);
assert_eq!(s.local_endpoint(), LOCAL_END);
assert_eq!(s.remote_endpoint(), REMOTE_END);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
window_scale: None,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
window_scale: None,
..SEND_TEMPL
}
);
assert_eq!(s.remote_win_shift, 0);
assert_eq!(s.remote_win_scale, None);
}
#[test]
fn test_syn_received_window_scaling() {
for scale in 0..14 {
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
window_scale: Some(scale),
..SEND_TEMPL
}
);
assert_eq!(s.state(), State::SynReceived);
assert_eq!(s.local_endpoint(), LOCAL_END);
assert_eq!(s.remote_endpoint(), REMOTE_END);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
window_scale: None,
..SEND_TEMPL
}
);
assert_eq!(s.remote_win_scale, Some(scale));
}
}
#[test]
fn test_syn_received_close() {
let mut s = socket_syn_received();
s.close();
assert_eq!(s.state, State::FinWait1);
}
// =========================================================================================//
// Tests for the SYN-SENT state.
// =========================================================================================//
#[test]
fn test_connect_validation() {
let mut s = socket();
assert_eq!(
s.connect((IpAddress::Unspecified, 80), LOCAL_END),
Err(Error::Unaddressable)
);
assert_eq!(
s.connect(REMOTE_END, (MOCK_UNSPECIFIED, 0)),
Err(Error::Unaddressable)
);
assert_eq!(
s.connect((MOCK_UNSPECIFIED, 0), LOCAL_END),
Err(Error::Unaddressable)
);
assert_eq!(
s.connect((IpAddress::Unspecified, 80), LOCAL_END),
Err(Error::Unaddressable)
);
s.connect(REMOTE_END, LOCAL_END)
.expect("Connect failed with valid parameters");
assert_eq!(s.local_endpoint(), LOCAL_END);
assert_eq!(s.remote_endpoint(), REMOTE_END);
}
#[test]
fn test_connect() {
let mut s = socket();
s.local_seq_no = LOCAL_SEQ;
s.connect(REMOTE_END, LOCAL_END.port).unwrap();
assert_eq!(
s.local_endpoint,
IpEndpoint::new(MOCK_UNSPECIFIED, LOCAL_END.port)
);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1),
max_seg_size: Some(BASE_MSS - 80),
window_scale: Some(0),
..SEND_TEMPL
}
);
assert_eq!(s.local_endpoint, LOCAL_END);
}
#[test]
fn test_connect_unspecified_local() {
let mut s = socket();
assert_eq!(s.connect(REMOTE_END, (MOCK_UNSPECIFIED, 80)), Ok(()));
s.abort();
assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Ok(()));
s.abort();
}
#[test]
fn test_connect_specified_local() {
let mut s = socket();
assert_eq!(s.connect(REMOTE_END, (MOCK_IP_ADDR_2, 80)), Ok(()));
}
#[test]
fn test_connect_twice() {
let mut s = socket();
assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Ok(()));
assert_eq!(
s.connect(REMOTE_END, (IpAddress::Unspecified, 80)),
Err(Error::Illegal)
);
}
#[test]
fn test_syn_sent_sanity() {
let mut s = socket();
s.local_seq_no = LOCAL_SEQ;
s.connect(REMOTE_END, LOCAL_END).unwrap();
sanity!(s, socket_syn_sent_with_local_ipendpoint(LOCAL_END));
}
#[test]
fn test_syn_sent_syn_ack() {
let mut s = socket_syn_sent();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1),
max_seg_size: Some(BASE_MSS - 80),
window_scale: Some(0),
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
recv!(s, time 1000, Err(Error::Exhausted));
assert_eq!(s.state, State::Established);
sanity!(s, socket_established());
}
#[test]
fn test_syn_sent_syn_ack_not_incremented() {
let mut s = socket_syn_sent();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ), // WRONG
max_seg_size: Some(BASE_MSS - 80),
window_scale: Some(0),
..SEND_TEMPL
},
Ok(Some(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ,
ack_number: None,
window_len: 0,
..RECV_TEMPL
}))
);
assert_eq!(s.state, State::SynSent);
}
#[test]
fn test_syn_sent_rst() {
let mut s = socket_syn_sent();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_syn_sent_rst_no_ack() {
let mut s = socket_syn_sent();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ,
ack_number: None,
..SEND_TEMPL
},
Err(Error::Dropped)
);
assert_eq!(s.state, State::SynSent);
}
#[test]
fn test_syn_sent_rst_bad_ack() {
let mut s = socket_syn_sent();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ,
ack_number: Some(TcpSeqNumber(1234)),
..SEND_TEMPL
},
Err(Error::Dropped)
);
assert_eq!(s.state, State::SynSent);
}
#[test]
fn test_syn_sent_bad_ack() {
let mut s = socket_syn_sent();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::None, // Unexpected
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1), // Correct
..SEND_TEMPL
},
Err(Error::Dropped)
);
// It should trigger no response and change no state
recv!(s, []);
assert_eq!(s.state, State::SynSent);
}
#[test]
fn test_syn_sent_bad_ack_seq_1() {
let mut s = socket_syn_sent();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::None,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ), // WRONG
..SEND_TEMPL
},
Ok(Some(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ, // matching the ack_number of the unexpected ack
ack_number: None,
window_len: 0,
..RECV_TEMPL
}))
);
// It should trigger a RST, and change no state
assert_eq!(s.state, State::SynSent);
}
#[test]
fn test_syn_sent_bad_ack_seq_2() {
let mut s = socket_syn_sent();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::None,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 123456), // WRONG
..SEND_TEMPL
},
Ok(Some(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 123456, // matching the ack_number of the unexpected ack
ack_number: None,
window_len: 0,
..RECV_TEMPL
}))
);
// It should trigger a RST, and change no state
assert_eq!(s.state, State::SynSent);
}
#[test]
fn test_syn_sent_close() {
let mut s = socket();
s.close();
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_syn_sent_win_scale_buffers() {
for (buffer_size, shift_amt) in &[
(64, 0),
(128, 0),
(1024, 0),
(65535, 0),
(65536, 1),
(65537, 1),
(131071, 1),
(131072, 2),
(524287, 3),
(524288, 4),
(655350, 4),
(1048576, 5),
] {
let mut s = socket_with_buffer_sizes(64, *buffer_size);
s.local_seq_no = LOCAL_SEQ;
assert_eq!(s.remote_win_shift, *shift_amt);
s.connect(REMOTE_END, LOCAL_END).unwrap();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(*shift_amt),
window_len: cmp::min(*buffer_size, 65535) as u16,
sack_permitted: true,
..RECV_TEMPL
}]
);
}
}
#[test]
fn test_syn_sent_syn_ack_no_window_scaling() {
let mut s = socket_syn_sent_with_buffer_sizes(1048576, 1048576);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
// scaling does NOT apply to the window value in SYN packets
window_len: 65535,
window_scale: Some(5),
sack_permitted: true,
..RECV_TEMPL
}]
);
assert_eq!(s.remote_win_shift, 5);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1),
max_seg_size: Some(BASE_MSS - 80),
window_scale: None,
window_len: 42,
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Established);
assert_eq!(s.remote_win_shift, 0);
assert_eq!(s.remote_win_scale, None);
assert_eq!(s.remote_win_len, 42);
}
#[test]
fn test_syn_sent_syn_ack_window_scaling() {
let mut s = socket_syn_sent();
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1),
max_seg_size: Some(BASE_MSS - 80),
window_scale: Some(7),
window_len: 42,
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Established);
assert_eq!(s.remote_win_scale, Some(7));
// scaling does NOT apply to the window value in SYN packets
assert_eq!(s.remote_win_len, 42);
}
// =========================================================================================//
// Tests for the ESTABLISHED state.
// =========================================================================================//
#[test]
fn test_established_recv() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
}]
);
assert_eq!(s.rx_buffer.dequeue_many(6), &b"abcdef"[..]);
}
fn setup_rfc2018_cases() -> (TcpSocket<'static>, Vec<u8>) {
// This is a utility function used by the tests for RFC 2018 cases. It configures a socket
// in a particular way suitable for those cases.
//
// RFC 2018: Assume the left window edge is 5000 and that the data transmitter sends [...]
// segments, each containing 500 data bytes.
let mut s = socket_established_with_buffer_sizes(4000, 4000);
s.remote_has_sack = true;
// create a segment that is 500 bytes long
let mut segment: Vec<u8> = Vec::with_capacity(500);
// move the last ack to 5000 by sending ten of them
for _ in 0..50 {
segment.extend_from_slice(b"abcdefghij")
}
for offset in (0..5000).step_by(500) {
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + offset,
ack_number: Some(LOCAL_SEQ + 1),
payload: &segment,
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + offset + 500),
window_len: 3500,
..RECV_TEMPL
}]
);
s.recv(|data| {
assert_eq!(data.len(), 500);
assert_eq!(data, segment.as_slice());
(500, ())
})
.unwrap();
}
assert_eq!(s.remote_last_win, 3500);
(s, segment)
}
#[test]
fn test_established_rfc2018_cases() {
// This test case verifies the exact scenarios described on pages 8-9 of RFC 2018. Please
// ensure its behavior does not deviate from those scenarios.
let (mut s, segment) = setup_rfc2018_cases();
// RFC 2018:
//
// Case 2: The first segment is dropped but the remaining 7 are received.
//
// Upon receiving each of the last seven packets, the data receiver will return a TCP ACK
// segment that acknowledges sequence number 5000 and contains a SACK option specifying one
// block of queued data:
//
// Triggering ACK Left Edge Right Edge
// Segment
//
// 5000 (lost)
// 5500 5000 5500 6000
// 6000 5000 5500 6500
// 6500 5000 5500 7000
// 7000 5000 5500 7500
// 7500 5000 5500 8000
// 8000 5000 5500 8500
// 8500 5000 5500 9000
//
for offset in (500..3500).step_by(500) {
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + offset + 5000,
ack_number: Some(LOCAL_SEQ + 1),
payload: &segment,
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 5000),
window_len: 4000,
sack_ranges: [
Some((
REMOTE_SEQ.0 as u32 + 1 + 5500,
REMOTE_SEQ.0 as u32 + 1 + 5500 + offset as u32
)),
None,
None
],
..RECV_TEMPL
}))
);
}
}
#[test]
fn test_established_sliding_window_recv() {
let mut s = socket_established();
// Update our scaling parameters for a TCP with a scaled buffer.
assert_eq!(s.rx_buffer.len(), 0);
s.rx_buffer = SocketBuffer::new(vec![0; 262143]);
s.assembler = Assembler::new(s.rx_buffer.capacity());
s.remote_win_scale = Some(0);
s.remote_last_win = 65535;
s.remote_win_shift = 2;
// Create a TCP segment that will mostly fill an IP frame.
let mut segment: Vec<u8> = Vec::with_capacity(1400);
for _ in 0..100 {
segment.extend_from_slice(b"abcdefghijklmn")
}
assert_eq!(segment.len(), 1400);
// Send the frame
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &segment,
..SEND_TEMPL
}
);
// Ensure that the received window size is shifted right by 2.
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1400),
window_len: 65185,
..RECV_TEMPL
}]
);
}
#[test]
fn test_established_send() {
let mut s = socket_established();
// First roundtrip after establishing.
s.send_slice(b"abcdef").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
assert_eq!(s.tx_buffer.len(), 6);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6),
..SEND_TEMPL
}
);
assert_eq!(s.tx_buffer.len(), 0);
// Second roundtrip.
s.send_slice(b"foobar").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"foobar"[..],
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 6),
..SEND_TEMPL
}
);
assert_eq!(s.tx_buffer.len(), 0);
}
#[test]
fn test_established_send_no_ack_send() {
let mut s = socket_established();
s.set_nagle_enabled(false);
s.send_slice(b"abcdef").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
s.send_slice(b"foobar").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"foobar"[..],
..RECV_TEMPL
}]
);
}
#[test]
fn test_established_send_buf_gt_win() {
let mut data = [0; 32];
for (i, elem) in data.iter_mut().enumerate() {
*elem = i as u8
}
let mut s = socket_established();
s.remote_win_len = 16;
s.send_slice(&data[..]).unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &data[0..16],
..RECV_TEMPL
}]
);
}
#[test]
fn test_established_send_window_shrink() {
let mut s = socket_established();
// 6 octets fit on the remote side's window, so we send them.
s.send_slice(b"abcdef").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
assert_eq!(s.tx_buffer.len(), 6);
println!(
"local_seq_no={} remote_win_len={} remote_last_seq={}",
s.local_seq_no, s.remote_win_len, s.remote_last_seq
);
// - Peer doesn't ack them yet
// - Sends data so we need to reply with an ACK
// - ...AND and sends a window announcement that SHRINKS the window, so data we've
// previously sent is now outside the window. Yes, this is allowed by TCP.
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
window_len: 3,
payload: &b"xyzxyz"[..],
..SEND_TEMPL
}
);
assert_eq!(s.tx_buffer.len(), 6);
println!(
"local_seq_no={} remote_win_len={} remote_last_seq={}",
s.local_seq_no, s.remote_win_len, s.remote_last_seq
);
// More data should not get sent since it doesn't fit in the window
s.send_slice(b"foobar").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 64 - 6,
..RECV_TEMPL
}]
);
}
#[test]
fn test_established_send_wrap() {
let mut s = socket_established();
let local_seq_start = TcpSeqNumber(i32::MAX - 1);
s.local_seq_no = local_seq_start + 1;
s.remote_last_seq = local_seq_start + 1;
s.send_slice(b"abc").unwrap();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: local_seq_start + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abc"[..],
..RECV_TEMPL
}));
}
#[test]
fn test_established_no_ack() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: None,
..SEND_TEMPL
},
Err(Error::Dropped)
);
}
#[test]
fn test_established_bad_ack() {
let mut s = socket_established();
// Already acknowledged data.
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(TcpSeqNumber(LOCAL_SEQ.0 - 1)),
..SEND_TEMPL
},
Err(Error::Dropped)
);
assert_eq!(s.local_seq_no, LOCAL_SEQ + 1);
// Data not yet transmitted.
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 10),
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
assert_eq!(s.local_seq_no, LOCAL_SEQ + 1);
}
#[test]
fn test_established_bad_seq() {
let mut s = socket_established();
// Data outside of receive window.
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 256,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1);
// Challenge ACKs are rate-limited, we don't get a second one immediately.
send!(
s,
time 100,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 256,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
},
Ok(None)
);
// If we wait a bit, we do get a new one.
send!(
s,
time 2000,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 256,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1);
}
#[test]
fn test_established_fin() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::CloseWait);
sanity!(s, socket_close_wait());
}
#[test]
fn test_established_fin_after_missing() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1 + 6,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"123456"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
assert_eq!(s.state, State::Established);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6 + 6),
window_len: 52,
..RECV_TEMPL
}))
);
assert_eq!(s.state, State::Established);
}
#[test]
fn test_established_send_fin() {
let mut s = socket_established();
s.send_slice(b"abcdef").unwrap();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::CloseWait);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
}
#[test]
fn test_established_rst() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_established_rst_no_ack() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ + 1,
ack_number: None,
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_established_close() {
let mut s = socket_established();
s.close();
assert_eq!(s.state, State::FinWait1);
sanity!(s, socket_fin_wait_1());
}
#[test]
fn test_established_abort() {
let mut s = socket_established();
s.abort();
assert_eq!(s.state, State::Closed);
recv!(
s,
[TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
}
#[test]
fn test_established_rst_bad_seq() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ, // Wrong seq
ack_number: None,
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
assert_eq!(s.state, State::Established);
// Send something to advance seq by 1
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1, // correct seq
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"a"[..],
..SEND_TEMPL
}
);
// Send wrong rst again, check that the challenge ack is correctly updated
// The ack number must be updated even if we don't call dispatch on the socket
// See https://github.com/smoltcp-rs/smoltcp/issues/338
send!(
s,
time 2000,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ, // Wrong seq
ack_number: None,
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 2), // this has changed
window_len: 63,
..RECV_TEMPL
}))
);
}
// =========================================================================================//
// Tests for the FIN-WAIT-1 state.
// =========================================================================================//
#[test]
fn test_fin_wait_1_fin_ack() {
let mut s = socket_fin_wait_1();
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::FinWait2);
sanity!(s, socket_fin_wait_2());
}
#[test]
fn test_fin_wait_1_fin_fin() {
let mut s = socket_fin_wait_1();
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closing);
sanity!(s, socket_closing());
}
#[test]
fn test_fin_wait_1_fin_with_data_queued() {
let mut s = socket_established();
s.remote_win_len = 6;
s.send_slice(b"abcdef123456").unwrap();
s.close();
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
})
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::FinWait1);
}
#[test]
fn test_fin_wait_1_recv() {
let mut s = socket_fin_wait_1();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
assert_eq!(s.state, State::FinWait1);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
}
#[test]
fn test_fin_wait_1_close() {
let mut s = socket_fin_wait_1();
s.close();
assert_eq!(s.state, State::FinWait1);
}
// =========================================================================================//
// Tests for the FIN-WAIT-2 state.
// =========================================================================================//
#[test]
fn test_fin_wait_2_fin() {
let mut s = socket_fin_wait_2();
send!(s, time 1_000, TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
});
assert_eq!(s.state, State::TimeWait);
sanity!(s, socket_time_wait(false));
}
#[test]
fn test_fin_wait_2_recv() {
let mut s = socket_fin_wait_2();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
assert_eq!(s.state, State::FinWait2);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
..RECV_TEMPL
}]
);
}
#[test]
fn test_fin_wait_2_close() {
let mut s = socket_fin_wait_2();
s.close();
assert_eq!(s.state, State::FinWait2);
}
// =========================================================================================//
// Tests for the CLOSING state.
// =========================================================================================//
#[test]
fn test_closing_ack_fin() {
let mut s = socket_closing();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
send!(s, time 1_000, TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
});
assert_eq!(s.state, State::TimeWait);
sanity!(s, socket_time_wait(true));
}
#[test]
fn test_closing_close() {
let mut s = socket_closing();
s.close();
assert_eq!(s.state, State::Closing);
}
// =========================================================================================//
// Tests for the TIME-WAIT state.
// =========================================================================================//
#[test]
fn test_time_wait_from_fin_wait_2_ack() {
let mut s = socket_time_wait(false);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
}
#[test]
fn test_time_wait_from_closing_no_ack() {
let mut s = socket_time_wait(true);
recv!(s, []);
}
#[test]
fn test_time_wait_close() {
let mut s = socket_time_wait(false);
s.close();
assert_eq!(s.state, State::TimeWait);
}
#[test]
fn test_time_wait_retransmit() {
let mut s = socket_time_wait(false);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
send!(s, time 5_000, TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}, Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
})));
assert_eq!(
s.timer,
Timer::Close {
expires_at: Instant::from_secs(5) + CLOSE_DELAY
}
);
}
#[test]
fn test_time_wait_timeout() {
let mut s = socket_time_wait(false);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::TimeWait);
recv!(s, time 60_000, Err(Error::Exhausted));
assert_eq!(s.state, State::Closed);
}
// =========================================================================================//
// Tests for the CLOSE-WAIT state.
// =========================================================================================//
#[test]
fn test_close_wait_ack() {
let mut s = socket_close_wait();
s.send_slice(b"abcdef").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6),
..SEND_TEMPL
}
);
}
#[test]
fn test_close_wait_close() {
let mut s = socket_close_wait();
s.close();
assert_eq!(s.state, State::LastAck);
sanity!(s, socket_last_ack());
}
// =========================================================================================//
// Tests for the LAST-ACK state.
// =========================================================================================//
#[test]
fn test_last_ack_fin_ack() {
let mut s = socket_last_ack();
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::LastAck);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_last_ack_ack_not_of_fin() {
let mut s = socket_last_ack();
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::LastAck);
// ACK received that doesn't ack the FIN: socket should stay in LastAck.
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::LastAck);
// ACK received of fin: socket should change to Closed.
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_last_ack_close() {
let mut s = socket_last_ack();
s.close();
assert_eq!(s.state, State::LastAck);
}
// =========================================================================================//
// Tests for transitioning through multiple states.
// =========================================================================================//
#[test]
fn test_listen() {
let mut s = socket();
s.listen(IpEndpoint::new(IpAddress::default(), LOCAL_PORT))
.unwrap();
assert_eq!(s.state, State::Listen);
}
#[test]
fn test_three_way_handshake() {
let mut s = socket_listen();
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
..SEND_TEMPL
}
);
assert_eq!(s.state(), State::SynReceived);
assert_eq!(s.local_endpoint(), LOCAL_END);
assert_eq!(s.remote_endpoint(), REMOTE_END);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state(), State::Established);
assert_eq!(s.local_seq_no, LOCAL_SEQ + 1);
assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1);
}
#[test]
fn test_remote_close() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::CloseWait);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
s.close();
assert_eq!(s.state, State::LastAck);
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_local_close() {
let mut s = socket_established();
s.close();
assert_eq!(s.state, State::FinWait1);
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::FinWait2);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
}
#[test]
fn test_simultaneous_close() {
let mut s = socket_established();
s.close();
assert_eq!(s.state, State::FinWait1);
recv!(
s,
[TcpRepr {
// due to reordering, this is logically located...
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closing);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
// ... at this point
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
recv!(s, []);
}
#[test]
fn test_simultaneous_close_combined_fin_ack() {
let mut s = socket_established();
s.close();
assert_eq!(s.state, State::FinWait1);
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
}
#[test]
fn test_simultaneous_close_raced() {
let mut s = socket_established();
s.close();
assert_eq!(s.state, State::FinWait1);
// Socket receives FIN before it has a chance to send its own FIN
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closing);
// FIN + ack-of-FIN
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::Closing);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
recv!(s, []);
}
#[test]
fn test_simultaneous_close_raced_with_data() {
let mut s = socket_established();
s.send_slice(b"abcdef").unwrap();
s.close();
assert_eq!(s.state, State::FinWait1);
// Socket receives FIN before it has a chance to send its own data+FIN
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closing);
// data + FIN + ack-of-FIN
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::Closing);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
recv!(s, []);
}
#[test]
fn test_fin_with_data() {
let mut s = socket_established();
s.send_slice(b"abcdef").unwrap();
s.close();
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
)
}
#[test]
fn test_mutual_close_with_data_1() {
let mut s = socket_established();
s.send_slice(b"abcdef").unwrap();
s.close();
assert_eq!(s.state, State::FinWait1);
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 1),
..SEND_TEMPL
}
);
}
#[test]
fn test_mutual_close_with_data_2() {
let mut s = socket_established();
s.send_slice(b"abcdef").unwrap();
s.close();
assert_eq!(s.state, State::FinWait1);
recv!(
s,
[TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state, State::FinWait2);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 1),
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}]
);
assert_eq!(s.state, State::TimeWait);
}
// =========================================================================================//
// Tests for retransmission on packet loss.
// =========================================================================================//
#[test]
fn test_duplicate_seq_ack() {
let mut s = socket_recved();
// remote retransmission
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
}))
);
}
#[test]
fn test_data_retransmit() {
let mut s = socket_established();
s.send_slice(b"abcdef").unwrap();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
recv!(s, time 1050, Err(Error::Exhausted));
recv!(s, time 2000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
}
#[test]
fn test_data_retransmit_bursts() {
let mut s = socket_established();
s.remote_mss = 6;
s.send_slice(b"abcdef012345").unwrap();
recv!(s, time 0, Ok(TcpRepr {
control: TcpControl::None,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}), exact);
recv!(s, time 0, Ok(TcpRepr {
control: TcpControl::Psh,
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"012345"[..],
..RECV_TEMPL
}), exact);
recv!(s, time 0, Err(Error::Exhausted));
recv!(s, time 50, Err(Error::Exhausted));
recv!(s, time 1000, Ok(TcpRepr {
control: TcpControl::None,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}), exact);
recv!(s, time 1500, Ok(TcpRepr {
control: TcpControl::Psh,
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"012345"[..],
..RECV_TEMPL
}), exact);
recv!(s, time 1550, Err(Error::Exhausted));
}
#[test]
fn test_send_data_after_syn_ack_retransmit() {
let mut s = socket_syn_received();
recv!(s, time 50, Ok(TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}));
recv!(s, time 750, Ok(TcpRepr { // retransmit
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.state(), State::Established);
s.send_slice(b"abcdef").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
)
}
#[test]
fn test_established_retransmit_for_dup_ack() {
let mut s = socket_established();
// Duplicate ACKs do not replace the retransmission timer
s.send_slice(b"abc").unwrap();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abc"[..],
..RECV_TEMPL
}));
// Retransmit timer is on because all data was sent
assert_eq!(s.tx_buffer.len(), 3);
// ACK nothing new
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
// Retransmit
recv!(s, time 4000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abc"[..],
..RECV_TEMPL
}));
}
#[test]
fn test_established_retransmit_reset_after_ack() {
let mut s = socket_established();
s.remote_win_len = 6;
s.send_slice(b"abcdef").unwrap();
s.send_slice(b"123456").unwrap();
s.send_slice(b"ABCDEF").unwrap();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
send!(s, time 1005, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6),
window_len: 6,
..SEND_TEMPL
});
recv!(s, time 1010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"123456"[..],
..RECV_TEMPL
}));
send!(s, time 1015, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 6),
window_len: 6,
..SEND_TEMPL
});
recv!(s, time 1020, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"ABCDEF"[..],
..RECV_TEMPL
}));
}
#[test]
fn test_established_queue_during_retransmission() {
let mut s = socket_established();
s.remote_mss = 6;
s.send_slice(b"abcdef123456ABCDEF").unwrap();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
})); // this one is dropped
recv!(s, time 1005, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"123456"[..],
..RECV_TEMPL
})); // this one is received
recv!(s, time 1010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"ABCDEF"[..],
..RECV_TEMPL
})); // also dropped
recv!(s, time 2000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
})); // retransmission
send!(s, time 2005, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 6),
..SEND_TEMPL
}); // acknowledgement of both segments
recv!(s, time 2010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"ABCDEF"[..],
..RECV_TEMPL
})); // retransmission of only unacknowledged data
}
#[test]
fn test_close_wait_retransmit_reset_after_ack() {
let mut s = socket_close_wait();
s.remote_win_len = 6;
s.send_slice(b"abcdef").unwrap();
s.send_slice(b"123456").unwrap();
s.send_slice(b"ABCDEF").unwrap();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
send!(s, time 1005, TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6),
window_len: 6,
..SEND_TEMPL
});
recv!(s, time 1010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1 + 1),
payload: &b"123456"[..],
..RECV_TEMPL
}));
send!(s, time 1015, TcpRepr {
seq_number: REMOTE_SEQ + 1 + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 6),
window_len: 6,
..SEND_TEMPL
});
recv!(s, time 1020, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1 + 1),
payload: &b"ABCDEF"[..],
..RECV_TEMPL
}));
}
#[test]
fn test_fin_wait_1_retransmit_reset_after_ack() {
let mut s = socket_established();
s.remote_win_len = 6;
s.send_slice(b"abcdef").unwrap();
s.send_slice(b"123456").unwrap();
s.send_slice(b"ABCDEF").unwrap();
s.close();
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
send!(s, time 1005, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6),
window_len: 6,
..SEND_TEMPL
});
recv!(s, time 1010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"123456"[..],
..RECV_TEMPL
}));
send!(s, time 1015, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 6),
window_len: 6,
..SEND_TEMPL
});
recv!(s, time 1020, Ok(TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"ABCDEF"[..],
..RECV_TEMPL
}));
}
#[test]
fn test_fast_retransmit_after_triple_duplicate_ack() {
let mut s = socket_established();
s.remote_mss = 6;
// Normal ACK of previously recived segment
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// Send a long string of text divided into several packets
// because of previously recieved "window_len"
s.send_slice(b"xxxxxxyyyyyywwwwwwzzzzzz").unwrap();
// This packet is lost
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"xxxxxx"[..],
..RECV_TEMPL
}));
recv!(s, time 1005, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"yyyyyy"[..],
..RECV_TEMPL
}));
recv!(s, time 1010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + (6 * 2),
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"wwwwww"[..],
..RECV_TEMPL
}));
recv!(s, time 1015, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + (6 * 3),
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"zzzzzz"[..],
..RECV_TEMPL
}));
// First duplicate ACK
send!(s, time 1050, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// Second duplicate ACK
send!(s, time 1055, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// Third duplicate ACK
// Should trigger a fast retransmit of dropped packet
send!(s, time 1060, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// Fast retransmit packet
recv!(s, time 1100, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"xxxxxx"[..],
..RECV_TEMPL
}));
recv!(s, time 1105, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"yyyyyy"[..],
..RECV_TEMPL
}));
recv!(s, time 1110, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + (6 * 2),
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"wwwwww"[..],
..RECV_TEMPL
}));
recv!(s, time 1115, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + (6 * 3),
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"zzzzzz"[..],
..RECV_TEMPL
}));
// After all was send out, enter *normal* retransmission,
// don't stay in fast retransmission.
assert!(match s.timer {
Timer::Retransmit { expires_at, .. } => expires_at > Instant::from_millis(1115),
_ => false,
});
// ACK all recived segments
send!(s, time 1120, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + (6 * 4)),
..SEND_TEMPL
});
}
#[test]
fn test_fast_retransmit_duplicate_detection_with_data() {
let mut s = socket_established();
s.send_slice(b"abc").unwrap(); // This is lost
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abc"[..],
..RECV_TEMPL
}));
// Normal ACK of previously recieved segment
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
// First duplicate
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
// Second duplicate
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
assert_eq!(s.local_rx_dup_acks, 2, "duplicate ACK counter is not set");
// This packet has content, hence should not be detected
// as a duplicate ACK and should reset the duplicate ACK count
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"xxxxxx"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 3,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
}]
);
assert_eq!(
s.local_rx_dup_acks, 0,
"duplicate ACK counter is not reset when reciving data"
);
}
#[test]
fn test_fast_retransmit_duplicate_detection() {
let mut s = socket_established();
s.remote_mss = 6;
// Normal ACK of previously recived segment
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// First duplicate, should not be counted as there is nothing to resend
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
assert_eq!(
s.local_rx_dup_acks, 0,
"duplicate ACK counter is set but wound not transmit data"
);
// Send a long string of text divided into several packets
// because of small remote_mss
s.send_slice(b"xxxxxxyyyyyywwwwwwzzzzzz").unwrap();
// This packet is reordered in network
recv!(s, time 1000, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"xxxxxx"[..],
..RECV_TEMPL
}));
recv!(s, time 1005, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"yyyyyy"[..],
..RECV_TEMPL
}));
recv!(s, time 1010, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + (6 * 2),
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"wwwwww"[..],
..RECV_TEMPL
}));
recv!(s, time 1015, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + (6 * 3),
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"zzzzzz"[..],
..RECV_TEMPL
}));
// First duplicate ACK
send!(s, time 1050, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// Second duplicate ACK
send!(s, time 1055, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// Reordered packet arrives which should reset duplicate ACK count
send!(s, time 1060, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + (6 * 3)),
..SEND_TEMPL
});
assert_eq!(
s.local_rx_dup_acks, 0,
"duplicate ACK counter is not reset when reciving ACK which updates send window"
);
// ACK all recived segments
send!(s, time 1120, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + (6 * 4)),
..SEND_TEMPL
});
}
#[test]
fn test_fast_retransmit_dup_acks_counter() {
let mut s = socket_established();
s.send_slice(b"abc").unwrap(); // This is lost
recv!(s, time 0, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abc"[..],
..RECV_TEMPL
}));
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
// A lot of retransmits happen here
s.local_rx_dup_acks = u8::max_value() - 1;
// Send 3 more ACKs, which could overflow local_rx_dup_acks,
// but intended behaviour is that we saturate the bounds
// of local_rx_dup_acks
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
send!(s, time 0, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
assert_eq!(
s.local_rx_dup_acks,
u8::max_value(),
"duplicate ACK count should not overflow but saturate"
);
}
#[test]
fn test_fast_retransmit_zero_window() {
let mut s = socket_established();
send!(s, time 1000, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
s.send_slice(b"abc").unwrap();
recv!(s, time 0, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abc"[..],
..RECV_TEMPL
}));
// 3 dup acks
send!(s, time 1050, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
send!(s, time 1050, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
send!(s, time 1050, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
window_len: 0, // boom
..SEND_TEMPL
});
// even though we're in "fast retransmit", we shouldn't
// force-send anything because the remote's window is full.
recv!(s, Err(Error::Exhausted));
}
// =========================================================================================//
// Tests for window management.
// =========================================================================================//
#[test]
fn test_maximum_segment_size() {
let mut s = socket_listen();
s.tx_buffer = SocketBuffer::new(vec![0; 32767]);
send!(
s,
TcpRepr {
control: TcpControl::Syn,
seq_number: REMOTE_SEQ,
ack_number: None,
max_seg_size: Some(1000),
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
max_seg_size: Some(BASE_MSS),
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
window_len: 32767,
..SEND_TEMPL
}
);
s.send_slice(&[0; 1200][..]).unwrap();
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &[0; 1000][..],
..RECV_TEMPL
})
);
}
#[test]
fn test_close_wait_no_window_update() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &[1, 2, 3, 4],
..SEND_TEMPL
}
);
assert_eq!(s.state, State::CloseWait);
// we ack the FIN, with the reduced window size.
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 6),
window_len: 60,
..RECV_TEMPL
})
);
let rx_buf = &mut [0; 32];
assert_eq!(s.recv_slice(rx_buf), Ok(4));
// check that we do NOT send a window update even if it has changed.
recv!(s, Err(Error::Exhausted));
}
#[test]
fn test_time_wait_no_window_update() {
let mut s = socket_fin_wait_2();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 2),
payload: &[1, 2, 3, 4],
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
// we ack the FIN, with the reduced window size.
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 2,
ack_number: Some(REMOTE_SEQ + 6),
window_len: 60,
..RECV_TEMPL
})
);
let rx_buf = &mut [0; 32];
assert_eq!(s.recv_slice(rx_buf), Ok(4));
// check that we do NOT send a window update even if it has changed.
recv!(s, Err(Error::Exhausted));
}
// =========================================================================================//
// Tests for flow control.
// =========================================================================================//
#[test]
fn test_psh_transmit() {
let mut s = socket_established();
s.remote_mss = 6;
s.send_slice(b"abcdef").unwrap();
s.send_slice(b"123456").unwrap();
recv!(s, time 0, Ok(TcpRepr {
control: TcpControl::None,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}), exact);
recv!(s, time 0, Ok(TcpRepr {
control: TcpControl::Psh,
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"123456"[..],
..RECV_TEMPL
}), exact);
}
#[test]
fn test_psh_receive() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Psh,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
}]
);
}
#[test]
fn test_zero_window_ack() {
let mut s = socket_established();
s.rx_buffer = SocketBuffer::new(vec![0; 6]);
s.assembler = Assembler::new(s.rx_buffer.capacity());
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 0,
..RECV_TEMPL
}]
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 6,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"123456"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 0,
..RECV_TEMPL
}))
);
}
#[test]
fn test_zero_window_ack_on_window_growth() {
let mut s = socket_established();
s.rx_buffer = SocketBuffer::new(vec![0; 6]);
s.assembler = Assembler::new(s.rx_buffer.capacity());
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 0,
..RECV_TEMPL
}]
);
recv!(s, time 0, Err(Error::Exhausted));
s.recv(|buffer| {
assert_eq!(&buffer[..3], b"abc");
(3, ())
})
.unwrap();
recv!(s, time 0, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 3,
..RECV_TEMPL
}));
recv!(s, time 0, Err(Error::Exhausted));
s.recv(|buffer| {
assert_eq!(buffer, b"def");
(buffer.len(), ())
})
.unwrap();
recv!(s, time 0, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 6,
..RECV_TEMPL
}));
}
#[test]
fn test_fill_peer_window() {
let mut s = socket_established();
s.remote_mss = 6;
s.send_slice(b"abcdef123456!@#$%^").unwrap();
recv!(
s,
[
TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
},
TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"123456"[..],
..RECV_TEMPL
},
TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"!@#$%^"[..],
..RECV_TEMPL
}
]
);
}
#[test]
fn test_announce_window_after_read() {
let mut s = socket_established();
s.rx_buffer = SocketBuffer::new(vec![0; 6]);
s.assembler = Assembler::new(s.rx_buffer.capacity());
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
window_len: 3,
..RECV_TEMPL
}]
);
// Test that `dispatch` updates `remote_last_win`
assert_eq!(s.remote_last_win, s.rx_buffer.window() as u16);
s.recv(|buffer| (buffer.len(), ())).unwrap();
assert!(s.window_to_update());
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
window_len: 6,
..RECV_TEMPL
}]
);
assert_eq!(s.remote_last_win, s.rx_buffer.window() as u16);
// Provoke immediate ACK to test that `process` updates `remote_last_win`
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 6,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"def"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
window_len: 6,
..RECV_TEMPL
}))
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 3,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 9),
window_len: 0,
..RECV_TEMPL
}))
);
assert_eq!(s.remote_last_win, s.rx_buffer.window() as u16);
s.recv(|buffer| (buffer.len(), ())).unwrap();
assert!(s.window_to_update());
}
// =========================================================================================//
// Tests for timeouts.
// =========================================================================================//
#[test]
fn test_listen_timeout() {
let mut s = socket_listen();
s.set_timeout(Some(Duration::from_millis(100)));
assert_eq!(s.poll_at(&Context::DUMMY), PollAt::Ingress);
}
#[test]
fn test_connect_timeout() {
let mut s = socket();
s.local_seq_no = LOCAL_SEQ;
s.connect(REMOTE_END, LOCAL_END.port).unwrap();
s.set_timeout(Some(Duration::from_millis(100)));
recv!(s, time 150, Ok(TcpRepr {
control: TcpControl::Syn,
seq_number: LOCAL_SEQ,
ack_number: None,
max_seg_size: Some(BASE_MSS),
window_scale: Some(0),
sack_permitted: true,
..RECV_TEMPL
}));
assert_eq!(s.state, State::SynSent);
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(250))
);
recv!(s, time 250, Ok(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(TcpSeqNumber(0)),
window_scale: None,
..RECV_TEMPL
}));
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_established_timeout() {
let mut s = socket_established();
s.set_timeout(Some(Duration::from_millis(1000)));
recv!(s, time 250, Err(Error::Exhausted));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(1250))
);
s.send_slice(b"abcdef").unwrap();
assert_eq!(s.poll_at(&Context::DUMMY), PollAt::Now);
recv!(s, time 255, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(955))
);
recv!(s, time 955, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(1255))
);
recv!(s, time 1255, Ok(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}));
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_established_keep_alive_timeout() {
let mut s = socket_established();
s.set_keep_alive(Some(Duration::from_millis(50)));
s.set_timeout(Some(Duration::from_millis(100)));
recv!(s, time 100, Ok(TcpRepr {
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
payload: &[0],
..RECV_TEMPL
}));
recv!(s, time 100, Err(Error::Exhausted));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(150))
);
send!(s, time 105, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(155))
);
recv!(s, time 155, Ok(TcpRepr {
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
payload: &[0],
..RECV_TEMPL
}));
recv!(s, time 155, Err(Error::Exhausted));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(205))
);
recv!(s, time 200, Err(Error::Exhausted));
recv!(s, time 205, Ok(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}));
recv!(s, time 205, Err(Error::Exhausted));
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_fin_wait_1_timeout() {
let mut s = socket_fin_wait_1();
s.set_timeout(Some(Duration::from_millis(1000)));
recv!(s, time 100, Ok(TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}));
recv!(s, time 1100, Ok(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}));
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_last_ack_timeout() {
let mut s = socket_last_ack();
s.set_timeout(Some(Duration::from_millis(1000)));
recv!(s, time 100, Ok(TcpRepr {
control: TcpControl::Fin,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}));
recv!(s, time 1100, Ok(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1 + 1,
ack_number: Some(REMOTE_SEQ + 1 + 1),
..RECV_TEMPL
}));
assert_eq!(s.state, State::Closed);
}
#[test]
fn test_closed_timeout() {
let mut s = socket_established();
s.set_timeout(Some(Duration::from_millis(200)));
s.remote_last_ts = Some(Instant::from_millis(100));
s.abort();
assert_eq!(s.poll_at(&Context::DUMMY), PollAt::Now);
recv!(s, time 100, Ok(TcpRepr {
control: TcpControl::Rst,
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}));
assert_eq!(s.poll_at(&Context::DUMMY), PollAt::Ingress);
}
// =========================================================================================//
// Tests for keep-alive.
// =========================================================================================//
#[test]
fn test_responds_to_keep_alive() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
}
#[test]
fn test_sends_keep_alive() {
let mut s = socket_established();
s.set_keep_alive(Some(Duration::from_millis(100)));
// drain the forced keep-alive packet
assert_eq!(s.poll_at(&Context::DUMMY), PollAt::Now);
recv!(s, time 0, Ok(TcpRepr {
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
payload: &[0],
..RECV_TEMPL
}));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(100))
);
recv!(s, time 95, Err(Error::Exhausted));
recv!(s, time 100, Ok(TcpRepr {
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
payload: &[0],
..RECV_TEMPL
}));
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(200))
);
recv!(s, time 195, Err(Error::Exhausted));
recv!(s, time 200, Ok(TcpRepr {
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
payload: &[0],
..RECV_TEMPL
}));
send!(s, time 250, TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
});
assert_eq!(
s.poll_at(&Context::DUMMY),
PollAt::Time(Instant::from_millis(350))
);
recv!(s, time 345, Err(Error::Exhausted));
recv!(s, time 350, Ok(TcpRepr {
seq_number: LOCAL_SEQ,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"\x00"[..],
..RECV_TEMPL
}));
}
// =========================================================================================//
// Tests for time-to-live configuration.
// =========================================================================================//
#[test]
fn test_set_hop_limit() {
let mut s = socket_syn_received();
s.set_hop_limit(Some(0x2a));
assert_eq!(
s.dispatch(&Context::DUMMY, |(ip_repr, _)| {
assert_eq!(ip_repr.hop_limit(), 0x2a);
Ok(())
}),
Ok(())
);
}
#[test]
#[should_panic(expected = "the time-to-live value of a packet must not be zero")]
fn test_set_hop_limit_zero() {
let mut s = socket_syn_received();
s.set_hop_limit(Some(0));
}
// =========================================================================================//
// Tests for reassembly.
// =========================================================================================//
#[test]
fn test_out_of_order() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 3,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"def"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
..RECV_TEMPL
}))
);
s.recv(|buffer| {
assert_eq!(buffer, b"");
(buffer.len(), ())
})
.unwrap();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
}))
);
s.recv(|buffer| {
assert_eq!(buffer, b"abcdef");
(buffer.len(), ())
})
.unwrap();
}
#[test]
fn test_buffer_wraparound_rx() {
let mut s = socket_established();
s.rx_buffer = SocketBuffer::new(vec![0; 6]);
s.assembler = Assembler::new(s.rx_buffer.capacity());
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
s.recv(|buffer| {
assert_eq!(buffer, b"abc");
(buffer.len(), ())
})
.unwrap();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 3,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"defghi"[..],
..SEND_TEMPL
}
);
let mut data = [0; 6];
assert_eq!(s.recv_slice(&mut data[..]), Ok(6));
assert_eq!(data, &b"defghi"[..]);
}
#[test]
fn test_buffer_wraparound_tx() {
let mut s = socket_established();
s.set_nagle_enabled(false);
s.tx_buffer = SocketBuffer::new(vec![b'.'; 9]);
assert_eq!(s.send_slice(b"xxxyyy"), Ok(6));
assert_eq!(s.tx_buffer.dequeue_many(3), &b"xxx"[..]);
assert_eq!(s.tx_buffer.len(), 3);
// "abcdef" not contiguous in tx buffer
assert_eq!(s.send_slice(b"abcdef"), Ok(6));
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"yyyabc"[..],
..RECV_TEMPL
})
);
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"def"[..],
..RECV_TEMPL
})
);
}
// =========================================================================================//
// Tests for graceful vs ungraceful rx close
// =========================================================================================//
#[test]
fn test_rx_close_fin() {
let mut s = socket_established();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
assert_eq!(s.recv(|_| (0, ())), Err(Error::Finished));
}
#[test]
fn test_rx_close_fin_in_fin_wait_1() {
let mut s = socket_fin_wait_1();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
assert_eq!(s.state, State::Closing);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
assert_eq!(s.recv(|_| (0, ())), Err(Error::Finished));
}
#[test]
fn test_rx_close_fin_in_fin_wait_2() {
let mut s = socket_fin_wait_2();
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
assert_eq!(s.state, State::TimeWait);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
assert_eq!(s.recv(|_| (0, ())), Err(Error::Finished));
}
#[test]
fn test_rx_close_fin_with_hole() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
send!(
s,
TcpRepr {
control: TcpControl::Fin,
seq_number: REMOTE_SEQ + 1 + 6,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"ghi"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
window_len: 61,
..RECV_TEMPL
}))
);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
s.recv(|data| {
assert_eq!(data, b"");
(0, ())
})
.unwrap();
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ + 1 + 9,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
// Error must be `Illegal` even if we've received a FIN,
// because we are missing data.
assert_eq!(s.recv(|_| (0, ())), Err(Error::Illegal));
}
#[test]
fn test_rx_close_rst() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ + 1 + 3,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
assert_eq!(s.recv(|_| (0, ())), Err(Error::Illegal));
}
#[test]
fn test_rx_close_rst_with_hole() {
let mut s = socket_established();
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 6,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"ghi"[..],
..SEND_TEMPL
},
Ok(Some(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
window_len: 61,
..RECV_TEMPL
}))
);
send!(
s,
TcpRepr {
control: TcpControl::Rst,
seq_number: REMOTE_SEQ + 1 + 9,
ack_number: Some(LOCAL_SEQ + 1),
..SEND_TEMPL
}
);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
assert_eq!(s.recv(|_| (0, ())), Err(Error::Illegal));
}
// =========================================================================================//
// Tests for delayed ACK
// =========================================================================================//
#[test]
fn test_delayed_ack() {
let mut s = socket_established();
s.set_ack_delay(Some(ACK_DELAY_DEFAULT));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
// No ACK is immediately sent.
recv!(s, Err(Error::Exhausted));
// After 10ms, it is sent.
recv!(s, time 11, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
window_len: 61,
..RECV_TEMPL
}));
}
#[test]
fn test_delayed_ack_win() {
let mut s = socket_established();
s.set_ack_delay(Some(ACK_DELAY_DEFAULT));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
// Reading the data off the buffer should cause a window update.
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
// However, no ACK or window update is immediately sent.
recv!(s, Err(Error::Exhausted));
// After 10ms, it is sent.
recv!(s, time 11, Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
..RECV_TEMPL
}));
}
#[test]
fn test_delayed_ack_reply() {
let mut s = socket_established();
s.set_ack_delay(Some(ACK_DELAY_DEFAULT));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
s.recv(|data| {
assert_eq!(data, b"abc");
(3, ())
})
.unwrap();
s.send_slice(&b"xyz"[..]).unwrap();
// Writing data to the socket causes ACK to not be delayed,
// because it is immediately sent with the data.
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 3),
payload: &b"xyz"[..],
..RECV_TEMPL
})
);
}
#[test]
fn test_delayed_ack_every_second_packet() {
let mut s = socket_established();
s.set_ack_delay(Some(ACK_DELAY_DEFAULT));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
// No ACK is immediately sent.
recv!(s, Err(Error::Exhausted));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 3,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"def"[..],
..SEND_TEMPL
}
);
// Every 2nd packet, ACK is sent without delay.
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 6),
window_len: 58,
..RECV_TEMPL
})
);
}
#[test]
fn test_delayed_ack_three_packets() {
let mut s = socket_established();
s.set_ack_delay(Some(ACK_DELAY_DEFAULT));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abc"[..],
..SEND_TEMPL
}
);
// No ACK is immediately sent.
recv!(s, Err(Error::Exhausted));
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 3,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"def"[..],
..SEND_TEMPL
}
);
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1 + 6,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"ghi"[..],
..SEND_TEMPL
}
);
// Every 2nd (or more) packet, ACK is sent without delay.
recv!(
s,
Ok(TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1 + 9),
window_len: 55,
..RECV_TEMPL
})
);
}
// =========================================================================================//
// Tests for Nagle's Algorithm
// =========================================================================================//
#[test]
fn test_nagle() {
let mut s = socket_established();
s.remote_mss = 6;
s.send_slice(b"abcdef").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"abcdef"[..],
..RECV_TEMPL
}]
);
// If there's data in flight, full segments get sent.
s.send_slice(b"foobar").unwrap();
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"foobar"[..],
..RECV_TEMPL
}]
);
s.send_slice(b"aaabbbccc").unwrap();
// If there's data in flight, not-full segments don't get sent.
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"aaabbb"[..],
..RECV_TEMPL
}]
);
// Data gets ACKd, so there's no longer data in flight
send!(
s,
TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1 + 6 + 6 + 6),
..SEND_TEMPL
}
);
// Now non-full segment gets sent.
recv!(
s,
[TcpRepr {
seq_number: LOCAL_SEQ + 1 + 6 + 6 + 6,
ack_number: Some(REMOTE_SEQ + 1),
payload: &b"ccc"[..],
..RECV_TEMPL
}]
);
}
// =========================================================================================//
// Tests for packet filtering.
// =========================================================================================//
#[test]
fn test_doesnt_accept_wrong_port() {
let mut s = socket_established();
s.rx_buffer = SocketBuffer::new(vec![0; 6]);
s.assembler = Assembler::new(s.rx_buffer.capacity());
let tcp_repr = TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
dst_port: LOCAL_PORT + 1,
..SEND_TEMPL
};
assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr));
let tcp_repr = TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
src_port: REMOTE_PORT + 1,
..SEND_TEMPL
};
assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr));
}
#[test]
fn test_doesnt_accept_wrong_ip() {
let s = socket_established();
let tcp_repr = TcpRepr {
seq_number: REMOTE_SEQ + 1,
ack_number: Some(LOCAL_SEQ + 1),
payload: &b"abcdef"[..],
..SEND_TEMPL
};
let ip_repr = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_2,
dst_addr: MOCK_IP_ADDR_1,
protocol: IpProtocol::Tcp,
payload_len: tcp_repr.buffer_len(),
hop_limit: 64,
};
assert!(s.accepts(&ip_repr, &tcp_repr));
let ip_repr_wrong_src = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_3,
dst_addr: MOCK_IP_ADDR_1,
protocol: IpProtocol::Tcp,
payload_len: tcp_repr.buffer_len(),
hop_limit: 64,
};
assert!(!s.accepts(&ip_repr_wrong_src, &tcp_repr));
let ip_repr_wrong_dst = IpRepr::Unspecified {
src_addr: MOCK_IP_ADDR_2,
dst_addr: MOCK_IP_ADDR_3,
protocol: IpProtocol::Tcp,
payload_len: tcp_repr.buffer_len(),
hop_limit: 64,
};
assert!(!s.accepts(&ip_repr_wrong_dst, &tcp_repr));
}
// =========================================================================================//
// Timer tests
// =========================================================================================//
#[test]
fn test_timer_retransmit() {
const RTO: Duration = Duration::from_millis(100);
let mut r = Timer::new();
assert_eq!(r.should_retransmit(Instant::from_secs(1)), None);
r.set_for_retransmit(Instant::from_millis(1000), RTO);
assert_eq!(r.should_retransmit(Instant::from_millis(1000)), None);
assert_eq!(r.should_retransmit(Instant::from_millis(1050)), None);
assert_eq!(
r.should_retransmit(Instant::from_millis(1101)),
Some(Duration::from_millis(101))
);
r.set_for_retransmit(Instant::from_millis(1101), RTO);
assert_eq!(r.should_retransmit(Instant::from_millis(1101)), None);
assert_eq!(r.should_retransmit(Instant::from_millis(1150)), None);
assert_eq!(r.should_retransmit(Instant::from_millis(1200)), None);
assert_eq!(
r.should_retransmit(Instant::from_millis(1301)),
Some(Duration::from_millis(300))
);
r.set_for_idle(Instant::from_millis(1301), None);
assert_eq!(r.should_retransmit(Instant::from_millis(1350)), None);
}
#[test]
fn test_rtt_estimator() {
let mut r = RttEstimator::default();
let rtos = &[
751, 766, 755, 731, 697, 656, 613, 567, 523, 484, 445, 411, 378, 350, 322, 299, 280,
261, 243, 229, 215, 206, 197, 188,
];
for &rto in rtos {
r.sample(100);
assert_eq!(r.retransmission_timeout(), Duration::from_millis(rto));
}
}
}