use core::cmp; #[cfg(feature = "async")] use core::task::Waker; use crate::phy::ChecksumCapabilities; #[cfg(feature = "async")] use crate::socket::WakerRegistration; use crate::socket::{Context, PollAt, Socket, SocketHandle, SocketMeta}; use crate::storage::{PacketBuffer, PacketMetadata}; use crate::{Error, Result}; use crate::wire::IcmpRepr; #[cfg(feature = "proto-ipv4")] use crate::wire::{Icmpv4Packet, Icmpv4Repr, Ipv4Address, Ipv4Repr}; #[cfg(feature = "proto-ipv6")] use crate::wire::{Icmpv6Packet, Icmpv6Repr, Ipv6Address, Ipv6Repr}; use crate::wire::{IpAddress, IpEndpoint, IpProtocol, IpRepr}; use crate::wire::{UdpPacket, UdpRepr}; /// Type of endpoint to bind the ICMP socket to. See [IcmpSocket::bind] for /// more details. /// /// [IcmpSocket::bind]: struct.IcmpSocket.html#method.bind #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Endpoint { Unspecified, Ident(u16), Udp(IpEndpoint), } impl Endpoint { pub fn is_specified(&self) -> bool { match *self { Endpoint::Ident(_) => true, Endpoint::Udp(endpoint) => endpoint.port != 0, Endpoint::Unspecified => false, } } } impl Default for Endpoint { fn default() -> Endpoint { Endpoint::Unspecified } } /// An ICMP packet metadata. pub type IcmpPacketMetadata = PacketMetadata; /// An ICMP packet ring buffer. pub type IcmpSocketBuffer<'a> = PacketBuffer<'a, IpAddress>; /// A ICMP socket /// /// An ICMP socket is bound to a specific [IcmpEndpoint] which may /// be a sepecific UDP port to listen for ICMP error messages related /// to the port or a specific ICMP identifier value. See [bind] for /// more details. /// /// [IcmpEndpoint]: enum.IcmpEndpoint.html /// [bind]: #method.bind #[derive(Debug)] pub struct IcmpSocket<'a> { pub(crate) meta: SocketMeta, rx_buffer: IcmpSocketBuffer<'a>, tx_buffer: IcmpSocketBuffer<'a>, /// The endpoint this socket is communicating with endpoint: Endpoint, /// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. hop_limit: Option, #[cfg(feature = "async")] rx_waker: WakerRegistration, #[cfg(feature = "async")] tx_waker: WakerRegistration, } impl<'a> IcmpSocket<'a> { /// Create an ICMP socket with the given buffers. pub fn new(rx_buffer: IcmpSocketBuffer<'a>, tx_buffer: IcmpSocketBuffer<'a>) -> IcmpSocket<'a> { IcmpSocket { meta: SocketMeta::default(), rx_buffer: rx_buffer, tx_buffer: tx_buffer, endpoint: Endpoint::default(), hop_limit: None, #[cfg(feature = "async")] rx_waker: WakerRegistration::new(), #[cfg(feature = "async")] tx_waker: WakerRegistration::new(), } } /// Register a waker for receive operations. /// /// The waker is woken on state changes that might affect the return value /// of `recv` method calls, such as receiving data, or the socket closing. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. /// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has /// necessarily changed. #[cfg(feature = "async")] pub fn register_recv_waker(&mut self, waker: &Waker) { self.rx_waker.register(waker) } /// Register a waker for send operations. /// /// The waker is woken on state changes that might affect the return value /// of `send` method calls, such as space becoming available in the transmit /// buffer, or the socket closing. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. /// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has /// necessarily changed. #[cfg(feature = "async")] pub fn register_send_waker(&mut self, waker: &Waker) { self.tx_waker.register(waker) } /// Return the socket handle. #[inline] pub fn handle(&self) -> SocketHandle { self.meta.handle } /// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. /// /// See also the [set_hop_limit](#method.set_hop_limit) method pub fn hop_limit(&self) -> Option { self.hop_limit } /// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. /// /// A socket without an explicitly set hop limit value uses the default [IANA recommended] /// value (64). /// /// # Panics /// /// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7]. /// /// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml /// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7 pub fn set_hop_limit(&mut self, hop_limit: Option) { // A host MUST NOT send a datagram with a hop limit value of 0 if let Some(0) = hop_limit { panic!("the time-to-live value of a packet must not be zero") } self.hop_limit = hop_limit } /// Bind the socket to the given endpoint. /// /// This function returns `Err(Error::Illegal)` if the socket was open /// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)` /// if `endpoint` is unspecified (see [is_specified]). /// /// # Examples /// /// ## Bind to ICMP Error messages associated with a specific UDP port: /// /// To [recv] ICMP error messages that are associated with a specific local /// UDP port, the socket may be bound to a given port using [IcmpEndpoint::Udp]. /// This may be useful for applications using UDP attempting to detect and/or /// diagnose connection problems. /// /// ``` /// # use smoltcp::socket::{Socket, IcmpSocket, IcmpSocketBuffer, IcmpPacketMetadata}; /// # let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]); /// # let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]); /// use smoltcp::wire::IpEndpoint; /// use smoltcp::socket::IcmpEndpoint; /// /// let mut icmp_socket = // ... /// # IcmpSocket::new(rx_buffer, tx_buffer); /// /// // Bind to ICMP error responses for UDP packets sent from port 53. /// let endpoint = IpEndpoint::from(53); /// icmp_socket.bind(IcmpEndpoint::Udp(endpoint)).unwrap(); /// ``` /// /// ## Bind to a specific ICMP identifier: /// /// To [send] and [recv] ICMP packets that are not associated with a specific UDP /// port, the socket may be bound to a specific ICMP identifier using /// [IcmpEndpoint::Ident]. This is useful for sending and receiving Echo Request/Reply /// messages. /// /// ``` /// # use smoltcp::socket::{Socket, IcmpSocket, IcmpSocketBuffer, IcmpPacketMetadata}; /// # let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]); /// # let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 20]); /// use smoltcp::socket::IcmpEndpoint; /// /// let mut icmp_socket = // ... /// # IcmpSocket::new(rx_buffer, tx_buffer); /// /// // Bind to ICMP messages with the ICMP identifier 0x1234 /// icmp_socket.bind(IcmpEndpoint::Ident(0x1234)).unwrap(); /// ``` /// /// [is_specified]: enum.IcmpEndpoint.html#method.is_specified /// [IcmpEndpoint::Ident]: enum.IcmpEndpoint.html#variant.Ident /// [IcmpEndpoint::Udp]: enum.IcmpEndpoint.html#variant.Udp /// [send]: #method.send /// [recv]: #method.recv pub fn bind>(&mut self, endpoint: T) -> Result<()> { let endpoint = endpoint.into(); if !endpoint.is_specified() { return Err(Error::Unaddressable); } if self.is_open() { return Err(Error::Illegal); } self.endpoint = endpoint; #[cfg(feature = "async")] { self.rx_waker.wake(); self.tx_waker.wake(); } Ok(()) } /// Check whether the transmit buffer is full. #[inline] pub fn can_send(&self) -> bool { !self.tx_buffer.is_full() } /// Check whether the receive buffer is not empty. #[inline] pub fn can_recv(&self) -> bool { !self.rx_buffer.is_empty() } /// Return the maximum number packets the socket can receive. #[inline] pub fn packet_recv_capacity(&self) -> usize { self.rx_buffer.packet_capacity() } /// Return the maximum number packets the socket can transmit. #[inline] pub fn packet_send_capacity(&self) -> usize { self.tx_buffer.packet_capacity() } /// Return the maximum number of bytes inside the recv buffer. #[inline] pub fn payload_recv_capacity(&self) -> usize { self.rx_buffer.payload_capacity() } /// Return the maximum number of bytes inside the transmit buffer. #[inline] pub fn payload_send_capacity(&self) -> usize { self.tx_buffer.payload_capacity() } /// Check whether the socket is open. #[inline] pub fn is_open(&self) -> bool { self.endpoint != Endpoint::Unspecified } /// Enqueue a packet to be sent to a given remote address, and return a pointer /// to its payload. /// /// This function returns `Err(Error::Exhausted)` if the transmit buffer is full, /// `Err(Error::Truncated)` if the requested size is larger than the packet buffer /// size, and `Err(Error::Unaddressable)` if the remote address is unspecified. pub fn send(&mut self, size: usize, endpoint: IpAddress) -> Result<&mut [u8]> { if endpoint.is_unspecified() { return Err(Error::Unaddressable); } let packet_buf = self.tx_buffer.enqueue(size, endpoint)?; net_trace!( "{}:{}: buffer to send {} octets", self.meta.handle, endpoint, size ); Ok(packet_buf) } /// Enqueue a packet to be sent to a given remote address, and fill it from a slice. /// /// See also [send](#method.send). pub fn send_slice(&mut self, data: &[u8], endpoint: IpAddress) -> Result<()> { let packet_buf = self.send(data.len(), endpoint)?; packet_buf.copy_from_slice(data); Ok(()) } /// Dequeue a packet received from a remote endpoint, and return the `IpAddress` as well /// as a pointer to the payload. /// /// This function returns `Err(Error::Exhausted)` if the receive buffer is empty. pub fn recv(&mut self) -> Result<(&[u8], IpAddress)> { let (endpoint, packet_buf) = self.rx_buffer.dequeue()?; net_trace!( "{}:{}: receive {} buffered octets", self.meta.handle, endpoint, packet_buf.len() ); Ok((packet_buf, endpoint)) } /// Dequeue a packet received from a remote endpoint, copy the payload into the given slice, /// and return the amount of octets copied as well as the `IpAddress` /// /// See also [recv](#method.recv). pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(usize, IpAddress)> { let (buffer, endpoint) = self.recv()?; let length = cmp::min(data.len(), buffer.len()); data[..length].copy_from_slice(&buffer[..length]); Ok((length, endpoint)) } /// Filter determining which packets received by the interface are appended to /// the given sockets received buffer. pub(crate) fn accepts(&self, cx: &Context, ip_repr: &IpRepr, icmp_repr: &IcmpRepr) -> bool { match (&self.endpoint, icmp_repr) { // If we are bound to ICMP errors associated to a UDP port, only // accept Destination Unreachable messages with the data containing // a UDP packet send from the local port we are bound to. #[cfg(feature = "proto-ipv4")] ( &Endpoint::Udp(endpoint), &IcmpRepr::Ipv4(Icmpv4Repr::DstUnreachable { data, .. }), ) if endpoint.addr.is_unspecified() || endpoint.addr == ip_repr.dst_addr() => { let packet = UdpPacket::new_unchecked(data); match UdpRepr::parse( &packet, &ip_repr.src_addr(), &ip_repr.dst_addr(), &cx.caps.checksum, ) { Ok(repr) => endpoint.port == repr.src_port, Err(_) => false, } } #[cfg(feature = "proto-ipv6")] ( &Endpoint::Udp(endpoint), &IcmpRepr::Ipv6(Icmpv6Repr::DstUnreachable { data, .. }), ) if endpoint.addr.is_unspecified() || endpoint.addr == ip_repr.dst_addr() => { let packet = UdpPacket::new_unchecked(data); match UdpRepr::parse( &packet, &ip_repr.src_addr(), &ip_repr.dst_addr(), &cx.caps.checksum, ) { Ok(repr) => endpoint.port == repr.src_port, Err(_) => false, } } // If we are bound to a specific ICMP identifier value, only accept an // Echo Request/Reply with the identifier field matching the endpoint // port. #[cfg(feature = "proto-ipv4")] ( &Endpoint::Ident(bound_ident), &IcmpRepr::Ipv4(Icmpv4Repr::EchoRequest { ident, .. }), ) | ( &Endpoint::Ident(bound_ident), &IcmpRepr::Ipv4(Icmpv4Repr::EchoReply { ident, .. }), ) => ident == bound_ident, #[cfg(feature = "proto-ipv6")] ( &Endpoint::Ident(bound_ident), &IcmpRepr::Ipv6(Icmpv6Repr::EchoRequest { ident, .. }), ) | ( &Endpoint::Ident(bound_ident), &IcmpRepr::Ipv6(Icmpv6Repr::EchoReply { ident, .. }), ) => ident == bound_ident, _ => false, } } pub(crate) fn process( &mut self, _cx: &Context, ip_repr: &IpRepr, icmp_repr: &IcmpRepr, ) -> Result<()> { match *icmp_repr { #[cfg(feature = "proto-ipv4")] IcmpRepr::Ipv4(ref icmp_repr) => { let packet_buf = self .rx_buffer .enqueue(icmp_repr.buffer_len(), ip_repr.src_addr())?; icmp_repr.emit( &mut Icmpv4Packet::new_unchecked(packet_buf), &ChecksumCapabilities::default(), ); net_trace!( "{}:{}: receiving {} octets", self.meta.handle, icmp_repr.buffer_len(), packet_buf.len() ); } #[cfg(feature = "proto-ipv6")] IcmpRepr::Ipv6(ref icmp_repr) => { let packet_buf = self .rx_buffer .enqueue(icmp_repr.buffer_len(&_cx.caps.medium), ip_repr.src_addr())?; icmp_repr.emit( &ip_repr.src_addr(), &ip_repr.dst_addr(), &mut Icmpv6Packet::new_unchecked(packet_buf), &ChecksumCapabilities::default(), &_cx.caps.medium, ); net_trace!( "{}:{}: receiving {} octets", self.meta.handle, icmp_repr.buffer_len(&_cx.caps.medium), packet_buf.len() ); } } #[cfg(feature = "async")] self.rx_waker.wake(); Ok(()) } pub(crate) fn dispatch(&mut self, _cx: &Context, emit: F) -> Result<()> where F: FnOnce((IpRepr, IcmpRepr)) -> Result<()>, { let handle = self.meta.handle; let hop_limit = self.hop_limit.unwrap_or(64); self.tx_buffer.dequeue_with(|remote_endpoint, packet_buf| { net_trace!( "{}:{}: sending {} octets", handle, remote_endpoint, packet_buf.len() ); match *remote_endpoint { #[cfg(feature = "proto-ipv4")] IpAddress::Ipv4(ipv4_addr) => { let packet = Icmpv4Packet::new_unchecked(&*packet_buf); let repr = Icmpv4Repr::parse(&packet, &ChecksumCapabilities::ignored())?; let ip_repr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address::default(), dst_addr: ipv4_addr, protocol: IpProtocol::Icmp, payload_len: repr.buffer_len(), hop_limit: hop_limit, }); emit((ip_repr, IcmpRepr::Ipv4(repr))) } #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(ipv6_addr) => { let packet = Icmpv6Packet::new_unchecked(&*packet_buf); let src_addr = Ipv6Address::default(); let repr = Icmpv6Repr::parse( &src_addr.into(), &ipv6_addr.into(), &packet, &ChecksumCapabilities::ignored(), &_cx.caps.medium, )?; let ip_repr = IpRepr::Ipv6(Ipv6Repr { src_addr: src_addr, dst_addr: ipv6_addr, next_header: IpProtocol::Icmpv6, payload_len: repr.buffer_len(&_cx.caps.medium), hop_limit: hop_limit, }); emit((ip_repr, IcmpRepr::Ipv6(repr))) } _ => Err(Error::Unaddressable), } })?; #[cfg(feature = "async")] self.tx_waker.wake(); Ok(()) } pub(crate) fn poll_at(&self, _cx: &Context) -> PollAt { if self.tx_buffer.is_empty() { PollAt::Ingress } else { PollAt::Now } } } impl<'a> From> for Socket<'a> { fn from(val: IcmpSocket<'a>) -> Self { Socket::Icmp(val) } } #[cfg(test)] mod tests_common { pub use super::*; pub use crate::phy::DeviceCapabilities; pub use crate::wire::IpAddress; pub fn buffer(packets: usize) -> IcmpSocketBuffer<'static> { IcmpSocketBuffer::new( vec![IcmpPacketMetadata::EMPTY; packets], vec![0; 66 * packets], ) } pub fn socket( rx_buffer: IcmpSocketBuffer<'static>, tx_buffer: IcmpSocketBuffer<'static>, ) -> IcmpSocket<'static> { IcmpSocket::new(rx_buffer, tx_buffer) } pub const LOCAL_PORT: u16 = 53; pub static UDP_REPR: UdpRepr = UdpRepr { src_port: 53, dst_port: 9090, }; pub static UDP_PAYLOAD: &[u8] = &[0xff; 10]; } #[cfg(all(test, feature = "proto-ipv4"))] mod test_ipv4 { use super::tests_common::*; use crate::wire::Icmpv4DstUnreachable; const REMOTE_IPV4: Ipv4Address = Ipv4Address([0x7f, 0x00, 0x00, 0x02]); const LOCAL_IPV4: Ipv4Address = Ipv4Address([0x7f, 0x00, 0x00, 0x01]); const LOCAL_END_V4: IpEndpoint = IpEndpoint { addr: IpAddress::Ipv4(LOCAL_IPV4), port: LOCAL_PORT, }; static ECHOV4_REPR: Icmpv4Repr = Icmpv4Repr::EchoRequest { ident: 0x1234, seq_no: 0x5678, data: &[0xff; 16], }; static LOCAL_IPV4_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address::UNSPECIFIED, dst_addr: REMOTE_IPV4, protocol: IpProtocol::Icmp, payload_len: 24, hop_limit: 0x40, }); static REMOTE_IPV4_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr { src_addr: REMOTE_IPV4, dst_addr: LOCAL_IPV4, protocol: IpProtocol::Icmp, payload_len: 24, hop_limit: 0x40, }); #[test] fn test_send_unaddressable() { let mut socket = socket(buffer(0), buffer(1)); assert_eq!( socket.send_slice(b"abcdef", IpAddress::default()), Err(Error::Unaddressable) ); assert_eq!(socket.send_slice(b"abcdef", REMOTE_IPV4.into()), Ok(())); } #[test] fn test_send_dispatch() { let mut socket = socket(buffer(0), buffer(1)); let checksum = ChecksumCapabilities::default(); assert_eq!( socket.dispatch(&Context::DUMMY, |_| unreachable!()), Err(Error::Exhausted) ); // This buffer is too long assert_eq!( socket.send_slice(&[0xff; 67], REMOTE_IPV4.into()), Err(Error::Truncated) ); assert!(socket.can_send()); let mut bytes = [0xff; 24]; let mut packet = Icmpv4Packet::new_unchecked(&mut bytes); ECHOV4_REPR.emit(&mut packet, &checksum); assert_eq!( socket.send_slice(&packet.into_inner()[..], REMOTE_IPV4.into()), Ok(()) ); assert_eq!( socket.send_slice(b"123456", REMOTE_IPV4.into()), Err(Error::Exhausted) ); assert!(!socket.can_send()); assert_eq!( socket.dispatch(&Context::DUMMY, |(ip_repr, icmp_repr)| { assert_eq!(ip_repr, LOCAL_IPV4_REPR); assert_eq!(icmp_repr, ECHOV4_REPR.into()); Err(Error::Unaddressable) }), Err(Error::Unaddressable) ); // buffer is not taken off of the tx queue due to the error assert!(!socket.can_send()); assert_eq!( socket.dispatch(&Context::DUMMY, |(ip_repr, icmp_repr)| { assert_eq!(ip_repr, LOCAL_IPV4_REPR); assert_eq!(icmp_repr, ECHOV4_REPR.into()); Ok(()) }), Ok(()) ); // buffer is taken off of the queue this time assert!(socket.can_send()); } #[test] fn test_set_hop_limit_v4() { let mut s = socket(buffer(0), buffer(1)); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 24]; let mut packet = Icmpv4Packet::new_unchecked(&mut bytes); ECHOV4_REPR.emit(&mut packet, &checksum); s.set_hop_limit(Some(0x2a)); assert_eq!( s.send_slice(&packet.into_inner()[..], REMOTE_IPV4.into()), Ok(()) ); assert_eq!( s.dispatch(&Context::DUMMY, |(ip_repr, _)| { assert_eq!( ip_repr, IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address::UNSPECIFIED, dst_addr: REMOTE_IPV4, protocol: IpProtocol::Icmp, payload_len: ECHOV4_REPR.buffer_len(), hop_limit: 0x2a, }) ); Ok(()) }), Ok(()) ); } #[test] fn test_recv_process() { let mut socket = socket(buffer(1), buffer(1)); assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(())); assert!(!socket.can_recv()); assert_eq!(socket.recv(), Err(Error::Exhausted)); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 24]; let mut packet = Icmpv4Packet::new_unchecked(&mut bytes); ECHOV4_REPR.emit(&mut packet, &checksum); let data = &packet.into_inner()[..]; assert!(socket.accepts(&Context::DUMMY, &REMOTE_IPV4_REPR, &ECHOV4_REPR.into())); assert_eq!( socket.process(&Context::DUMMY, &REMOTE_IPV4_REPR, &ECHOV4_REPR.into()), Ok(()) ); assert!(socket.can_recv()); assert!(socket.accepts(&Context::DUMMY, &REMOTE_IPV4_REPR, &ECHOV4_REPR.into())); assert_eq!( socket.process(&Context::DUMMY, &REMOTE_IPV4_REPR, &ECHOV4_REPR.into()), Err(Error::Exhausted) ); assert_eq!(socket.recv(), Ok((data, REMOTE_IPV4.into()))); assert!(!socket.can_recv()); } #[test] fn test_accept_bad_id() { let mut socket = socket(buffer(1), buffer(1)); assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(())); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 20]; let mut packet = Icmpv4Packet::new_unchecked(&mut bytes); let icmp_repr = Icmpv4Repr::EchoRequest { ident: 0x4321, seq_no: 0x5678, data: &[0xff; 16], }; icmp_repr.emit(&mut packet, &checksum); // Ensure that a packet with an identifier that isn't the bound // ID is not accepted assert!(!socket.accepts(&Context::DUMMY, &REMOTE_IPV4_REPR, &icmp_repr.into())); } #[test] fn test_accepts_udp() { let mut socket = socket(buffer(1), buffer(1)); assert_eq!(socket.bind(Endpoint::Udp(LOCAL_END_V4)), Ok(())); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 18]; let mut packet = UdpPacket::new_unchecked(&mut bytes); UDP_REPR.emit( &mut packet, &REMOTE_IPV4.into(), &LOCAL_IPV4.into(), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(UDP_PAYLOAD), &checksum, ); let data = &packet.into_inner()[..]; let icmp_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: Ipv4Repr { src_addr: LOCAL_IPV4, dst_addr: REMOTE_IPV4, protocol: IpProtocol::Icmp, payload_len: 12, hop_limit: 0x40, }, data: data, }; let ip_repr = IpRepr::Unspecified { src_addr: REMOTE_IPV4.into(), dst_addr: LOCAL_IPV4.into(), protocol: IpProtocol::Icmp, payload_len: icmp_repr.buffer_len(), hop_limit: 0x40, }; assert!(!socket.can_recv()); // Ensure we can accept ICMP error response to the bound // UDP port assert!(socket.accepts(&Context::DUMMY, &ip_repr, &icmp_repr.into())); assert_eq!( socket.process(&Context::DUMMY, &ip_repr, &icmp_repr.into()), Ok(()) ); assert!(socket.can_recv()); let mut bytes = [0x00; 46]; let mut packet = Icmpv4Packet::new_unchecked(&mut bytes[..]); icmp_repr.emit(&mut packet, &checksum); assert_eq!( socket.recv(), Ok((&packet.into_inner()[..], REMOTE_IPV4.into())) ); assert!(!socket.can_recv()); } } #[cfg(all(test, feature = "proto-ipv6"))] mod test_ipv6 { use super::tests_common::*; use crate::wire::Icmpv6DstUnreachable; const REMOTE_IPV6: Ipv6Address = Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]); const LOCAL_IPV6: Ipv6Address = Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]); const LOCAL_END_V6: IpEndpoint = IpEndpoint { addr: IpAddress::Ipv6(LOCAL_IPV6), port: LOCAL_PORT, }; static ECHOV6_REPR: Icmpv6Repr = Icmpv6Repr::EchoRequest { ident: 0x1234, seq_no: 0x5678, data: &[0xff; 16], }; static LOCAL_IPV6_REPR: IpRepr = IpRepr::Ipv6(Ipv6Repr { src_addr: Ipv6Address::UNSPECIFIED, dst_addr: REMOTE_IPV6, next_header: IpProtocol::Icmpv6, payload_len: 24, hop_limit: 0x40, }); static REMOTE_IPV6_REPR: IpRepr = IpRepr::Ipv6(Ipv6Repr { src_addr: REMOTE_IPV6, dst_addr: LOCAL_IPV6, next_header: IpProtocol::Icmpv6, payload_len: 24, hop_limit: 0x40, }); #[test] fn test_send_unaddressable() { let mut socket = socket(buffer(0), buffer(1)); assert_eq!( socket.send_slice(b"abcdef", IpAddress::default()), Err(Error::Unaddressable) ); assert_eq!(socket.send_slice(b"abcdef", REMOTE_IPV6.into()), Ok(())); } #[test] fn test_send_dispatch() { let mut socket = socket(buffer(0), buffer(1)); let checksum = ChecksumCapabilities::default(); assert_eq!( socket.dispatch(&Context::DUMMY, |_| unreachable!()), Err(Error::Exhausted) ); // This buffer is too long assert_eq!( socket.send_slice(&[0xff; 67], REMOTE_IPV6.into()), Err(Error::Truncated) ); assert!(socket.can_send()); let mut bytes = vec![0xff; 24]; let mut packet = Icmpv6Packet::new_unchecked(&mut bytes); ECHOV6_REPR.emit( &LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &checksum, &crate::phy::Medium::Ethernet, ); assert_eq!( socket.send_slice(&packet.into_inner()[..], REMOTE_IPV6.into()), Ok(()) ); assert_eq!( socket.send_slice(b"123456", REMOTE_IPV6.into()), Err(Error::Exhausted) ); assert!(!socket.can_send()); assert_eq!( socket.dispatch(&Context::DUMMY, |(ip_repr, icmp_repr)| { assert_eq!(ip_repr, LOCAL_IPV6_REPR); assert_eq!(icmp_repr, ECHOV6_REPR.into()); Err(Error::Unaddressable) }), Err(Error::Unaddressable) ); // buffer is not taken off of the tx queue due to the error assert!(!socket.can_send()); assert_eq!( socket.dispatch(&Context::DUMMY, |(ip_repr, icmp_repr)| { assert_eq!(ip_repr, LOCAL_IPV6_REPR); assert_eq!(icmp_repr, ECHOV6_REPR.into()); Ok(()) }), Ok(()) ); // buffer is taken off of the queue this time assert!(socket.can_send()); } #[test] fn test_set_hop_limit() { let mut s = socket(buffer(0), buffer(1)); let checksum = ChecksumCapabilities::default(); let mut bytes = vec![0xff; 24]; let mut packet = Icmpv6Packet::new_unchecked(&mut bytes); ECHOV6_REPR.emit( &LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &checksum, &crate::phy::Medium::Ethernet, ); s.set_hop_limit(Some(0x2a)); assert_eq!( s.send_slice(&packet.into_inner()[..], REMOTE_IPV6.into()), Ok(()) ); assert_eq!( s.dispatch(&Context::DUMMY, |(ip_repr, _)| { assert_eq!( ip_repr, IpRepr::Ipv6(Ipv6Repr { src_addr: Ipv6Address::UNSPECIFIED, dst_addr: REMOTE_IPV6, next_header: IpProtocol::Icmpv6, payload_len: ECHOV6_REPR.buffer_len(&crate::phy::Medium::Ethernet), hop_limit: 0x2a, }) ); Ok(()) }), Ok(()) ); } #[test] fn test_recv_process() { let mut socket = socket(buffer(1), buffer(1)); assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(())); assert!(!socket.can_recv()); assert_eq!(socket.recv(), Err(Error::Exhausted)); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 24]; let mut packet = Icmpv6Packet::new_unchecked(&mut bytes); ECHOV6_REPR.emit( &LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &checksum, &crate::phy::Medium::Ethernet, ); let data = &packet.into_inner()[..]; assert!(socket.accepts(&Context::DUMMY, &REMOTE_IPV6_REPR, &ECHOV6_REPR.into())); assert_eq!( socket.process(&Context::DUMMY, &REMOTE_IPV6_REPR, &ECHOV6_REPR.into()), Ok(()) ); assert!(socket.can_recv()); assert!(socket.accepts(&Context::DUMMY, &REMOTE_IPV6_REPR, &ECHOV6_REPR.into())); assert_eq!( socket.process(&Context::DUMMY, &REMOTE_IPV6_REPR, &ECHOV6_REPR.into()), Err(Error::Exhausted) ); assert_eq!(socket.recv(), Ok((data, REMOTE_IPV6.into()))); assert!(!socket.can_recv()); } #[test] fn test_accept_bad_id() { let mut socket = socket(buffer(1), buffer(1)); assert_eq!(socket.bind(Endpoint::Ident(0x1234)), Ok(())); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 20]; let mut packet = Icmpv6Packet::new_unchecked(&mut bytes); let icmp_repr = Icmpv6Repr::EchoRequest { ident: 0x4321, seq_no: 0x5678, data: &[0xff; 16], }; icmp_repr.emit( &LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &checksum, &crate::phy::Medium::Ethernet, ); // Ensure that a packet with an identifier that isn't the bound // ID is not accepted assert!(!socket.accepts(&Context::DUMMY, &REMOTE_IPV6_REPR, &icmp_repr.into())); } #[test] fn test_accepts_udp() { let mut socket = socket(buffer(1), buffer(1)); assert_eq!(socket.bind(Endpoint::Udp(LOCAL_END_V6)), Ok(())); let checksum = ChecksumCapabilities::default(); let mut bytes = [0xff; 18]; let mut packet = UdpPacket::new_unchecked(&mut bytes); UDP_REPR.emit( &mut packet, &REMOTE_IPV6.into(), &LOCAL_IPV6.into(), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(UDP_PAYLOAD), &checksum, ); let data = &packet.into_inner()[..]; let icmp_repr = Icmpv6Repr::DstUnreachable { reason: Icmpv6DstUnreachable::PortUnreachable, header: Ipv6Repr { src_addr: LOCAL_IPV6, dst_addr: REMOTE_IPV6, next_header: IpProtocol::Icmpv6, payload_len: 12, hop_limit: 0x40, }, data: data, }; let ip_repr = IpRepr::Unspecified { src_addr: REMOTE_IPV6.into(), dst_addr: LOCAL_IPV6.into(), protocol: IpProtocol::Icmpv6, payload_len: icmp_repr.buffer_len(&crate::phy::Medium::Ethernet), hop_limit: 0x40, }; assert!(!socket.can_recv()); // Ensure we can accept ICMP error response to the bound // UDP port assert!(socket.accepts(&Context::DUMMY, &ip_repr, &icmp_repr.into())); assert_eq!( socket.process(&Context::DUMMY, &ip_repr, &icmp_repr.into()), Ok(()) ); assert!(socket.can_recv()); let mut bytes = [0x00; 66]; let mut packet = Icmpv6Packet::new_unchecked(&mut bytes[..]); icmp_repr.emit( &LOCAL_IPV6.into(), &REMOTE_IPV6.into(), &mut packet, &checksum, &crate::phy::Medium::Ethernet, ); assert_eq!( socket.recv(), Ok((&packet.into_inner()[..], REMOTE_IPV6.into())) ); assert!(!socket.can_recv()); } }