// Heads up! Before working on this file you should read, at least, RFC 793 and // the parts of RFC 1122 that discuss TCP. Consult RFC 7414 when implementing // a new feature. use core::{cmp, fmt}; use {Error, Result}; use phy::DeviceCapabilities; use time::{Duration, Instant}; use socket::{Socket, SocketMeta, SocketHandle}; use storage::{Assembler, RingBuffer}; use wire::{IpProtocol, IpRepr, IpAddress, IpEndpoint, TcpSeqNumber, TcpRepr, TcpControl}; /// A TCP socket ring buffer. pub type SocketBuffer<'a> = RingBuffer<'a, u8>; /// The state of a TCP socket, according to [RFC 793]. /// /// [RFC 793]: https://tools.ietf.org/html/rfc793 #[derive(Debug, PartialEq, Eq, Clone, Copy)] pub enum State { Closed, Listen, SynSent, SynReceived, Established, FinWait1, FinWait2, CloseWait, Closing, LastAck, TimeWait } impl fmt::Display for State { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { &State::Closed => write!(f, "CLOSED"), &State::Listen => write!(f, "LISTEN"), &State::SynSent => write!(f, "SYN-SENT"), &State::SynReceived => write!(f, "SYN-RECEIVED"), &State::Established => write!(f, "ESTABLISHED"), &State::FinWait1 => write!(f, "FIN-WAIT-1"), &State::FinWait2 => write!(f, "FIN-WAIT-2"), &State::CloseWait => write!(f, "CLOSE-WAIT"), &State::Closing => write!(f, "CLOSING"), &State::LastAck => write!(f, "LAST-ACK"), &State::TimeWait => write!(f, "TIME-WAIT") } } } #[derive(Debug, Clone, Copy, PartialEq)] enum Timer { Idle { keep_alive_at: Option, }, Retransmit { expires_at: Instant, delay: Duration }, Close { expires_at: Instant } } const RETRANSMIT_DELAY: Duration = Duration { millis: 100 }; const CLOSE_DELAY: Duration = Duration { millis: 10_000 }; impl Default for Timer { fn default() -> Timer { Timer::Idle { keep_alive_at: None } } } impl Timer { fn should_keep_alive(&self, timestamp: Instant) -> bool { match *self { Timer::Idle { keep_alive_at: Some(keep_alive_at) } if timestamp >= keep_alive_at => { true } _ => false } } fn should_retransmit(&self, timestamp: Instant) -> Option { match *self { Timer::Retransmit { expires_at, delay } if timestamp >= expires_at => { Some(timestamp - expires_at + delay) } _ => None } } fn should_close(&self, timestamp: Instant) -> bool { match *self { Timer::Close { expires_at } if timestamp >= expires_at => { true } _ => false } } fn poll_at(&self) -> Option { match *self { Timer::Idle { keep_alive_at } => keep_alive_at, Timer::Retransmit { expires_at, .. } => Some(expires_at), Timer::Close { expires_at } => Some(expires_at), } } fn set_for_idle(&mut self, timestamp: Instant, interval: Option) { *self = Timer::Idle { keep_alive_at: interval.map(|interval| timestamp + interval) } } fn set_keep_alive(&mut self) { match *self { Timer::Idle { ref mut keep_alive_at } if keep_alive_at.is_none() => { *keep_alive_at = Some(Instant::from_millis(0)) } _ => () } } fn rewind_keep_alive(&mut self, timestamp: Instant, interval: Option) { match self { &mut Timer::Idle { ref mut keep_alive_at } => { *keep_alive_at = interval.map(|interval| timestamp + interval) } _ => () } } fn set_for_retransmit(&mut self, timestamp: Instant) { match *self { Timer::Idle { .. } => { *self = Timer::Retransmit { expires_at: timestamp + RETRANSMIT_DELAY, delay: RETRANSMIT_DELAY, } } Timer::Retransmit { expires_at, delay } if timestamp >= expires_at => { *self = Timer::Retransmit { expires_at: timestamp + delay, delay: delay * 2 } } Timer::Retransmit { .. } => (), Timer::Close { .. } => () } } fn set_for_close(&mut self, timestamp: Instant) { *self = Timer::Close { expires_at: timestamp + CLOSE_DELAY } } fn is_retransmit(&self) -> bool { match *self { Timer::Retransmit {..} => true, _ => false, } } } /// A Transmission Control Protocol socket. /// /// A TCP socket may passively listen for connections or actively connect to another endpoint. /// Note that, for listening sockets, there is no "backlog"; to be able to simultaneously /// accept several connections, as many sockets must be allocated, or any new connection /// attempts will be reset. #[derive(Debug)] pub struct TcpSocket<'a> { pub(crate) meta: SocketMeta, state: State, timer: Timer, assembler: Assembler, rx_buffer: SocketBuffer<'a>, tx_buffer: SocketBuffer<'a>, /// Interval after which, if no inbound packets are received, the connection is aborted. timeout: Option, /// Interval at which keep-alive packets will be sent. keep_alive: Option, /// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. hop_limit: Option, /// Address passed to listen(). Listen address is set when listen() is called and /// used every time the socket is reset back to the LISTEN state. listen_address: IpAddress, /// Current local endpoint. This is used for both filtering the incoming packets and /// setting the source address. When listening or initiating connection on/from /// an unspecified address, this field is updated with the chosen source address before /// any packets are sent. local_endpoint: IpEndpoint, /// Current remote endpoint. This is used for both filtering the incoming packets and /// setting the destination address. If the remote endpoint is unspecified, it means that /// aborting the connection will not send an RST, and, in TIME-WAIT state, will not /// send an ACK. remote_endpoint: IpEndpoint, /// The sequence number corresponding to the beginning of the transmit buffer. /// I.e. an ACK(local_seq_no+n) packet removes n bytes from the transmit buffer. local_seq_no: TcpSeqNumber, /// The sequence number corresponding to the beginning of the receive buffer. /// I.e. userspace reading n bytes adds n to remote_seq_no. remote_seq_no: TcpSeqNumber, /// The last sequence number sent. /// I.e. in an idle socket, local_seq_no+tx_buffer.len(). remote_last_seq: TcpSeqNumber, /// The last acknowledgement number sent. /// I.e. in an idle socket, remote_seq_no+rx_buffer.len(). remote_last_ack: Option, /// The last window length sent. remote_last_win: u16, /// The speculative remote window size. /// I.e. the actual remote window size minus the count of in-flight octets. remote_win_len: usize, /// The maximum number of data octets that the remote side may receive. remote_mss: usize, /// The timestamp of the last packet received. remote_last_ts: Option, } const DEFAULT_MSS: usize = 536; impl<'a> TcpSocket<'a> { /// Create a socket using the given buffers. pub fn new(rx_buffer: T, tx_buffer: T) -> TcpSocket<'a> where T: Into> { let (rx_buffer, tx_buffer) = (rx_buffer.into(), tx_buffer.into()); if rx_buffer.capacity() > ::max_value() as usize { panic!("buffers larger than {} require window scaling, which is not implemented", ::max_value()) } TcpSocket { meta: SocketMeta::default(), state: State::Closed, timer: Timer::default(), assembler: Assembler::new(rx_buffer.capacity()), tx_buffer: tx_buffer, rx_buffer: rx_buffer, timeout: None, keep_alive: None, hop_limit: None, listen_address: IpAddress::default(), local_endpoint: IpEndpoint::default(), remote_endpoint: IpEndpoint::default(), local_seq_no: TcpSeqNumber::default(), remote_seq_no: TcpSeqNumber::default(), remote_last_seq: TcpSeqNumber::default(), remote_last_ack: None, remote_last_win: 0, remote_win_len: 0, remote_mss: DEFAULT_MSS, remote_last_ts: None, } } /// Return the socket handle. #[inline] pub fn handle(&self) -> SocketHandle { self.meta.handle } /// Return the timeout duration. /// /// See also the [set_timeout](#method.set_timeout) method. pub fn timeout(&self) -> Option { self.timeout } /// Set the timeout duration. /// /// A socket with a timeout duration set will abort the connection if either of the following /// occurs: /// /// * After a [connect](#method.connect) call, the remote endpoint does not respond within /// the specified duration; /// * After establishing a connection, there is data in the transmit buffer and the remote /// endpoint exceeds the specified duration between any two packets it sends; /// * After enabling [keep-alive](#method.set_keep_alive), the remote endpoint exceeds /// the specified duration between any two packets it sends. pub fn set_timeout(&mut self, duration: Option) { self.timeout = duration } /// Return the keep-alive interval. /// /// See also the [set_keep_alive](#method.set_keep_alive) method. pub fn keep_alive(&self) -> Option { self.keep_alive } /// Set the keep-alive interval. /// /// An idle socket with a keep-alive interval set will transmit a "challenge ACK" packet /// every time it receives no communication during that interval. As a result, three things /// may happen: /// /// * The remote endpoint is fine and answers with an ACK packet. /// * The remote endpoint has rebooted and answers with an RST packet. /// * The remote endpoint has crashed and does not answer. /// /// The keep-alive functionality together with the timeout functionality allows to react /// to these error conditions. pub fn set_keep_alive(&mut self, interval: Option) { self.keep_alive = interval; if self.keep_alive.is_some() { // If the connection is idle and we've just set the option, it would not take effect // until the next packet, unless we wind up the timer explicitly. self.timer.set_keep_alive(); } } /// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. /// /// See also the [set_hop_limit](#method.set_hop_limit) method pub fn hop_limit(&self) -> Option { self.hop_limit } /// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. /// /// A socket without an explicitly set hop limit value uses the default [IANA recommended] /// value (64). /// /// # Panics /// /// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7]. /// /// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml /// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7 pub fn set_hop_limit(&mut self, hop_limit: Option) { // A host MUST NOT send a datagram with a hop limit value of 0 if let Some(0) = hop_limit { panic!("the time-to-live value of a packet must not be zero") } self.hop_limit = hop_limit } /// Return the local endpoint. #[inline] pub fn local_endpoint(&self) -> IpEndpoint { self.local_endpoint } /// Return the remote endpoint. #[inline] pub fn remote_endpoint(&self) -> IpEndpoint { self.remote_endpoint } /// Return the connection state, in terms of the TCP state machine. #[inline] pub fn state(&self) -> State { self.state } fn reset(&mut self) { self.state = State::Closed; self.timer = Timer::default(); self.assembler = Assembler::new(self.rx_buffer.capacity()); self.tx_buffer.clear(); self.rx_buffer.clear(); self.keep_alive = None; self.timeout = None; self.hop_limit = None; self.listen_address = IpAddress::default(); self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); self.local_seq_no = TcpSeqNumber::default(); self.remote_seq_no = TcpSeqNumber::default(); self.remote_last_seq = TcpSeqNumber::default(); self.remote_last_ack = None; self.remote_last_win = 0; self.remote_win_len = 0; self.remote_mss = DEFAULT_MSS; self.remote_last_ts = None; } /// Start listening on the given endpoint. /// /// This function returns `Err(Error::Illegal)` if the socket was already open /// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)` /// if the port in the given endpoint is zero. pub fn listen(&mut self, local_endpoint: T) -> Result<()> where T: Into { let local_endpoint = local_endpoint.into(); if local_endpoint.port == 0 { return Err(Error::Unaddressable) } if self.is_open() { return Err(Error::Illegal) } self.reset(); self.listen_address = local_endpoint.addr; self.local_endpoint = local_endpoint; self.remote_endpoint = IpEndpoint::default(); self.set_state(State::Listen); Ok(()) } /// Connect to a given endpoint. /// /// The local port must be provided explicitly. Assuming `fn get_ephemeral_port() -> u16` /// allocates a port between 49152 and 65535, a connection may be established as follows: /// /// ```rust,ignore /// socket.connect((IpAddress::v4(10, 0, 0, 1), 80), get_ephemeral_port()) /// ``` /// /// The local address may optionally be provided. /// /// This function returns an error if the socket was open; see [is_open](#method.is_open). /// It also returns an error if the local or remote port is zero, or if the remote address /// is unspecified. pub fn connect(&mut self, remote_endpoint: T, local_endpoint: U) -> Result<()> where T: Into, U: Into { let remote_endpoint = remote_endpoint.into(); let local_endpoint = local_endpoint.into(); if self.is_open() { return Err(Error::Illegal) } if !remote_endpoint.is_specified() { return Err(Error::Unaddressable) } if local_endpoint.port == 0 { return Err(Error::Unaddressable) } // If local address is not provided, use an unspecified address but a specified protocol. // This lets us lower IpRepr later to determine IP header size and calculate MSS, // but without committing to a specific address right away. let local_addr = match remote_endpoint.addr { IpAddress::Unspecified => return Err(Error::Unaddressable), _ => remote_endpoint.addr.to_unspecified(), }; let local_endpoint = IpEndpoint { addr: local_addr, ..local_endpoint }; // Carry over the local sequence number. let local_seq_no = self.local_seq_no; self.reset(); self.local_endpoint = local_endpoint; self.remote_endpoint = remote_endpoint; self.local_seq_no = local_seq_no; self.remote_last_seq = local_seq_no; self.set_state(State::SynSent); Ok(()) } /// Close the transmit half of the full-duplex connection. /// /// Note that there is no corresponding function for the receive half of the full-duplex /// connection; only the remote end can close it. If you no longer wish to receive any /// data and would like to reuse the socket right away, use [abort](#method.abort). pub fn close(&mut self) { match self.state { // In the LISTEN state there is no established connection. State::Listen => self.set_state(State::Closed), // In the SYN-SENT state the remote endpoint is not yet synchronized and, upon // receiving an RST, will abort the connection. State::SynSent => self.set_state(State::Closed), // In the SYN-RECEIVED, ESTABLISHED and CLOSE-WAIT states the transmit half // of the connection is open, and needs to be explicitly closed with a FIN. State::SynReceived | State::Established => self.set_state(State::FinWait1), State::CloseWait => self.set_state(State::LastAck), // In the FIN-WAIT-1, FIN-WAIT-2, CLOSING, LAST-ACK, TIME-WAIT and CLOSED states, // the transmit half of the connection is already closed, and no further // action is needed. State::FinWait1 | State::FinWait2 | State::Closing | State::TimeWait | State::LastAck | State::Closed => () } } /// Aborts the connection, if any. /// /// This function instantly closes the socket. One reset packet will be sent to the remote /// endpoint. /// /// In terms of the TCP state machine, the socket may be in any state and is moved to /// the `CLOSED` state. pub fn abort(&mut self) { self.set_state(State::Closed); } /// Return whether the socket is passively listening for incoming connections. /// /// In terms of the TCP state machine, the socket must be in the `LISTEN` state. #[inline] pub fn is_listening(&self) -> bool { match self.state { State::Listen => true, _ => false } } /// Return whether the socket is open. /// /// This function returns true if the socket will process incoming or dispatch outgoing /// packets. Note that this does not mean that it is possible to send or receive data through /// the socket; for that, use [can_send](#method.can_send) or [can_recv](#method.can_recv). /// /// In terms of the TCP state machine, the socket must not be in the `CLOSED` /// or `TIME-WAIT` states. #[inline] pub fn is_open(&self) -> bool { match self.state { State::Closed => false, State::TimeWait => false, _ => true } } /// Return whether a connection is active. /// /// This function returns true if the socket is actively exchanging packets with /// a remote endpoint. Note that this does not mean that it is possible to send or receive /// data through the socket; for that, use [can_send](#method.can_send) or /// [can_recv](#method.can_recv). /// /// If a connection is established, [abort](#method.close) will send a reset to /// the remote endpoint. /// /// In terms of the TCP state machine, the socket must be in the `CLOSED`, `TIME-WAIT`, /// or `LISTEN` state. #[inline] pub fn is_active(&self) -> bool { match self.state { State::Closed => false, State::TimeWait => false, State::Listen => false, _ => true } } /// Return whether the transmit half of the full-duplex connection is open. /// /// This function returns true if it's possible to send data and have it arrive /// to the remote endpoint. However, it does not make any guarantees about the state /// of the transmit buffer, and even if it returns true, [send](#method.send) may /// not be able to enqueue any octets. /// /// In terms of the TCP state machine, the socket must be in the `ESTABLISHED` or /// `CLOSE-WAIT` state. #[inline] pub fn may_send(&self) -> bool { match self.state { State::Established => true, // In CLOSE-WAIT, the remote endpoint has closed our receive half of the connection // but we still can transmit indefinitely. State::CloseWait => true, _ => false } } /// Return whether the receive half of the full-duplex connection is open. /// /// This function returns true if it's possible to receive data from the remote endpoint. /// It will return true while there is data in the receive buffer, and if there isn't, /// as long as the remote endpoint has not closed the connection. /// /// In terms of the TCP state machine, the socket must be in the `ESTABLISHED`, /// `FIN-WAIT-1`, or `FIN-WAIT-2` state, or have data in the receive buffer instead. #[inline] pub fn may_recv(&self) -> bool { match self.state { State::Established => true, // In FIN-WAIT-1/2, we have closed our transmit half of the connection but // we still can receive indefinitely. State::FinWait1 | State::FinWait2 => true, // If we have something in the receive buffer, we can receive that. _ if self.rx_buffer.len() > 0 => true, _ => false } } /// Check whether the transmit half of the full-duplex connection is open /// (see [may_send](#method.may_send), and the transmit buffer is not full. #[inline] pub fn can_send(&self) -> bool { if !self.may_send() { return false } !self.tx_buffer.is_full() } /// Check whether the receive half of the full-duplex connection buffer is open /// (see [may_recv](#method.may_recv), and the receive buffer is not empty. #[inline] pub fn can_recv(&self) -> bool { if !self.may_recv() { return false } !self.rx_buffer.is_empty() } fn send_impl<'b, F, R>(&'b mut self, f: F) -> Result where F: FnOnce(&'b mut SocketBuffer<'a>) -> (usize, R) { if !self.may_send() { return Err(Error::Illegal) } // The connection might have been idle for a long time, and so remote_last_ts // would be far in the past. Unless we clear it here, we'll abort the connection // down over in dispatch() by erroneously detecting it as timed out. if self.tx_buffer.is_empty() { self.remote_last_ts = None } let _old_length = self.tx_buffer.len(); let (size, result) = f(&mut self.tx_buffer); if size > 0 { #[cfg(any(test, feature = "verbose"))] net_trace!("{}:{}:{}: tx buffer: enqueueing {} octets (now {})", self.meta.handle, self.local_endpoint, self.remote_endpoint, size, _old_length + size); } Ok(result) } /// Call `f` with the largest contiguous slice of octets in the transmit buffer, /// and enqueue the amount of elements returned by `f`. /// /// This function returns `Err(Error::Illegal) if the transmit half of /// the connection is not open; see [may_send](#method.may_send). pub fn send<'b, F, R>(&'b mut self, f: F) -> Result where F: FnOnce(&'b mut [u8]) -> (usize, R) { self.send_impl(|tx_buffer| { tx_buffer.enqueue_many_with(f) }) } /// Enqueue a sequence of octets to be sent, and fill it from a slice. /// /// This function returns the amount of bytes actually enqueued, which is limited /// by the amount of free space in the transmit buffer; down to zero. /// /// See also [send](#method.send). pub fn send_slice(&mut self, data: &[u8]) -> Result { self.send_impl(|tx_buffer| { let size = tx_buffer.enqueue_slice(data); (size, size) }) } fn recv_impl<'b, F, R>(&'b mut self, f: F) -> Result where F: FnOnce(&'b mut SocketBuffer<'a>) -> (usize, R) { // We may have received some data inside the initial SYN, but until the connection // is fully open we must not dequeue any data, as it may be overwritten by e.g. // another (stale) SYN. (We do not support TCP Fast Open.) if !self.may_recv() { return Err(Error::Illegal) } let _old_length = self.rx_buffer.len(); let (size, result) = f(&mut self.rx_buffer); self.remote_seq_no += size; if size > 0 { #[cfg(any(test, feature = "verbose"))] net_trace!("{}:{}:{}: rx buffer: dequeueing {} octets (now {})", self.meta.handle, self.local_endpoint, self.remote_endpoint, size, _old_length - size); } Ok(result) } /// Call `f` with the largest contiguous slice of octets in the receive buffer, /// and dequeue the amount of elements returned by `f`. /// /// This function returns `Err(Error::Illegal) if the receive half of /// the connection is not open; see [may_recv](#method.may_recv). pub fn recv<'b, F, R>(&'b mut self, f: F) -> Result where F: FnOnce(&'b mut [u8]) -> (usize, R) { self.recv_impl(|rx_buffer| { rx_buffer.dequeue_many_with(f) }) } /// Dequeue a sequence of received octets, and fill a slice from it. /// /// This function returns the amount of bytes actually dequeued, which is limited /// by the amount of free space in the transmit buffer; down to zero. /// /// See also [recv](#method.recv). pub fn recv_slice(&mut self, data: &mut [u8]) -> Result { self.recv_impl(|rx_buffer| { let size = rx_buffer.dequeue_slice(data); (size, size) }) } /// Peek at a sequence of received octets without removing them from /// the receive buffer, and return a pointer to it. /// /// This function otherwise behaves identically to [recv](#method.recv). pub fn peek(&mut self, size: usize) -> Result<&[u8]> { // See recv() above. if !self.may_recv() { return Err(Error::Illegal) } let buffer = self.rx_buffer.get_allocated(0, size); if buffer.len() > 0 { #[cfg(any(test, feature = "verbose"))] net_trace!("{}:{}:{}: rx buffer: peeking at {} octets", self.meta.handle, self.local_endpoint, self.remote_endpoint, buffer.len()); } Ok(buffer) } /// Peek at a sequence of received octets without removing them from /// the receive buffer, and fill a slice from it. /// /// This function otherwise behaves identically to [recv_slice](#method.recv_slice). pub fn peek_slice(&mut self, data: &mut [u8]) -> Result { let buffer = self.peek(data.len())?; let data = &mut data[..buffer.len()]; data.copy_from_slice(buffer); Ok(buffer.len()) } /// Return the amount of octets queued in the transmit buffer. /// /// Note that the Berkeley sockets interface does not have an equivalent of this API. pub fn send_queue(&self) -> usize { self.tx_buffer.len() } /// Return the amount of octets queued in the receive buffer. /// /// Note that the Berkeley sockets interface does not have an equivalent of this API. pub fn recv_queue(&self) -> usize { self.rx_buffer.len() } fn set_state(&mut self, state: State) { if self.state != state { if self.remote_endpoint.addr.is_unspecified() { net_trace!("{}:{}: state={}=>{}", self.meta.handle, self.local_endpoint, self.state, state); } else { net_trace!("{}:{}:{}: state={}=>{}", self.meta.handle, self.local_endpoint, self.remote_endpoint, self.state, state); } } self.state = state } pub(crate) fn reply(ip_repr: &IpRepr, repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) { let reply_repr = TcpRepr { src_port: repr.dst_port, dst_port: repr.src_port, control: TcpControl::None, seq_number: TcpSeqNumber(0), ack_number: None, window_len: 0, max_seg_size: None, payload: &[] }; let ip_reply_repr = IpRepr::Unspecified { src_addr: ip_repr.dst_addr(), dst_addr: ip_repr.src_addr(), protocol: IpProtocol::Tcp, payload_len: reply_repr.buffer_len(), hop_limit: 64 }; (ip_reply_repr, reply_repr) } pub(crate) fn rst_reply(ip_repr: &IpRepr, repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) { debug_assert!(repr.control != TcpControl::Rst); let (ip_reply_repr, mut reply_repr) = Self::reply(ip_repr, repr); // See https://www.snellman.net/blog/archive/2016-02-01-tcp-rst/ for explanation // of why we sometimes send an RST and sometimes an RST|ACK reply_repr.control = TcpControl::Rst; reply_repr.seq_number = repr.ack_number.unwrap_or_default(); if repr.control == TcpControl::Syn { reply_repr.ack_number = Some(repr.seq_number + repr.segment_len()); } (ip_reply_repr, reply_repr) } fn ack_reply(&mut self, ip_repr: &IpRepr, repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) { let (ip_reply_repr, mut reply_repr) = Self::reply(ip_repr, repr); // From RFC 793: // [...] an empty acknowledgment segment containing the current send-sequence number // and an acknowledgment indicating the next sequence number expected // to be received. reply_repr.seq_number = self.remote_last_seq; reply_repr.ack_number = self.remote_last_ack; reply_repr.window_len = self.rx_buffer.window() as u16; self.remote_last_win = reply_repr.window_len; (ip_reply_repr, reply_repr) } pub(crate) fn accepts(&self, ip_repr: &IpRepr, repr: &TcpRepr) -> bool { if self.state == State::Closed { return false } // If we're still listening for SYNs and the packet has an ACK, it cannot // be destined to this socket, but another one may well listen on the same // local endpoint. if self.state == State::Listen && repr.ack_number.is_some() { return false } // Reject packets with a wrong destination. if self.local_endpoint.port != repr.dst_port { return false } if !self.local_endpoint.addr.is_unspecified() && self.local_endpoint.addr != ip_repr.dst_addr() { return false } // Reject packets from a source to which we aren't connected. if self.remote_endpoint.port != 0 && self.remote_endpoint.port != repr.src_port { return false } if !self.remote_endpoint.addr.is_unspecified() && self.remote_endpoint.addr != ip_repr.src_addr() { return false } true } pub(crate) fn process(&mut self, timestamp: Instant, ip_repr: &IpRepr, repr: &TcpRepr) -> Result)>> { debug_assert!(self.accepts(ip_repr, repr)); // Consider how much the sequence number space differs from the transmit buffer space. let (sent_syn, sent_fin) = match self.state { // In SYN-SENT or SYN-RECEIVED, we've just sent a SYN. State::SynSent | State::SynReceived => (true, false), // In FIN-WAIT-1, LAST-ACK, or CLOSING, we've just sent a FIN. State::FinWait1 | State::LastAck | State::Closing => (false, true), // In all other states we've already got acknowledgemetns for // all of the control flags we sent. _ => (false, false) }; let control_len = (sent_syn as usize) + (sent_fin as usize); // Reject unacceptable acknowledgements. match (self.state, repr) { // An RST received in response to initial SYN is acceptable if it acknowledges // the initial SYN. (State::SynSent, &TcpRepr { control: TcpControl::Rst, ack_number: None, .. }) => { net_debug!("{}:{}:{}: unacceptable RST (expecting RST|ACK) \ in response to initial SYN", self.meta.handle, self.local_endpoint, self.remote_endpoint); return Err(Error::Dropped) } (State::SynSent, &TcpRepr { control: TcpControl::Rst, ack_number: Some(ack_number), .. }) => { if ack_number != self.local_seq_no + 1 { net_debug!("{}:{}:{}: unacceptable RST|ACK in response to initial SYN", self.meta.handle, self.local_endpoint, self.remote_endpoint); return Err(Error::Dropped) } } // Any other RST need only have a valid sequence number. (_, &TcpRepr { control: TcpControl::Rst, .. }) => (), // The initial SYN cannot contain an acknowledgement. (State::Listen, &TcpRepr { ack_number: None, .. }) => (), // This case is handled above. (State::Listen, &TcpRepr { ack_number: Some(_), .. }) => unreachable!(), // Every packet after the initial SYN must be an acknowledgement. (_, &TcpRepr { ack_number: None, .. }) => { net_debug!("{}:{}:{}: expecting an ACK", self.meta.handle, self.local_endpoint, self.remote_endpoint); return Err(Error::Dropped) } // Every acknowledgement must be for transmitted but unacknowledged data. (_, &TcpRepr { ack_number: Some(ack_number), .. }) => { let unacknowledged = self.tx_buffer.len() + control_len; if ack_number < self.local_seq_no { net_debug!("{}:{}:{}: duplicate ACK ({} not in {}...{})", self.meta.handle, self.local_endpoint, self.remote_endpoint, ack_number, self.local_seq_no, self.local_seq_no + unacknowledged); // FIXME: implement fast retransmit return Err(Error::Dropped) } if ack_number > self.local_seq_no + unacknowledged { net_debug!("{}:{}:{}: unacceptable ACK ({} not in {}...{})", self.meta.handle, self.local_endpoint, self.remote_endpoint, ack_number, self.local_seq_no, self.local_seq_no + unacknowledged); return Ok(Some(self.ack_reply(ip_repr, &repr))) } } } let window_start = self.remote_seq_no + self.rx_buffer.len(); let window_end = self.remote_seq_no + self.rx_buffer.capacity(); let segment_start = repr.seq_number; let segment_end = repr.seq_number + repr.segment_len(); let payload_offset; match self.state { // In LISTEN and SYN-SENT states, we have not yet synchronized with the remote end. State::Listen | State::SynSent => payload_offset = 0, // In all other states, segments must occupy a valid portion of the receive window. _ => { let mut segment_in_window = true; if window_start == window_end && segment_start != segment_end { net_debug!("{}:{}:{}: non-zero-length segment with zero receive window, \ will only send an ACK", self.meta.handle, self.local_endpoint, self.remote_endpoint); segment_in_window = false; } if segment_start == segment_end && segment_end == window_start - 1 { net_debug!("{}:{}:{}: received a keep-alive or window probe packet, \ will send an ACK", self.meta.handle, self.local_endpoint, self.remote_endpoint); segment_in_window = false; } else if !((window_start <= segment_start && segment_start <= window_end) && (window_start <= segment_end && segment_end <= window_end)) { net_debug!("{}:{}:{}: segment not in receive window \ ({}..{} not intersecting {}..{}), will send challenge ACK", self.meta.handle, self.local_endpoint, self.remote_endpoint, segment_start, segment_end, window_start, window_end); segment_in_window = false; } if segment_in_window { // We've checked that segment_start >= window_start above. payload_offset = (segment_start - window_start) as usize; } else { // If we're in the TIME-WAIT state, restart the TIME-WAIT timeout, since // the remote end may not have realized we've closed the connection. if self.state == State::TimeWait { self.timer.set_for_close(timestamp); } return Ok(Some(self.ack_reply(ip_repr, &repr))) } } } // Compute the amount of acknowledged octets, removing the SYN and FIN bits // from the sequence space. let mut ack_len = 0; let mut ack_of_fin = false; if repr.control != TcpControl::Rst { if let Some(ack_number) = repr.ack_number { ack_len = ack_number - self.local_seq_no; // There could have been no data sent before the SYN, so we always remove it // from the sequence space. if sent_syn { ack_len -= 1 } // We could've sent data before the FIN, so only remove FIN from the sequence // space if all of that data is acknowledged. if sent_fin && self.tx_buffer.len() + 1 == ack_len { ack_len -= 1; net_trace!("{}:{}:{}: received ACK of FIN", self.meta.handle, self.local_endpoint, self.remote_endpoint); ack_of_fin = true; } } } // Disregard control flags we don't care about or shouldn't act on yet. let mut control = repr.control; control = control.quash_psh(); // If a FIN is received at the end of the current segment but the start of the segment // is not at the start of the receive window, disregard this FIN. if control == TcpControl::Fin && window_start != segment_start { control = TcpControl::None; } // Validate and update the state. match (self.state, control) { // RSTs are not accepted in the LISTEN state. (State::Listen, TcpControl::Rst) => return Err(Error::Dropped), // RSTs in SYN-RECEIVED flip the socket back to the LISTEN state. (State::SynReceived, TcpControl::Rst) => { net_trace!("{}:{}:{}: received RST", self.meta.handle, self.local_endpoint, self.remote_endpoint); self.local_endpoint.addr = self.listen_address; self.remote_endpoint = IpEndpoint::default(); self.set_state(State::Listen); return Ok(None) } // RSTs in any other state close the socket. (_, TcpControl::Rst) => { net_trace!("{}:{}:{}: received RST", self.meta.handle, self.local_endpoint, self.remote_endpoint); self.set_state(State::Closed); self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); return Ok(None) } // SYN packets in the LISTEN state change it to SYN-RECEIVED. (State::Listen, TcpControl::Syn) => { net_trace!("{}:{}: received SYN", self.meta.handle, self.local_endpoint); self.local_endpoint = IpEndpoint::new(ip_repr.dst_addr(), repr.dst_port); self.remote_endpoint = IpEndpoint::new(ip_repr.src_addr(), repr.src_port); // FIXME: use something more secure here self.local_seq_no = TcpSeqNumber(-repr.seq_number.0); self.remote_seq_no = repr.seq_number + 1; self.remote_last_seq = self.local_seq_no; if let Some(max_seg_size) = repr.max_seg_size { self.remote_mss = max_seg_size as usize } self.set_state(State::SynReceived); self.timer.set_for_idle(timestamp, self.keep_alive); } // ACK packets in the SYN-RECEIVED state change it to ESTABLISHED. (State::SynReceived, TcpControl::None) => { self.set_state(State::Established); self.timer.set_for_idle(timestamp, self.keep_alive); } // FIN packets in the SYN-RECEIVED state change it to CLOSE-WAIT. // It's not obvious from RFC 793 that this is permitted, but // 7th and 8th steps in the "SEGMENT ARRIVES" event describe this behavior. (State::SynReceived, TcpControl::Fin) => { self.remote_seq_no += 1; self.set_state(State::CloseWait); self.timer.set_for_idle(timestamp, self.keep_alive); } // SYN|ACK packets in the SYN-SENT state change it to ESTABLISHED. (State::SynSent, TcpControl::Syn) => { net_trace!("{}:{}:{}: received SYN|ACK", self.meta.handle, self.local_endpoint, self.remote_endpoint); self.local_endpoint = IpEndpoint::new(ip_repr.dst_addr(), repr.dst_port); self.remote_seq_no = repr.seq_number + 1; self.remote_last_seq = self.local_seq_no + 1; self.remote_last_ack = Some(repr.seq_number); if let Some(max_seg_size) = repr.max_seg_size { self.remote_mss = max_seg_size as usize; } self.set_state(State::Established); self.timer.set_for_idle(timestamp, self.keep_alive); } // ACK packets in ESTABLISHED state reset the retransmit timer, // except for duplicate ACK packets which preserve it. (State::Established, TcpControl::None) => { if !self.timer.is_retransmit() || ack_len != 0 { self.timer.set_for_idle(timestamp, self.keep_alive); } }, // FIN packets in ESTABLISHED state indicate the remote side has closed. (State::Established, TcpControl::Fin) => { self.remote_seq_no += 1; self.set_state(State::CloseWait); self.timer.set_for_idle(timestamp, self.keep_alive); } // ACK packets in FIN-WAIT-1 state change it to FIN-WAIT-2, if we've already // sent everything in the transmit buffer. If not, they reset the retransmit timer. (State::FinWait1, TcpControl::None) => { if ack_of_fin { self.set_state(State::FinWait2); } self.timer.set_for_idle(timestamp, self.keep_alive); } // FIN packets in FIN-WAIT-1 state change it to CLOSING, or to TIME-WAIT // if they also acknowledge our FIN. (State::FinWait1, TcpControl::Fin) => { self.remote_seq_no += 1; if ack_of_fin { self.set_state(State::TimeWait); self.timer.set_for_close(timestamp); } else { self.set_state(State::Closing); self.timer.set_for_idle(timestamp, self.keep_alive); } } // FIN packets in FIN-WAIT-2 state change it to TIME-WAIT. (State::FinWait2, TcpControl::Fin) => { self.remote_seq_no += 1; self.set_state(State::TimeWait); self.timer.set_for_close(timestamp); } // ACK packets in CLOSING state change it to TIME-WAIT. (State::Closing, TcpControl::None) => { if ack_of_fin { self.set_state(State::TimeWait); self.timer.set_for_close(timestamp); } else { self.timer.set_for_idle(timestamp, self.keep_alive); } } // ACK packets in CLOSE-WAIT state reset the retransmit timer. (State::CloseWait, TcpControl::None) => { self.timer.set_for_idle(timestamp, self.keep_alive); } // ACK packets in LAST-ACK state change it to CLOSED. (State::LastAck, TcpControl::None) => { // Clear the remote endpoint, or we'll send an RST there. self.set_state(State::Closed); self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); } _ => { net_debug!("{}:{}:{}: unexpected packet {}", self.meta.handle, self.local_endpoint, self.remote_endpoint, repr); return Err(Error::Dropped) } } // Update remote state. self.remote_last_ts = Some(timestamp); self.remote_win_len = repr.window_len as usize; if ack_len > 0 { // Dequeue acknowledged octets. debug_assert!(self.tx_buffer.len() >= ack_len); net_trace!("{}:{}:{}: tx buffer: dequeueing {} octets (now {})", self.meta.handle, self.local_endpoint, self.remote_endpoint, ack_len, self.tx_buffer.len() - ack_len); self.tx_buffer.dequeue_allocated(ack_len); } if let Some(ack_number) = repr.ack_number { // We've processed everything in the incoming segment, so advance the local // sequence number past it. self.local_seq_no = ack_number; // During retransmission, if an earlier segment got lost but later was // successfully received, self.local_seq_no can move past self.remote_last_seq. // Do not attempt to retransmit the latter segments; not only this is pointless // in theory but also impossible in practice, since they have been already // deallocated from the buffer. if self.remote_last_seq < self.local_seq_no { self.remote_last_seq = self.local_seq_no } } let payload_len = repr.payload.len(); if payload_len == 0 { return Ok(None) } let assembler_was_empty = self.assembler.is_empty(); // Try adding payload octets to the assembler. match self.assembler.add(payload_offset, payload_len) { Ok(()) => { debug_assert!(self.assembler.total_size() == self.rx_buffer.capacity()); // Place payload octets into the buffer. net_trace!("{}:{}:{}: rx buffer: receiving {} octets at offset {}", self.meta.handle, self.local_endpoint, self.remote_endpoint, payload_len, payload_offset); self.rx_buffer.write_unallocated(payload_offset, repr.payload); } Err(()) => { net_debug!("{}:{}:{}: assembler: too many holes to add {} octets at offset {}", self.meta.handle, self.local_endpoint, self.remote_endpoint, payload_len, payload_offset); return Err(Error::Dropped) } } if let Some(contig_len) = self.assembler.remove_front() { debug_assert!(self.assembler.total_size() == self.rx_buffer.capacity()); // Enqueue the contiguous data octets in front of the buffer. net_trace!("{}:{}:{}: rx buffer: enqueueing {} octets (now {})", self.meta.handle, self.local_endpoint, self.remote_endpoint, contig_len, self.rx_buffer.len() + contig_len); self.rx_buffer.enqueue_unallocated(contig_len); } if !self.assembler.is_empty() { // Print the ranges recorded in the assembler. net_trace!("{}:{}:{}: assembler: {}", self.meta.handle, self.local_endpoint, self.remote_endpoint, self.assembler); } // Per RFC 5681, we should send an immediate ACK when either: // 1) an out-of-order segment is received, or // 2) a segment arrives that fills in all or part of a gap in sequence space. if !self.assembler.is_empty() || !assembler_was_empty { // Note that we change the transmitter state here. // This is fine because smoltcp assumes that it can always transmit zero or one // packets for every packet it receives. net_trace!("{}:{}:{}: ACKing incoming segment", self.meta.handle, self.local_endpoint, self.remote_endpoint); self.remote_last_ack = Some(self.remote_seq_no + self.rx_buffer.len()); Ok(Some(self.ack_reply(ip_repr, &repr))) } else { Ok(None) } } fn timed_out(&self, timestamp: Instant) -> bool { match (self.remote_last_ts, self.timeout) { (Some(remote_last_ts), Some(timeout)) => timestamp >= remote_last_ts + timeout, (_, _) => false } } fn seq_to_transmit(&self) -> bool { let control; match self.state { State::SynSent | State::SynReceived => control = TcpControl::Syn, State::FinWait1 | State::LastAck => control = TcpControl::Fin, _ => control = TcpControl::None } if self.remote_win_len > 0 { self.remote_last_seq < self.local_seq_no + self.tx_buffer.len() + control.len() } else { false } } fn ack_to_transmit(&self) -> bool { if let Some(remote_last_ack) = self.remote_last_ack { remote_last_ack < self.remote_seq_no + self.rx_buffer.len() } else { false } } fn window_to_update(&self) -> bool { self.rx_buffer.window() as u16 > self.remote_last_win } pub(crate) fn dispatch(&mut self, timestamp: Instant, caps: &DeviceCapabilities, emit: F) -> Result<()> where F: FnOnce((IpRepr, TcpRepr)) -> Result<()> { if !self.remote_endpoint.is_specified() { return Err(Error::Exhausted) } if self.remote_last_ts.is_none() { // We get here in exactly two cases: // 1) This socket just transitioned into SYN-SENT. // 2) This socket had an empty transmit buffer and some data was added there. // Both are similar in that the socket has been quiet for an indefinite // period of time, it isn't anymore, and the local endpoint is talking. // So, we start counting the timeout not from the last received packet // but from the first transmitted one. self.remote_last_ts = Some(timestamp); } // Check if any state needs to be changed because of a timer. if self.timed_out(timestamp) { // If a timeout expires, we should abort the connection. net_debug!("{}:{}:{}: timeout exceeded", self.meta.handle, self.local_endpoint, self.remote_endpoint); self.set_state(State::Closed); } else if !self.seq_to_transmit() { if let Some(retransmit_delta) = self.timer.should_retransmit(timestamp) { // If a retransmit timer expired, we should resend data starting at the last ACK. net_debug!("{}:{}:{}: retransmitting at t+{}", self.meta.handle, self.local_endpoint, self.remote_endpoint, retransmit_delta); self.remote_last_seq = self.local_seq_no; } } // Decide whether we're sending a packet. if self.seq_to_transmit() { // If we have data to transmit and it fits into partner's window, do it. net_trace!("{}:{}:{}: outgoing segment will send data or flags", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if self.ack_to_transmit() { // If we have data to acknowledge, do it. net_trace!("{}:{}:{}: outgoing segment will acknowledge", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if self.window_to_update() { // If we have window length increase to advertise, do it. net_trace!("{}:{}:{}: outgoing segment will update window", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if self.state == State::Closed { // If we need to abort the connection, do it. net_trace!("{}:{}:{}: outgoing segment will abort connection", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if self.timer.should_retransmit(timestamp).is_some() { // If we have packets to retransmit, do it. net_trace!("{}:{}:{}: retransmit timer expired", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if self.timer.should_keep_alive(timestamp) { // If we need to transmit a keep-alive packet, do it. net_trace!("{}:{}:{}: keep-alive timer expired", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if self.timer.should_close(timestamp) { // If we have spent enough time in the TIME-WAIT state, close the socket. net_trace!("{}:{}:{}: TIME-WAIT timer expired", self.meta.handle, self.local_endpoint, self.remote_endpoint); self.reset(); return Err(Error::Exhausted) } else { return Err(Error::Exhausted) } // Construct the lowered IP representation. // We might need this to calculate the MSS, so do it early. let mut ip_repr = IpRepr::Unspecified { src_addr: self.local_endpoint.addr, dst_addr: self.remote_endpoint.addr, protocol: IpProtocol::Tcp, hop_limit: self.hop_limit.unwrap_or(64), payload_len: 0 }.lower(&[])?; // Construct the basic TCP representation, an empty ACK packet. // We'll adjust this to be more specific as needed. let mut repr = TcpRepr { src_port: self.local_endpoint.port, dst_port: self.remote_endpoint.port, control: TcpControl::None, seq_number: self.remote_last_seq, ack_number: Some(self.remote_seq_no + self.rx_buffer.len()), window_len: self.rx_buffer.window() as u16, max_seg_size: None, payload: &[] }; match self.state { // We transmit an RST in the CLOSED state. If we ended up in the CLOSED state // with a specified endpoint, it means that the socket was aborted. State::Closed => { repr.control = TcpControl::Rst; } // We never transmit anything in the LISTEN state. State::Listen => return Err(Error::Exhausted), // We transmit a SYN in the SYN-SENT state. // We transmit a SYN|ACK in the SYN-RECEIVED state. State::SynSent | State::SynReceived => { repr.control = TcpControl::Syn; if self.state == State::SynSent { repr.ack_number = None; } } // We transmit data in all states where we may have data in the buffer, // or the transmit half of the connection is still open: // the ESTABLISHED, FIN-WAIT-1, CLOSE-WAIT and LAST-ACK states. State::Established | State::FinWait1 | State::CloseWait | State::LastAck => { // Extract as much data as the remote side can receive in this packet // from the transmit buffer. let offset = self.remote_last_seq - self.local_seq_no; let size = cmp::min(self.remote_win_len, self.remote_mss); repr.payload = self.tx_buffer.get_allocated(offset, size); // If we've sent everything we had in the buffer, follow it with the PSH or FIN // flags, depending on whether the transmit half of the connection is open. if offset + repr.payload.len() == self.tx_buffer.len() { match self.state { State::FinWait1 | State::LastAck => repr.control = TcpControl::Fin, State::Established | State::CloseWait if repr.payload.len() > 0 => repr.control = TcpControl::Psh, _ => () } } } // We do not transmit anything in the FIN-WAIT-2 state. State::FinWait2 => return Err(Error::Exhausted), // We do not transmit data or control flags in the CLOSING or TIME-WAIT states, // but we may retransmit an ACK. State::Closing | State::TimeWait => () } // There might be more than one reason to send a packet. E.g. the keep-alive timer // has expired, and we also have data in transmit buffer. Since any packet that occupies // sequence space will elicit an ACK, we only need to send an explicit packet if we // couldn't fill the sequence space with anything. let is_keep_alive; if self.timer.should_keep_alive(timestamp) && repr.is_empty() { repr.seq_number = repr.seq_number - 1; repr.payload = b"\x00"; // RFC 1122 says we should do this is_keep_alive = true; } else { is_keep_alive = false; } // Trace a summary of what will be sent. if is_keep_alive { net_trace!("{}:{}:{}: sending a keep-alive", self.meta.handle, self.local_endpoint, self.remote_endpoint); } else if repr.payload.len() > 0 { net_trace!("{}:{}:{}: tx buffer: sending {} octets at offset {}", self.meta.handle, self.local_endpoint, self.remote_endpoint, repr.payload.len(), self.remote_last_seq - self.local_seq_no); } if repr.control != TcpControl::None || repr.payload.len() == 0 { let flags = match (repr.control, repr.ack_number) { (TcpControl::Syn, None) => "SYN", (TcpControl::Syn, Some(_)) => "SYN|ACK", (TcpControl::Fin, Some(_)) => "FIN|ACK", (TcpControl::Rst, Some(_)) => "RST|ACK", (TcpControl::Psh, Some(_)) => "PSH|ACK", (TcpControl::None, Some(_)) => "ACK", _ => "" }; net_trace!("{}:{}:{}: sending {}", self.meta.handle, self.local_endpoint, self.remote_endpoint, flags); } if repr.control == TcpControl::Syn { // Fill the MSS option. See RFC 6691 for an explanation of this calculation. let mut max_segment_size = caps.max_transmission_unit; max_segment_size -= ip_repr.buffer_len(); max_segment_size -= repr.header_len(); repr.max_seg_size = Some(max_segment_size as u16); } // Actually send the packet. If this succeeds, it means the packet is in // the device buffer, and its transmission is imminent. If not, we might have // a number of problems, e.g. we need neighbor discovery. // // Bailing out if the packet isn't placed in the device buffer allows us // to not waste time waiting for the retransmit timer on packets that we know // for sure will not be successfully transmitted. ip_repr.set_payload_len(repr.buffer_len()); emit((ip_repr, repr))?; // We've sent something, whether useful data or a keep-alive packet, so rewind // the keep-alive timer. self.timer.rewind_keep_alive(timestamp, self.keep_alive); // Leave the rest of the state intact if sending a keep-alive packet, since those // carry a fake segment. if is_keep_alive { return Ok(()) } // We've sent a packet successfully, so we can update the internal state now. self.remote_last_seq = repr.seq_number + repr.segment_len(); self.remote_last_ack = repr.ack_number; self.remote_last_win = repr.window_len; if !self.seq_to_transmit() && repr.segment_len() > 0 { // If we've transmitted all data we could (and there was something at all, // data or flag, to transmit, not just an ACK), wind up the retransmit timer. self.timer.set_for_retransmit(timestamp); } if self.state == State::Closed { // When aborting a connection, forget about it after sending a single RST packet. self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); } Ok(()) } pub(crate) fn poll_at(&self) -> Option { // The logic here mirrors the beginning of dispatch() closely. if !self.remote_endpoint.is_specified() { // No one to talk to, nothing to transmit. None } else if self.remote_last_ts.is_none() { // Socket stopped being quiet recently, we need to acquire a timestamp. Some(Instant::from_millis(0)) } else if self.state == State::Closed { // Socket was aborted, we have an RST packet to transmit. Some(Instant::from_millis(0)) } else if self.seq_to_transmit() || self.ack_to_transmit() || self.window_to_update() { // We have a data or flag packet to transmit. Some(Instant::from_millis(0)) } else { let timeout_poll_at = match (self.remote_last_ts, self.timeout) { // If we're transmitting or retransmitting data, we need to poll at the moment // when the timeout would expire. (Some(remote_last_ts), Some(timeout)) => Some(remote_last_ts + timeout), // Otherwise we have no timeout. (_, _) => None }; // We wait for the earliest of our timers to fire. [self.timer.poll_at(), timeout_poll_at] .iter() .filter_map(|x| *x) .min() } } } impl<'a> Into> for TcpSocket<'a> { fn into(self) -> Socket<'a, 'static> { Socket::Tcp(self) } } impl<'a> fmt::Write for TcpSocket<'a> { fn write_str(&mut self, slice: &str) -> fmt::Result { let slice = slice.as_bytes(); if self.send_slice(slice) == Ok(slice.len()) { Ok(()) } else { Err(fmt::Error) } } } #[cfg(test)] mod test { use core::i32; use wire::{IpAddress, IpRepr, IpCidr}; use wire::ip::test::{MOCK_IP_ADDR_1, MOCK_IP_ADDR_2, MOCK_IP_ADDR_3, MOCK_UNSPECIFIED}; use super::*; // =========================================================================================// // Constants // =========================================================================================// const LOCAL_PORT: u16 = 80; const REMOTE_PORT: u16 = 49500; const LOCAL_END: IpEndpoint = IpEndpoint { addr: MOCK_IP_ADDR_1, port: LOCAL_PORT }; const REMOTE_END: IpEndpoint = IpEndpoint { addr: MOCK_IP_ADDR_2, port: REMOTE_PORT }; const LOCAL_SEQ: TcpSeqNumber = TcpSeqNumber(10000); const REMOTE_SEQ: TcpSeqNumber = TcpSeqNumber(-10000); const SEND_IP_TEMPL: IpRepr = IpRepr::Unspecified { src_addr: MOCK_IP_ADDR_1, dst_addr: MOCK_IP_ADDR_2, protocol: IpProtocol::Tcp, payload_len: 20, hop_limit: 64 }; const SEND_TEMPL: TcpRepr<'static> = TcpRepr { src_port: REMOTE_PORT, dst_port: LOCAL_PORT, control: TcpControl::None, seq_number: TcpSeqNumber(0), ack_number: Some(TcpSeqNumber(0)), window_len: 256, max_seg_size: None, payload: &[] }; const _RECV_IP_TEMPL: IpRepr = IpRepr::Unspecified { src_addr: MOCK_IP_ADDR_1, dst_addr: MOCK_IP_ADDR_2, protocol: IpProtocol::Tcp, payload_len: 20, hop_limit: 64 }; const RECV_TEMPL: TcpRepr<'static> = TcpRepr { src_port: LOCAL_PORT, dst_port: REMOTE_PORT, control: TcpControl::None, seq_number: TcpSeqNumber(0), ack_number: Some(TcpSeqNumber(0)), window_len: 64, max_seg_size: None, payload: &[] }; #[cfg(feature = "proto-ipv6")] const BASE_MSS: u16 = 1460; #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] const BASE_MSS: u16 = 1480; // =========================================================================================// // Helper functions // =========================================================================================// fn send(socket: &mut TcpSocket, timestamp: Instant, repr: &TcpRepr) -> Result>> { let ip_repr = IpRepr::Unspecified { src_addr: MOCK_IP_ADDR_2, dst_addr: MOCK_IP_ADDR_1, protocol: IpProtocol::Tcp, payload_len: repr.buffer_len(), hop_limit: 64 }; net_trace!("send: {}", repr); assert!(socket.accepts(&ip_repr, repr)); match socket.process(timestamp, &ip_repr, repr) { Ok(Some((_ip_repr, repr))) => { net_trace!("recv: {}", repr); Ok(Some(repr)) } Ok(None) => Ok(None), Err(err) => Err(err) } } fn recv(socket: &mut TcpSocket, timestamp: Instant, mut f: F) where F: FnMut(Result) { let mut caps = DeviceCapabilities::default(); caps.max_transmission_unit = 1520; let result = socket.dispatch(timestamp, &caps, |(ip_repr, tcp_repr)| { let ip_repr = ip_repr.lower(&[IpCidr::new(LOCAL_END.addr, 24)]).unwrap(); assert_eq!(ip_repr.protocol(), IpProtocol::Tcp); assert_eq!(ip_repr.src_addr(), MOCK_IP_ADDR_1); assert_eq!(ip_repr.dst_addr(), MOCK_IP_ADDR_2); assert_eq!(ip_repr.payload_len(), tcp_repr.buffer_len()); net_trace!("recv: {}", tcp_repr); Ok(f(Ok(tcp_repr))) }); match result { Ok(()) => (), Err(e) => f(Err(e)) } } macro_rules! send { ($socket:ident, $repr:expr) => (send!($socket, time 0, $repr)); ($socket:ident, $repr:expr, $result:expr) => (send!($socket, time 0, $repr, $result)); ($socket:ident, time $time:expr, $repr:expr) => (send!($socket, time $time, $repr, Ok(None))); ($socket:ident, time $time:expr, $repr:expr, $result:expr) => (assert_eq!(send(&mut $socket, Instant::from_millis($time), &$repr), $result)); } macro_rules! recv { ($socket:ident, [$( $repr:expr ),*]) => ({ $( recv!($socket, Ok($repr)); )* recv!($socket, Err(Error::Exhausted)) }); ($socket:ident, $result:expr) => (recv!($socket, time 0, $result)); ($socket:ident, time $time:expr, $result:expr) => (recv(&mut $socket, Instant::from_millis($time), |result| { // Most of the time we don't care about the PSH flag. let result = result.map(|mut repr| { repr.control = repr.control.quash_psh(); repr }); assert_eq!(result, $result) })); ($socket:ident, time $time:expr, $result:expr, exact) => (recv(&mut $socket, Instant::from_millis($time), |repr| assert_eq!(repr, $result))); } macro_rules! sanity { ($socket1:expr, $socket2:expr) => ({ let (s1, s2) = ($socket1, $socket2); assert_eq!(s1.state, s2.state, "state"); assert_eq!(s1.listen_address, s2.listen_address, "listen_address"); assert_eq!(s1.local_endpoint, s2.local_endpoint, "local_endpoint"); assert_eq!(s1.remote_endpoint, s2.remote_endpoint, "remote_endpoint"); assert_eq!(s1.local_seq_no, s2.local_seq_no, "local_seq_no"); assert_eq!(s1.remote_seq_no, s2.remote_seq_no, "remote_seq_no"); assert_eq!(s1.remote_last_seq, s2.remote_last_seq, "remote_last_seq"); assert_eq!(s1.remote_last_ack, s2.remote_last_ack, "remote_last_ack"); assert_eq!(s1.remote_last_win, s2.remote_last_win, "remote_last_win"); assert_eq!(s1.remote_win_len, s2.remote_win_len, "remote_win_len"); assert_eq!(s1.timer, s2.timer, "timer"); }) } #[cfg(feature = "log")] fn init_logger() { extern crate log; use std::boxed::Box; struct Logger(()); impl log::Log for Logger { fn enabled(&self, _metadata: &log::LogMetadata) -> bool { true } fn log(&self, record: &log::LogRecord) { println!("{}", record.args()); } } let _ = log::set_logger(|max_level| { max_level.set(log::LogLevelFilter::Trace); Box::new(Logger(())) }); println!(""); } fn socket() -> TcpSocket<'static> { #[cfg(feature = "log")] init_logger(); let rx_buffer = SocketBuffer::new(vec![0; 64]); let tx_buffer = SocketBuffer::new(vec![0; 64]); TcpSocket::new(rx_buffer, tx_buffer) } fn socket_syn_received() -> TcpSocket<'static> { let mut s = socket(); s.state = State::SynReceived; s.local_endpoint = LOCAL_END; s.remote_endpoint = REMOTE_END; s.local_seq_no = LOCAL_SEQ; s.remote_seq_no = REMOTE_SEQ + 1; s.remote_last_seq = LOCAL_SEQ; s.remote_win_len = 256; s } fn socket_syn_sent() -> TcpSocket<'static> { let mut s = socket(); s.state = State::SynSent; s.local_endpoint = IpEndpoint::new(MOCK_UNSPECIFIED, LOCAL_PORT); s.remote_endpoint = REMOTE_END; s.local_seq_no = LOCAL_SEQ; s.remote_last_seq = LOCAL_SEQ; s } fn socket_established() -> TcpSocket<'static> { let mut s = socket_syn_received(); s.state = State::Established; s.local_seq_no = LOCAL_SEQ + 1; s.remote_last_seq = LOCAL_SEQ + 1; s.remote_last_ack = Some(REMOTE_SEQ + 1); s.remote_last_win = 64; s } fn socket_fin_wait_1() -> TcpSocket<'static> { let mut s = socket_established(); s.state = State::FinWait1; s } fn socket_fin_wait_2() -> TcpSocket<'static> { let mut s = socket_fin_wait_1(); s.state = State::FinWait2; s.local_seq_no = LOCAL_SEQ + 1 + 1; s.remote_last_seq = LOCAL_SEQ + 1 + 1; s } fn socket_closing() -> TcpSocket<'static> { let mut s = socket_fin_wait_1(); s.state = State::Closing; s.remote_last_seq = LOCAL_SEQ + 1 + 1; s.remote_seq_no = REMOTE_SEQ + 1 + 1; s } fn socket_time_wait(from_closing: bool) -> TcpSocket<'static> { let mut s = socket_fin_wait_2(); s.state = State::TimeWait; s.remote_seq_no = REMOTE_SEQ + 1 + 1; if from_closing { s.remote_last_ack = Some(REMOTE_SEQ + 1 + 1); } s.timer = Timer::Close { expires_at: Instant::from_secs(1) + CLOSE_DELAY }; s } fn socket_close_wait() -> TcpSocket<'static> { let mut s = socket_established(); s.state = State::CloseWait; s.remote_seq_no = REMOTE_SEQ + 1 + 1; s.remote_last_ack = Some(REMOTE_SEQ + 1 + 1); s } fn socket_last_ack() -> TcpSocket<'static> { let mut s = socket_close_wait(); s.state = State::LastAck; s } fn socket_recved() -> TcpSocket<'static> { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); s } // =========================================================================================// // Tests for the CLOSED state. // =========================================================================================// #[test] fn test_closed_reject() { let s = socket(); assert_eq!(s.state, State::Closed); let tcp_repr = TcpRepr { control: TcpControl::Syn, ..SEND_TEMPL }; assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr)); } #[test] fn test_closed_reject_after_listen() { let mut s = socket(); s.listen(LOCAL_END).unwrap(); s.close(); let tcp_repr = TcpRepr { control: TcpControl::Syn, ..SEND_TEMPL }; assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr)); } #[test] fn test_closed_close() { let mut s = socket(); s.close(); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the LISTEN state. // =========================================================================================// fn socket_listen() -> TcpSocket<'static> { let mut s = socket(); s.state = State::Listen; s.local_endpoint = IpEndpoint::new(IpAddress::default(), LOCAL_PORT); s } #[test] fn test_listen_sanity() { let mut s = socket(); s.listen(LOCAL_PORT).unwrap(); sanity!(s, socket_listen()); } #[test] fn test_listen_validation() { let mut s = socket(); assert_eq!(s.listen(0), Err(Error::Unaddressable)); } #[test] fn test_listen_twice() { let mut s = socket(); assert_eq!(s.listen(80), Ok(())); assert_eq!(s.listen(80), Err(Error::Illegal)); } #[test] fn test_listen_syn() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }); sanity!(s, socket_syn_received()); } #[test] fn test_listen_syn_reject_ack() { let s = socket_listen(); let tcp_repr = TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ), ..SEND_TEMPL }; assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr)); assert_eq!(s.state, State::Listen); } #[test] fn test_listen_rst() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }, Err(Error::Dropped)); } #[test] fn test_listen_close() { let mut s = socket_listen(); s.close(); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the SYN-RECEIVED state. // =========================================================================================// #[test] fn test_syn_received_ack() { let mut s = socket_syn_received(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Established); sanity!(s, socket_established()); } #[test] fn test_syn_received_fin() { let mut s = socket_syn_received(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6 + 1), window_len: 58, ..RECV_TEMPL }]); assert_eq!(s.state, State::CloseWait); sanity!(s, TcpSocket { remote_last_ack: Some(REMOTE_SEQ + 1 + 6 + 1), remote_last_win: 58, ..socket_close_wait() }); } #[test] fn test_syn_received_rst() { let mut s = socket_syn_received(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ), ..SEND_TEMPL }); assert_eq!(s.state, State::Listen); assert_eq!(s.local_endpoint, IpEndpoint::new(IpAddress::Unspecified, LOCAL_END.port)); assert_eq!(s.remote_endpoint, IpEndpoint::default()); } #[test] fn test_syn_received_close() { let mut s = socket_syn_received(); s.close(); assert_eq!(s.state, State::FinWait1); } // =========================================================================================// // Tests for the SYN-SENT state. // =========================================================================================// #[test] fn test_connect_validation() { let mut s = socket(); assert_eq!(s.connect((IpAddress::Unspecified, 80), LOCAL_END), Err(Error::Unaddressable)); assert_eq!(s.connect(REMOTE_END, (MOCK_UNSPECIFIED, 0)), Err(Error::Unaddressable)); assert_eq!(s.connect((MOCK_UNSPECIFIED, 0), LOCAL_END), Err(Error::Unaddressable)); assert_eq!(s.connect((IpAddress::Unspecified, 80), LOCAL_END), Err(Error::Unaddressable)); } #[test] fn test_connect() { let mut s = socket(); s.local_seq_no = LOCAL_SEQ; s.connect(REMOTE_END, LOCAL_END.port).unwrap(); assert_eq!(s.local_endpoint, IpEndpoint::new(MOCK_UNSPECIFIED, LOCAL_END.port)); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: None, max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), max_seg_size: Some(BASE_MSS - 80), ..SEND_TEMPL }); assert_eq!(s.local_endpoint, LOCAL_END); } #[test] fn test_connect_unspecified_local() { let mut s = socket(); assert_eq!(s.connect(REMOTE_END, (MOCK_UNSPECIFIED, 80)), Ok(())); s.abort(); assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Ok(())); s.abort(); } #[test] fn test_connect_specified_local() { let mut s = socket(); assert_eq!(s.connect(REMOTE_END, (MOCK_IP_ADDR_2, 80)), Ok(())); } #[test] fn test_connect_twice() { let mut s = socket(); assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Ok(())); assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Err(Error::Illegal)); } #[test] fn test_syn_sent_sanity() { let mut s = socket(); s.local_seq_no = LOCAL_SEQ; s.connect(REMOTE_END, LOCAL_END).unwrap(); sanity!(s, socket_syn_sent()); } #[test] fn test_syn_sent_syn_ack() { let mut s = socket_syn_sent(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: None, max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), max_seg_size: Some(BASE_MSS - 80), ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); recv!(s, time 1000, Err(Error::Exhausted)); assert_eq!(s.state, State::Established); sanity!(s, socket_established()); } #[test] fn test_syn_sent_rst() { let mut s = socket_syn_sent(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_syn_sent_rst_no_ack() { let mut s = socket_syn_sent(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.state, State::SynSent); } #[test] fn test_syn_sent_rst_bad_ack() { let mut s = socket_syn_sent(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: Some(TcpSeqNumber(1234)), ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.state, State::SynSent); } #[test] fn test_syn_sent_close() { let mut s = socket(); s.close(); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the ESTABLISHED state. // =========================================================================================// #[test] fn test_established_recv() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); assert_eq!(s.rx_buffer.dequeue_many(6), &b"abcdef"[..]); } #[test] fn test_established_send() { let mut s = socket_established(); // First roundtrip after establishing. s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); assert_eq!(s.tx_buffer.len(), 6); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), ..SEND_TEMPL }); assert_eq!(s.tx_buffer.len(), 0); // Second roundtrip. s.send_slice(b"foobar").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"foobar"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), ..SEND_TEMPL }); assert_eq!(s.tx_buffer.len(), 0); } #[test] fn test_established_send_no_ack_send() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); s.send_slice(b"foobar").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"foobar"[..], ..RECV_TEMPL }]); } #[test] fn test_established_send_buf_gt_win() { let mut data = [0; 32]; for (i, elem) in data.iter_mut().enumerate() { *elem = i as u8 } let mut s = socket_established(); s.remote_win_len = 16; s.send_slice(&data[..]).unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &data[0..16], ..RECV_TEMPL }, TcpRepr { seq_number: LOCAL_SEQ + 1 + 16, ack_number: Some(REMOTE_SEQ + 1), payload: &data[16..32], ..RECV_TEMPL }]); } #[test] fn test_established_send_wrap() { let mut s = socket_established(); let local_seq_start = TcpSeqNumber(i32::MAX - 1); s.local_seq_no = local_seq_start + 1; s.remote_last_seq = local_seq_start + 1; s.send_slice(b"abc").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: local_seq_start + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abc"[..], ..RECV_TEMPL })); } #[test] fn test_established_no_ack() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: None, ..SEND_TEMPL }, Err(Error::Dropped)); } #[test] fn test_established_bad_ack() { let mut s = socket_established(); // Already acknowledged data. send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(TcpSeqNumber(LOCAL_SEQ.0 - 1)), ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.local_seq_no, LOCAL_SEQ + 1); // Data not yet transmitted. send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 10), ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }))); assert_eq!(s.local_seq_no, LOCAL_SEQ + 1); } #[test] fn test_established_bad_seq() { let mut s = socket_established(); // Data outside of receive window. send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 256, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }))); assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1); } #[test] fn test_established_fin() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::CloseWait); sanity!(s, socket_close_wait()); } #[test] fn test_established_fin_after_missing() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1 + 6, ack_number: Some(LOCAL_SEQ + 1), payload: &b"123456"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }))); assert_eq!(s.state, State::Established); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6 + 6), window_len: 52, ..RECV_TEMPL }))); assert_eq!(s.state, State::Established); } #[test] fn test_established_send_fin() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::CloseWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); } #[test] fn test_established_rst() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_established_rst_no_ack() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ + 1, ack_number: None, ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_established_close() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); sanity!(s, socket_fin_wait_1()); } #[test] fn test_established_abort() { let mut s = socket_established(); s.abort(); assert_eq!(s.state, State::Closed); recv!(s, [TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); } // =========================================================================================// // Tests for the FIN-WAIT-1 state. // =========================================================================================// #[test] fn test_fin_wait_1_fin_ack() { let mut s = socket_fin_wait_1(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait2); sanity!(s, socket_fin_wait_2()); } #[test] fn test_fin_wait_1_fin_fin() { let mut s = socket_fin_wait_1(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closing); sanity!(s, socket_closing()); } #[test] fn test_fin_wait_1_fin_with_data_queued() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef123456").unwrap(); s.close(); recv!(s, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait1); } #[test] fn test_fin_wait_1_close() { let mut s = socket_fin_wait_1(); s.close(); assert_eq!(s.state, State::FinWait1); } // =========================================================================================// // Tests for the FIN-WAIT-2 state. // =========================================================================================// #[test] fn test_fin_wait_2_fin() { let mut s = socket_fin_wait_2(); send!(s, time 1_000, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); sanity!(s, socket_time_wait(false)); } #[test] fn test_fin_wait_2_close() { let mut s = socket_fin_wait_2(); s.close(); assert_eq!(s.state, State::FinWait2); } // =========================================================================================// // Tests for the CLOSING state. // =========================================================================================// #[test] fn test_closing_ack_fin() { let mut s = socket_closing(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); send!(s, time 1_000, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); sanity!(s, socket_time_wait(true)); } #[test] fn test_closing_close() { let mut s = socket_closing(); s.close(); assert_eq!(s.state, State::Closing); } // =========================================================================================// // Tests for the TIME-WAIT state. // =========================================================================================// #[test] fn test_time_wait_from_fin_wait_2_ack() { let mut s = socket_time_wait(false); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); } #[test] fn test_time_wait_from_closing_no_ack() { let mut s = socket_time_wait(true); recv!(s, []); } #[test] fn test_time_wait_close() { let mut s = socket_time_wait(false); s.close(); assert_eq!(s.state, State::TimeWait); } #[test] fn test_time_wait_retransmit() { let mut s = socket_time_wait(false); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); send!(s, time 5_000, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }))); assert_eq!(s.timer, Timer::Close { expires_at: Instant::from_secs(5) + CLOSE_DELAY }); } #[test] fn test_time_wait_timeout() { let mut s = socket_time_wait(false); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::TimeWait); recv!(s, time 60_000, Err(Error::Exhausted)); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the CLOSE-WAIT state. // =========================================================================================// #[test] fn test_close_wait_ack() { let mut s = socket_close_wait(); s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), ..SEND_TEMPL }); } #[test] fn test_close_wait_close() { let mut s = socket_close_wait(); s.close(); assert_eq!(s.state, State::LastAck); sanity!(s, socket_last_ack()); } // =========================================================================================// // Tests for the LAST-ACK state. // =========================================================================================// #[test] fn test_last_ack_fin_ack() { let mut s = socket_last_ack(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::LastAck); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_last_ack_close() { let mut s = socket_last_ack(); s.close(); assert_eq!(s.state, State::LastAck); } // =========================================================================================// // Tests for transitioning through multiple states. // =========================================================================================// #[test] fn test_listen() { let mut s = socket(); s.listen(IpEndpoint::new(IpAddress::default(), LOCAL_PORT)).unwrap(); assert_eq!(s.state, State::Listen); } #[test] fn test_three_way_handshake() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }); assert_eq!(s.state(), State::SynReceived); assert_eq!(s.local_endpoint(), LOCAL_END); assert_eq!(s.remote_endpoint(), REMOTE_END); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state(), State::Established); assert_eq!(s.local_seq_no, LOCAL_SEQ + 1); assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1); } #[test] fn test_remote_close() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::CloseWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); s.close(); assert_eq!(s.state, State::LastAck); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_local_close() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait2); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); } #[test] fn test_simultaneous_close() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { // due to reordering, this is logically located... control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closing); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); // ... at this point send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); recv!(s, []); } #[test] fn test_simultaneous_close_combined_fin_ack() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); } #[test] fn test_fin_with_data() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); s.close(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]) } #[test] fn test_mutual_close_with_data_1() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 1), ..SEND_TEMPL }); } #[test] fn test_mutual_close_with_data_2() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait2); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 1), ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::TimeWait); } // =========================================================================================// // Tests for retransmission on packet loss. // =========================================================================================// #[test] fn test_duplicate_seq_ack() { let mut s = socket_recved(); // remote retransmission send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }))); } #[test] fn test_data_retransmit() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); recv!(s, time 1050, Err(Error::Exhausted)); recv!(s, time 1100, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); } #[test] fn test_data_retransmit_bursts() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef012345").unwrap(); recv!(s, time 0, Ok(TcpRepr { control: TcpControl::None, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }), exact); s.remote_win_len = 6; recv!(s, time 0, Ok(TcpRepr { control: TcpControl::Psh, seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"012345"[..], ..RECV_TEMPL }), exact); s.remote_win_len = 6; recv!(s, time 0, Err(Error::Exhausted)); recv!(s, time 50, Err(Error::Exhausted)); recv!(s, time 100, Ok(TcpRepr { control: TcpControl::None, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }), exact); s.remote_win_len = 6; recv!(s, time 150, Ok(TcpRepr { control: TcpControl::Psh, seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"012345"[..], ..RECV_TEMPL }), exact); s.remote_win_len = 6; recv!(s, time 200, Err(Error::Exhausted)); } #[test] fn test_send_data_after_syn_ack_retransmit() { let mut s = socket_syn_received(); recv!(s, time 50, Ok(TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL })); recv!(s, time 150, Ok(TcpRepr { // retransmit control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL })); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state(), State::Established); s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]) } #[test] fn test_established_retransmit_for_dup_ack() { let mut s = socket_established(); // Duplicate ACKs do not replace the retransmission timer s.send_slice(b"abc").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abc"[..], ..RECV_TEMPL })); // Retransmit timer is on because all data was sent assert_eq!(s.tx_buffer.len(), 3); // ACK nothing new send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); // Retransmit recv!(s, time 4000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abc"[..], ..RECV_TEMPL })); } #[test] fn test_established_retransmit_reset_after_ack() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.send_slice(b"ABCDEF").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, time 1005, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL })); send!(s, time 1015, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1020, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); } #[test] fn test_established_queue_during_retransmission() { let mut s = socket_established(); s.remote_mss = 6; s.send_slice(b"abcdef123456ABCDEF").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); // this one is dropped recv!(s, time 1005, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL })); // this one is received recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); // also dropped recv!(s, time 2000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); // retransmission send!(s, time 2005, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), ..SEND_TEMPL }); // acknowledgement of both segments recv!(s, time 2010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); // retransmission of only unacknowledged data } #[test] fn test_close_wait_retransmit_reset_after_ack() { let mut s = socket_close_wait(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.send_slice(b"ABCDEF").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, time 1005, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"123456"[..], ..RECV_TEMPL })); send!(s, time 1015, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1020, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); } #[test] fn test_fin_wait_1_retransmit_reset_after_ack() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.send_slice(b"ABCDEF").unwrap(); s.close(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, time 1005, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL })); send!(s, time 1015, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1020, Ok(TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); } // =========================================================================================// // Tests for window management. // =========================================================================================// #[test] fn test_maximum_segment_size() { let mut s = socket_listen(); s.tx_buffer = SocketBuffer::new(vec![0; 32767]); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: None, max_seg_size: Some(1000), ..SEND_TEMPL }); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(BASE_MSS), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), window_len: 32767, ..SEND_TEMPL }); s.send_slice(&[0; 1200][..]).unwrap(); recv!(s, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &[0; 1000][..], ..RECV_TEMPL })); } // =========================================================================================// // Tests for flow control. // =========================================================================================// #[test] fn test_psh_transmit() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); recv!(s, time 0, Ok(TcpRepr { control: TcpControl::None, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }), exact); recv!(s, time 0, Ok(TcpRepr { control: TcpControl::Psh, seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL }), exact); } #[test] fn test_psh_receive() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Psh, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); } #[test] fn test_zero_window_ack() { let mut s = socket_established(); s.rx_buffer = SocketBuffer::new(vec![0; 6]); s.assembler = Assembler::new(s.rx_buffer.capacity()); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 0, ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 6, ack_number: Some(LOCAL_SEQ + 1), payload: &b"123456"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 0, ..RECV_TEMPL }))); } #[test] fn test_zero_window_ack_on_window_growth() { let mut s = socket_established(); s.rx_buffer = SocketBuffer::new(vec![0; 6]); s.assembler = Assembler::new(s.rx_buffer.capacity()); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 0, ..RECV_TEMPL }]); recv!(s, time 0, Err(Error::Exhausted)); s.recv(|buffer| { assert_eq!(&buffer[..3], b"abc"); (3, ()) }).unwrap(); recv!(s, time 0, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 3, ..RECV_TEMPL })); recv!(s, time 0, Err(Error::Exhausted)); s.recv(|buffer| { assert_eq!(buffer, b"def"); (buffer.len(), ()) }).unwrap(); recv!(s, time 0, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 6, ..RECV_TEMPL })); } #[test] fn test_fill_peer_window() { let mut s = socket_established(); s.remote_mss = 6; s.send_slice(b"abcdef123456!@#$%^").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }, TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL }, TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"!@#$%^"[..], ..RECV_TEMPL }]); } #[test] fn test_announce_window_after_read() { let mut s = socket_established(); s.rx_buffer = SocketBuffer::new(vec![0; 6]); s.assembler = Assembler::new(s.rx_buffer.capacity()); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abc"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 3), window_len: 3, ..RECV_TEMPL }]); // Test that `dispatch` updates `remote_last_win` assert_eq!(s.remote_last_win, s.rx_buffer.window() as u16); s.recv(|buffer| { (buffer.len(), ()) }).unwrap(); assert!(s.window_to_update()); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 3), window_len: 6, ..RECV_TEMPL }]); assert_eq!(s.remote_last_win, s.rx_buffer.window() as u16); // Provoke immediate ACK to test that `process` updates `remote_last_win` send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 6, ack_number: Some(LOCAL_SEQ + 1), payload: &b"def"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 3), window_len: 6, ..RECV_TEMPL }))); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 3, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abc"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 9), window_len: 0, ..RECV_TEMPL }))); assert_eq!(s.remote_last_win, s.rx_buffer.window() as u16); s.recv(|buffer| { (buffer.len(), ()) }).unwrap(); assert!(s.window_to_update()); } // =========================================================================================// // Tests for timeouts. // =========================================================================================// #[test] fn test_listen_timeout() { let mut s = socket_listen(); s.set_timeout(Some(Duration::from_millis(100))); assert_eq!(s.poll_at(), None); } #[test] fn test_connect_timeout() { let mut s = socket(); s.local_seq_no = LOCAL_SEQ; s.connect(REMOTE_END, LOCAL_END.port).unwrap(); s.set_timeout(Some(Duration::from_millis(100))); recv!(s, time 150, Ok(TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: None, max_seg_size: Some(BASE_MSS), ..RECV_TEMPL })); assert_eq!(s.state, State::SynSent); assert_eq!(s.poll_at(), Some(Instant::from_millis(250))); recv!(s, time 250, Ok(TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1, ack_number: Some(TcpSeqNumber(0)), ..RECV_TEMPL })); assert_eq!(s.state, State::Closed); } #[test] fn test_established_timeout() { let mut s = socket_established(); s.set_timeout(Some(Duration::from_millis(200))); recv!(s, time 250, Err(Error::Exhausted)); assert_eq!(s.poll_at(), Some(Instant::from_millis(450))); s.send_slice(b"abcdef").unwrap(); assert_eq!(s.poll_at(), Some(Instant::from_millis(0))); recv!(s, time 255, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); assert_eq!(s.poll_at(), Some(Instant::from_millis(355))); recv!(s, time 355, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); assert_eq!(s.poll_at(), Some(Instant::from_millis(455))); recv!(s, time 500, Ok(TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL })); assert_eq!(s.state, State::Closed); } #[test] fn test_established_keep_alive_timeout() { let mut s = socket_established(); s.set_keep_alive(Some(Duration::from_millis(50))); s.set_timeout(Some(Duration::from_millis(100))); recv!(s, time 100, Ok(TcpRepr { seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), payload: &[0], ..RECV_TEMPL })); recv!(s, time 100, Err(Error::Exhausted)); assert_eq!(s.poll_at(), Some(Instant::from_millis(150))); send!(s, time 105, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.poll_at(), Some(Instant::from_millis(155))); recv!(s, time 155, Ok(TcpRepr { seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), payload: &[0], ..RECV_TEMPL })); recv!(s, time 155, Err(Error::Exhausted)); assert_eq!(s.poll_at(), Some(Instant::from_millis(205))); recv!(s, time 200, Err(Error::Exhausted)); recv!(s, time 205, Ok(TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL })); recv!(s, time 205, Err(Error::Exhausted)); assert_eq!(s.state, State::Closed); } #[test] fn test_fin_wait_1_timeout() { let mut s = socket_fin_wait_1(); s.set_timeout(Some(Duration::from_millis(200))); recv!(s, time 100, Ok(TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL })); assert_eq!(s.poll_at(), Some(Instant::from_millis(200))); recv!(s, time 400, Ok(TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL })); assert_eq!(s.state, State::Closed); } #[test] fn test_last_ack_timeout() { let mut s = socket_last_ack(); s.set_timeout(Some(Duration::from_millis(200))); recv!(s, time 100, Ok(TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL })); assert_eq!(s.poll_at(), Some(Instant::from_millis(200))); recv!(s, time 400, Ok(TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL })); assert_eq!(s.state, State::Closed); } #[test] fn test_closed_timeout() { let mut s = socket_established(); s.set_timeout(Some(Duration::from_millis(200))); s.remote_last_ts = Some(Instant::from_millis(100)); s.abort(); assert_eq!(s.poll_at(), Some(Instant::from_millis(0))); recv!(s, time 100, Ok(TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL })); assert_eq!(s.poll_at(), None); } // =========================================================================================// // Tests for keep-alive. // =========================================================================================// #[test] fn test_responds_to_keep_alive() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }))); } #[test] fn test_sends_keep_alive() { let mut s = socket_established(); s.set_keep_alive(Some(Duration::from_millis(100))); // drain the forced keep-alive packet assert_eq!(s.poll_at(), Some(Instant::from_millis(0))); recv!(s, time 0, Ok(TcpRepr { seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), payload: &[0], ..RECV_TEMPL })); assert_eq!(s.poll_at(), Some(Instant::from_millis(100))); recv!(s, time 95, Err(Error::Exhausted)); recv!(s, time 100, Ok(TcpRepr { seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), payload: &[0], ..RECV_TEMPL })); assert_eq!(s.poll_at(), Some(Instant::from_millis(200))); recv!(s, time 195, Err(Error::Exhausted)); recv!(s, time 200, Ok(TcpRepr { seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), payload: &[0], ..RECV_TEMPL })); send!(s, time 250, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.poll_at(), Some(Instant::from_millis(350))); recv!(s, time 345, Err(Error::Exhausted)); recv!(s, time 350, Ok(TcpRepr { seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), payload: &b"\x00"[..], ..RECV_TEMPL })); } // =========================================================================================// // Tests for time-to-live configuration. // =========================================================================================// #[test] fn test_set_hop_limit() { let mut s = socket_syn_received(); let mut caps = DeviceCapabilities::default(); caps.max_transmission_unit = 1520; s.set_hop_limit(Some(0x2a)); assert_eq!(s.dispatch(Instant::from_millis(0), &caps, |(ip_repr, _)| { assert_eq!(ip_repr.hop_limit(), 0x2a); Ok(()) }), Ok(())); } #[test] #[should_panic(expected = "the time-to-live value of a packet must not be zero")] fn test_set_hop_limit_zero() { let mut s = socket_syn_received(); s.set_hop_limit(Some(0)); } // =========================================================================================// // Tests for reassembly. // =========================================================================================// #[test] fn test_out_of_order() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 3, ack_number: Some(LOCAL_SEQ + 1), payload: &b"def"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }))); s.recv(|buffer| { assert_eq!(buffer, b""); (buffer.len(), ()) }).unwrap(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }, Ok(Some(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }))); s.recv(|buffer| { assert_eq!(buffer, b"abcdef"); (buffer.len(), ()) }).unwrap(); } #[test] fn test_buffer_wraparound_rx() { let mut s = socket_established(); s.rx_buffer = SocketBuffer::new(vec![0; 6]); s.assembler = Assembler::new(s.rx_buffer.capacity()); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abc"[..], ..SEND_TEMPL }); s.recv(|buffer| { assert_eq!(buffer, b"abc"); (buffer.len(), ()) }).unwrap(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 3, ack_number: Some(LOCAL_SEQ + 1), payload: &b"defghi"[..], ..SEND_TEMPL }); let mut data = [0; 6]; assert_eq!(s.recv_slice(&mut data[..]), Ok(6)); assert_eq!(data, &b"defghi"[..]); } #[test] fn test_buffer_wraparound_tx() { let mut s = socket_established(); s.tx_buffer = SocketBuffer::new(vec![0; 6]); assert_eq!(s.send_slice(b"abc"), Ok(3)); recv!(s, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abc"[..], ..RECV_TEMPL })); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 3), ..SEND_TEMPL }); assert_eq!(s.send_slice(b"defghi"), Ok(6)); recv!(s, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 3, ack_number: Some(REMOTE_SEQ + 1), payload: &b"def"[..], ..RECV_TEMPL })); // "defghi" not contiguous in tx buffer recv!(s, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 3 + 3, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ghi"[..], ..RECV_TEMPL })); } // =========================================================================================// // Tests for packet filtering. // =========================================================================================// #[test] fn test_doesnt_accept_wrong_port() { let mut s = socket_established(); s.rx_buffer = SocketBuffer::new(vec![0; 6]); s.assembler = Assembler::new(s.rx_buffer.capacity()); let tcp_repr = TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), dst_port: LOCAL_PORT + 1, ..SEND_TEMPL }; assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr)); let tcp_repr = TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), src_port: REMOTE_PORT + 1, ..SEND_TEMPL }; assert!(!s.accepts(&SEND_IP_TEMPL, &tcp_repr)); } #[test] fn test_doesnt_accept_wrong_ip() { let s = socket_established(); let tcp_repr = TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }; let ip_repr = IpRepr::Unspecified { src_addr: MOCK_IP_ADDR_2, dst_addr: MOCK_IP_ADDR_1, protocol: IpProtocol::Tcp, payload_len: tcp_repr.buffer_len(), hop_limit: 64 }; assert!(s.accepts(&ip_repr, &tcp_repr)); let ip_repr_wrong_src = IpRepr::Unspecified { src_addr: MOCK_IP_ADDR_3, dst_addr: MOCK_IP_ADDR_1, protocol: IpProtocol::Tcp, payload_len: tcp_repr.buffer_len(), hop_limit: 64 }; assert!(!s.accepts(&ip_repr_wrong_src, &tcp_repr)); let ip_repr_wrong_dst = IpRepr::Unspecified { src_addr: MOCK_IP_ADDR_2, dst_addr: MOCK_IP_ADDR_3, protocol: IpProtocol::Tcp, payload_len: tcp_repr.buffer_len(), hop_limit: 64 }; assert!(!s.accepts(&ip_repr_wrong_dst, &tcp_repr)); } // =========================================================================================// // Timer tests // =========================================================================================// #[test] fn test_timer_retransmit() { let mut r = Timer::default(); assert_eq!(r.should_retransmit(Instant::from_secs(1)), None); r.set_for_retransmit(Instant::from_millis(1000)); assert_eq!(r.should_retransmit(Instant::from_millis(1000)), None); assert_eq!(r.should_retransmit(Instant::from_millis(1050)), None); assert_eq!(r.should_retransmit(Instant::from_millis(1101)), Some(Duration::from_millis(101))); r.set_for_retransmit(Instant::from_millis(1101)); assert_eq!(r.should_retransmit(Instant::from_millis(1101)), None); assert_eq!(r.should_retransmit(Instant::from_millis(1150)), None); assert_eq!(r.should_retransmit(Instant::from_millis(1200)), None); assert_eq!(r.should_retransmit(Instant::from_millis(1301)), Some(Duration::from_millis(300))); r.set_for_idle(Instant::from_millis(1301), None); assert_eq!(r.should_retransmit(Instant::from_millis(1350)), None); } }