use managed::{Managed, ManagedSlice}; use {Error, Result}; use phy::Device; use wire::{EthernetAddress, EthernetProtocol, EthernetFrame}; use wire::{ArpPacket, ArpRepr, ArpOperation}; use wire::{Ipv4Packet, Ipv4Repr}; use wire::{Icmpv4Packet, Icmpv4Repr, Icmpv4DstUnreachable}; use wire::{IpAddress, IpProtocol, IpRepr}; use wire::{TcpPacket, TcpRepr, TcpControl}; use socket::{Socket, SocketSet, RawSocket, TcpSocket, UdpSocket, AsSocket, IpPayload}; use super::ArpCache; /// An Ethernet network interface. /// /// The network interface logically owns a number of other data structures; to avoid /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be /// a `&mut [T]`, or `Vec` if a heap is available. pub struct Interface<'a, 'b, 'c, DeviceT: Device + 'a> { device: Managed<'a, DeviceT>, arp_cache: Managed<'b, ArpCache>, hardware_addr: EthernetAddress, protocol_addrs: ManagedSlice<'c, IpAddress>, } enum Response<'a> { Nop, Arp(ArpRepr), Icmpv4(Ipv4Repr, Icmpv4Repr<'a>), Tcp((IpRepr, TcpRepr<'a>)), Payload(IpRepr, &'a IpPayload) } impl<'a, 'b, 'c, DeviceT: Device + 'a> Interface<'a, 'b, 'c, DeviceT> { /// Create a network interface using the provided network device. /// /// # Panics /// See the restrictions on [set_hardware_addr](#method.set_hardware_addr) /// and [set_protocol_addrs](#method.set_protocol_addrs) functions. pub fn new (device: DeviceMT, arp_cache: ArpCacheMT, hardware_addr: EthernetAddress, protocol_addrs: ProtocolAddrsMT) -> Interface<'a, 'b, 'c, DeviceT> where DeviceMT: Into>, ArpCacheMT: Into>, ProtocolAddrsMT: Into>, { let device = device.into(); let arp_cache = arp_cache.into(); let protocol_addrs = protocol_addrs.into(); Self::check_hardware_addr(&hardware_addr); Self::check_protocol_addrs(&protocol_addrs); Interface { device: device, arp_cache: arp_cache, hardware_addr: hardware_addr, protocol_addrs: protocol_addrs, } } fn check_hardware_addr(addr: &EthernetAddress) { if addr.is_multicast() { panic!("hardware address {} is not unicast", addr) } } /// Get the hardware address of the interface. pub fn hardware_addr(&self) -> EthernetAddress { self.hardware_addr } /// Set the hardware address of the interface. /// /// # Panics /// This function panics if the address is not unicast. pub fn set_hardware_addr(&mut self, addr: EthernetAddress) { self.hardware_addr = addr; Self::check_hardware_addr(&self.hardware_addr); } fn check_protocol_addrs(addrs: &[IpAddress]) { for addr in addrs { if !addr.is_unicast() { panic!("protocol address {} is not unicast", addr) } } } /// Get the protocol addresses of the interface. pub fn protocol_addrs(&self) -> &[IpAddress] { self.protocol_addrs.as_ref() } /// Update the protocol addresses of the interface. /// /// # Panics /// This function panics if any of the addresses is not unicast. pub fn update_protocol_addrs)>(&mut self, f: F) { f(&mut self.protocol_addrs); Self::check_protocol_addrs(&self.protocol_addrs) } /// Check whether the interface has the given protocol address assigned. pub fn has_protocol_addr>(&self, addr: T) -> bool { let addr = addr.into(); self.protocol_addrs.iter().any(|&probe| probe == addr) } /// Receive and process a packet, if available, and then transmit a packet, if necessary, /// handling the given set of sockets. /// /// The timestamp is a monotonically increasing number of milliseconds. pub fn poll(&mut self, sockets: &mut SocketSet, timestamp: u64) -> Result<()> { // First, transmit any outgoing packets. loop { if self.dispatch(sockets, timestamp)? { break } } // Now, receive any incoming packets. let rx_buffer = self.device.receive(timestamp)?; let eth_frame = EthernetFrame::new_checked(&rx_buffer)?; // Ignore any packets not directed to our hardware address. if !eth_frame.dst_addr().is_broadcast() && eth_frame.dst_addr() != self.hardware_addr { return Ok(()) } let response = match eth_frame.ethertype() { EthernetProtocol::Arp => self.process_arp(ð_frame)?, EthernetProtocol::Ipv4 => self.process_ipv4(sockets, timestamp, ð_frame)?, // Drop all other traffic. _ => return Err(Error::Unrecognized), }; self.dispatch_response(timestamp, response) } // Snoop all ARP traffic, and respond to ARP packets directed at us. fn process_arp<'frame, T: AsRef<[u8]>> (&mut self, eth_frame: &EthernetFrame<&'frame T>) -> Result> { let arp_packet = ArpPacket::new_checked(eth_frame.payload())?; let arp_repr = ArpRepr::parse(&arp_packet)?; match arp_repr { // Respond to ARP requests aimed at us, and fill the ARP cache from all ARP // requests and replies, to minimize the chance that we have to perform // an explicit ARP request. ArpRepr::EthernetIpv4 { operation, source_hardware_addr, source_protocol_addr, target_protocol_addr, .. } => { if source_protocol_addr.is_unicast() && source_hardware_addr.is_unicast() { self.arp_cache.fill(&source_protocol_addr.into(), &source_hardware_addr); } else { // Discard packets with non-unicast source addresses. net_debug!("non-unicast source in {}", arp_repr); return Err(Error::Malformed) } if operation == ArpOperation::Request && self.has_protocol_addr(target_protocol_addr) { Ok(Response::Arp(ArpRepr::EthernetIpv4 { operation: ArpOperation::Reply, source_hardware_addr: self.hardware_addr, source_protocol_addr: target_protocol_addr, target_hardware_addr: source_hardware_addr, target_protocol_addr: source_protocol_addr })) } else { Ok(Response::Nop) } } _ => Err(Error::Unrecognized) } } fn process_ipv4<'frame, T: AsRef<[u8]>> (&mut self, sockets: &mut SocketSet, timestamp: u64, eth_frame: &EthernetFrame<&'frame T>) -> Result> { let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload())?; let ipv4_repr = Ipv4Repr::parse(&ipv4_packet)?; if !ipv4_repr.src_addr.is_unicast() { // Discard packets with non-unicast source addresses. net_debug!("non-unicast source in {}", ipv4_repr); return Err(Error::Malformed) } if eth_frame.src_addr().is_unicast() { // Fill the ARP cache from IP header of unicast frames. self.arp_cache.fill(&IpAddress::Ipv4(ipv4_repr.src_addr), ð_frame.src_addr()); } // Pass every IP packet to all raw sockets we have registered. let mut handled_by_raw_socket = false; for raw_socket in sockets.iter_mut().filter_map( >::try_as_socket) { match raw_socket.process(timestamp, &IpRepr::Ipv4(ipv4_repr), ipv4_packet.payload()) { // The packet is valid and handled by socket. Ok(()) => handled_by_raw_socket = true, // The packet isn't addressed to the socket, or cannot be accepted by it. Err(Error::Rejected) | Err(Error::Exhausted) => (), // Raw sockets either accept or reject packets, not parse them. _ => unreachable!(), } } if !self.has_protocol_addr(ipv4_repr.dst_addr) { // Ignore IP packets not directed at us. return Ok(Response::Nop) } match ipv4_repr.protocol { IpProtocol::Icmp => Self::process_icmpv4(ipv4_repr, ipv4_packet.payload()), IpProtocol::Udp => Self::process_udpv4(sockets, timestamp, ipv4_repr, ipv4_packet.payload()), IpProtocol::Tcp => Self::process_tcp(sockets, timestamp, ipv4_repr.into(), ipv4_packet.payload()), _ if handled_by_raw_socket => Ok(Response::Nop), _ => { let icmp_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::ProtoUnreachable, header: ipv4_repr, data: &ipv4_packet.payload()[0..8] }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_reply_repr.buffer_len() }; Ok(Response::Icmpv4(ipv4_reply_repr, icmp_reply_repr)) } } } fn process_icmpv4<'frame>(ipv4_repr: Ipv4Repr, ip_payload: &'frame [u8]) -> Result> { let icmp_packet = Icmpv4Packet::new_checked(ip_payload)?; let icmp_repr = Icmpv4Repr::parse(&icmp_packet)?; match icmp_repr { // Respond to echo requests. Icmpv4Repr::EchoRequest { ident, seq_no, data } => { let icmp_reply_repr = Icmpv4Repr::EchoReply { ident: ident, seq_no: seq_no, data: data }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_reply_repr.buffer_len() }; Ok(Response::Icmpv4(ipv4_reply_repr, icmp_reply_repr)) } // Ignore any echo replies. Icmpv4Repr::EchoReply { .. } => Ok(Response::Nop), // FIXME: do something correct here? _ => Err(Error::Unrecognized), } } fn process_udpv4<'frame>(sockets: &mut SocketSet, timestamp: u64, ipv4_repr: Ipv4Repr, ip_payload: &'frame [u8]) -> Result> { let ip_repr = IpRepr::Ipv4(ipv4_repr); for udp_socket in sockets.iter_mut().filter_map( >::try_as_socket) { match udp_socket.process(timestamp, &ip_repr, ip_payload) { // The packet is valid and handled by socket. Ok(()) => return Ok(Response::Nop), // The packet isn't addressed to the socket. Err(Error::Rejected) => continue, // The packet is malformed, or addressed to the socket but cannot be accepted. Err(e) => return Err(e) } } // The packet wasn't handled by a socket, send an ICMP port unreachable packet. let icmp_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: ipv4_repr, data: &ip_payload[0..8] }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_reply_repr.buffer_len() }; Ok(Response::Icmpv4(ipv4_reply_repr, icmp_reply_repr)) } fn process_tcp<'frame>(sockets: &mut SocketSet, timestamp: u64, ip_repr: IpRepr, ip_payload: &'frame [u8]) -> Result> { for tcp_socket in sockets.iter_mut().filter_map( >::try_as_socket) { match tcp_socket.process(timestamp, &ip_repr, ip_payload) { // The packet is valid and handled by socket. Ok(reply) => return Ok(reply.map_or(Response::Nop, Response::Tcp)), // The packet isn't addressed to the socket. // Send RST only if no other socket accepts the packet. Err(Error::Rejected) => continue, // The packet is malformed, or addressed to the socket but cannot be accepted. Err(e) => return Err(e) } } // The packet wasn't handled by a socket, send a TCP RST packet. let tcp_packet = TcpPacket::new_checked(ip_payload)?; let tcp_repr = TcpRepr::parse(&tcp_packet, &ip_repr.src_addr(), &ip_repr.dst_addr())?; if tcp_repr.control == TcpControl::Rst { // Never reply to a TCP RST packet with another TCP RST packet. Ok(Response::Nop) } else { Ok(Response::Tcp(TcpSocket::rst_reply(&ip_repr, &tcp_repr))) } } fn dispatch(&mut self, sockets: &mut SocketSet, timestamp: u64) -> Result { let mut limits = self.device.limits(); limits.max_transmission_unit -= EthernetFrame::<&[u8]>::header_len(); let mut nothing_to_transmit = true; for socket in sockets.iter_mut() { let result = socket.dispatch(timestamp, &limits, |repr, payload| { self.dispatch_response(timestamp, Response::Payload(repr.clone(), payload)) }); match result { Ok(()) => { nothing_to_transmit = false; break } Err(Error::Exhausted) => continue, Err(e) => return Err(e) } } Ok(nothing_to_transmit) } fn dispatch_response(&mut self, timestamp: u64, response: Response) -> Result<()> { macro_rules! emit_packet { (Ethernet, $buffer_len:expr, |$frame:ident| $code:stmt) => ({ let tx_len = EthernetFrame::<&[u8]>::buffer_len($buffer_len); let mut tx_buffer = self.device.transmit(timestamp, tx_len)?; debug_assert!(tx_buffer.as_ref().len() == tx_len); let mut $frame = EthernetFrame::new(&mut tx_buffer); $frame.set_src_addr(self.hardware_addr); $code Ok(()) }); (Ip, $ip_repr:expr, |$payload:ident| $code:stmt) => ({ let ip_repr = $ip_repr.lower(&self.protocol_addrs)?; match self.arp_cache.lookup(&ip_repr.dst_addr()) { None => { match (ip_repr.src_addr(), ip_repr.dst_addr()) { (IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => { net_debug!("address {} not in ARP cache, sending request", dst_addr); let arp_repr = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: self.hardware_addr, source_protocol_addr: src_addr, target_hardware_addr: EthernetAddress([0xff; 6]), target_protocol_addr: dst_addr, }; emit_packet!(Ethernet, arp_repr.buffer_len(), |frame| { frame.set_dst_addr(EthernetAddress([0xff; 6])); frame.set_ethertype(EthernetProtocol::Arp); arp_repr.emit(&mut ArpPacket::new(frame.payload_mut())); }) } _ => unreachable!() } }, Some(dst_hardware_addr) => { emit_packet!(Ethernet, ip_repr.total_len(), |frame| { frame.set_dst_addr(dst_hardware_addr); match ip_repr { IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4), _ => unreachable!() } ip_repr.emit(frame.payload_mut()); let $payload = &mut frame.payload_mut()[ip_repr.buffer_len()..]; $code }) } } }) } match response { Response::Arp(arp_repr) => { let dst_hardware_addr = match arp_repr { ArpRepr::EthernetIpv4 { target_hardware_addr, .. } => target_hardware_addr, _ => unreachable!() }; emit_packet!(Ethernet, arp_repr.buffer_len(), |frame| { frame.set_dst_addr(dst_hardware_addr); frame.set_ethertype(EthernetProtocol::Arp); let mut packet = ArpPacket::new(frame.payload_mut()); arp_repr.emit(&mut packet); }) }, Response::Icmpv4(ipv4_repr, icmpv4_repr) => { emit_packet!(Ip, IpRepr::Ipv4(ipv4_repr), |payload| { icmpv4_repr.emit(&mut Icmpv4Packet::new(payload)); }) } Response::Tcp((ip_repr, tcp_repr)) => { emit_packet!(Ip, ip_repr, |payload| { tcp_repr.emit(&mut TcpPacket::new(payload), &ip_repr.src_addr(), &ip_repr.dst_addr()); }) } Response::Payload(ip_repr, ip_payload) => { let ip_repr = ip_repr.lower(&self.protocol_addrs)?; emit_packet!(Ip, ip_repr, |payload| { ip_payload.emit(&ip_repr, payload); }) } Response::Nop => Ok(()) } } }