// Heads up! Before working on this file you should read, at least, RFC 793 and // the parts of RFC 1122 that discuss TCP. use core::fmt; use managed::Managed; use {Error, Result}; use phy::DeviceLimits; use wire::{IpProtocol, IpAddress, IpEndpoint}; use wire::{TcpSeqNumber, TcpPacket, TcpRepr, TcpControl}; use socket::{Socket, IpRepr, IpPayload}; /// A TCP stream ring buffer. #[derive(Debug)] pub struct SocketBuffer<'a> { storage: Managed<'a, [u8]>, read_at: usize, length: usize } impl<'a> SocketBuffer<'a> { /// Create a packet buffer with the given storage. pub fn new(storage: T) -> SocketBuffer<'a> where T: Into> { SocketBuffer { storage: storage.into(), read_at: 0, length: 0 } } fn clear(&mut self) { self.read_at = 0; self.length = 0; } fn capacity(&self) -> usize { self.storage.len() } fn len(&self) -> usize { self.length } fn window(&self) -> usize { self.capacity() - self.len() } fn empty(&self) -> bool { self.len() == 0 } fn full(&self) -> bool { self.window() == 0 } fn clamp_writer(&self, mut size: usize) -> (usize, usize) { let write_at = (self.read_at + self.length) % self.storage.len(); // We can't enqueue more than there is free space. let free = self.storage.len() - self.length; if size > free { size = free } // We can't contiguously enqueue past the beginning of the storage. let until_end = self.storage.len() - write_at; if size > until_end { size = until_end } (write_at, size) } fn enqueue(&mut self, size: usize) -> &mut [u8] { let (write_at, size) = self.clamp_writer(size); self.length += size; &mut self.storage[write_at..write_at + size] } fn enqueue_slice(&mut self, data: &[u8]) { let data = { let mut dest = self.enqueue(data.len()); let (data, rest) = data.split_at(dest.len()); dest.copy_from_slice(data); rest }; // Retry, in case we had a wraparound. let mut dest = self.enqueue(data.len()); let (data, _) = data.split_at(dest.len()); dest.copy_from_slice(data); } fn clamp_reader(&self, offset: usize, mut size: usize) -> (usize, usize) { let read_at = (self.read_at + offset) % self.storage.len(); // We can't read past the end of the queued data. if offset > self.length { return (read_at, 0) } // We can't dequeue more than was queued. let clamped_length = self.length - offset; if size > clamped_length { size = clamped_length } // We can't contiguously dequeue past the end of the storage. let until_end = self.storage.len() - read_at; if size > until_end { size = until_end } (read_at, size) } fn dequeue(&mut self, size: usize) -> &[u8] { let (read_at, size) = self.clamp_reader(0, size); self.read_at = (self.read_at + size) % self.storage.len(); self.length -= size; &self.storage[read_at..read_at + size] } fn peek(&self, offset: usize, size: usize) -> &[u8] { let (read_at, size) = self.clamp_reader(offset, size); &self.storage[read_at..read_at + size] } fn advance(&mut self, size: usize) { if size > self.length { panic!("advancing {} octets into free space", size - self.length) } self.read_at = (self.read_at + size) % self.storage.len(); self.length -= size; } } impl<'a> Into> for Managed<'a, [u8]> { fn into(self) -> SocketBuffer<'a> { SocketBuffer::new(self) } } /// The state of a TCP socket, according to [RFC 793][rfc793]. /// [rfc793]: https://tools.ietf.org/html/rfc793 #[derive(Debug, PartialEq, Eq, Clone, Copy)] pub enum State { Closed, Listen, SynSent, SynReceived, Established, FinWait1, FinWait2, CloseWait, Closing, LastAck, TimeWait } impl fmt::Display for State { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { &State::Closed => write!(f, "CLOSED"), &State::Listen => write!(f, "LISTEN"), &State::SynSent => write!(f, "SYN-SENT"), &State::SynReceived => write!(f, "SYN-RECEIVED"), &State::Established => write!(f, "ESTABLISHED"), &State::FinWait1 => write!(f, "FIN-WAIT-1"), &State::FinWait2 => write!(f, "FIN-WAIT-2"), &State::CloseWait => write!(f, "CLOSE-WAIT"), &State::Closing => write!(f, "CLOSING"), &State::LastAck => write!(f, "LAST-ACK"), &State::TimeWait => write!(f, "TIME-WAIT") } } } #[derive(Debug, PartialEq)] struct Retransmit { resend_at: u64, delay: u64 } impl Retransmit { fn new() -> Retransmit { Retransmit { resend_at: 0, delay: 0 } } fn reset(&mut self) { self.resend_at = 0; self.delay = 0; } fn may_send_old(&mut self, timestamp: u64) -> bool { if self.delay == 0 { // We haven't transmitted anything yet. false } else if timestamp < self.resend_at { // We may not retransmit yet. false } else { // We may retransmit! true } } fn may_send_new(&mut self, timestamp: u64) -> bool { if self.delay == 0 { // We've something new to transmit, do it unconditionally. self.delay = 100; // ms self.resend_at = timestamp + self.delay; true } else { false } } fn commit(&mut self, timestamp: u64) -> Option { if self.delay == 0 { self.delay = 100; // ms self.resend_at = timestamp + self.delay; None } else if timestamp >= self.resend_at { let actual_delay = (timestamp - self.resend_at) + self.delay; self.resend_at = timestamp + self.delay; self.delay *= 2; Some(actual_delay) } else { None } } } /// A Transmission Control Protocol socket. /// /// A TCP socket may passively listen for connections or actively connect to another endpoint. /// Note that, for listening sockets, there is no "backlog"; to be able to simultaneously /// accept several connections, as many sockets must be allocated, or any new connection /// attempts will be reset. #[derive(Debug)] pub struct TcpSocket<'a> { debug_id: usize, /// State of the socket. state: State, /// Address passed to listen(). Listen address is set when listen() is called and /// used every time the socket is reset back to the LISTEN state. listen_address: IpAddress, /// Current local endpoint. This is used for both filtering the incoming packets and /// setting the source address. When listening or initiating connection on/from /// an unspecified address, this field is updated with the chosen source address before /// any packets are sent. local_endpoint: IpEndpoint, /// Current remote endpoint. This is used for both filtering the incoming packets and /// setting the destination address. If the remote endpoint is unspecified, it means that /// aborting the connection will not send an RST, and, in TIME-WAIT state, will not /// send an ACK. remote_endpoint: IpEndpoint, /// The sequence number corresponding to the beginning of the transmit buffer. /// I.e. an ACK(local_seq_no+n) packet removes n bytes from the transmit buffer. local_seq_no: TcpSeqNumber, /// The sequence number corresponding to the beginning of the receive buffer. /// I.e. userspace reading n bytes adds n to remote_seq_no. remote_seq_no: TcpSeqNumber, /// The last sequence number sent. /// I.e. in an idle socket, local_seq_no+tx_buffer.len(). remote_last_seq: TcpSeqNumber, /// The last acknowledgement number sent. /// I.e. in an idle socket, remote_seq_no+rx_buffer.len(). remote_last_ack: TcpSeqNumber, /// The speculative remote window size. /// I.e. the actual remote window size minus the count of in-flight octets. remote_win_len: usize, /// The maximum number of data octets that the remote side may receive. remote_mss: usize, /// The retransmit timeout. retransmit: Retransmit, /// The TIME-WAIT timeout. time_wait_since: u64, rx_buffer: SocketBuffer<'a>, tx_buffer: SocketBuffer<'a>, } const DEFAULT_MSS: usize = 536; const TIME_WAIT_TIMEOUT: u64 = 10_000; impl<'a> TcpSocket<'a> { /// Create a socket using the given buffers. pub fn new(rx_buffer: T, tx_buffer: T) -> Socket<'a, 'static> where T: Into> { let rx_buffer = rx_buffer.into(); if rx_buffer.capacity() > ::max_value() as usize { panic!("buffers larger than {} require window scaling, which is not implemented", ::max_value()) } Socket::Tcp(TcpSocket { debug_id: 0, state: State::Closed, listen_address: IpAddress::default(), local_endpoint: IpEndpoint::default(), remote_endpoint: IpEndpoint::default(), local_seq_no: TcpSeqNumber::default(), remote_seq_no: TcpSeqNumber::default(), remote_last_seq: TcpSeqNumber::default(), remote_last_ack: TcpSeqNumber::default(), remote_win_len: 0, remote_mss: DEFAULT_MSS, retransmit: Retransmit::new(), time_wait_since: 0, tx_buffer: tx_buffer.into(), rx_buffer: rx_buffer.into(), }) } /// Return the debug identifier. #[inline] pub fn debug_id(&self) -> usize { self.debug_id } /// Set the debug identifier. /// /// The debug identifier is a number printed in socket trace messages. /// It could as well be used by the user code. pub fn set_debug_id(&mut self, id: usize) { self.debug_id = id } /// Return the local endpoint. #[inline] pub fn local_endpoint(&self) -> IpEndpoint { self.local_endpoint } /// Return the remote endpoint. #[inline] pub fn remote_endpoint(&self) -> IpEndpoint { self.remote_endpoint } /// Return the connection state, in terms of the TCP state machine. #[inline] pub fn state(&self) -> State { self.state } fn reset(&mut self) { self.state = State::Closed; self.listen_address = IpAddress::default(); self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); self.local_seq_no = TcpSeqNumber::default(); self.remote_seq_no = TcpSeqNumber::default(); self.remote_last_seq = TcpSeqNumber::default(); self.remote_last_ack = TcpSeqNumber::default(); self.remote_win_len = 0; self.remote_mss = DEFAULT_MSS; self.retransmit.reset(); self.tx_buffer.clear(); self.rx_buffer.clear(); } /// Start listening on the given endpoint. /// /// This function returns `Err(Error::Illegal)` if the socket was already open /// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)` /// if the port in the given endpoint is zero. pub fn listen(&mut self, local_endpoint: T) -> Result<()> where T: Into { let local_endpoint = local_endpoint.into(); if local_endpoint.port == 0 { return Err(Error::Unaddressable) } if self.is_open() { return Err(Error::Illegal) } self.reset(); self.listen_address = local_endpoint.addr; self.local_endpoint = local_endpoint; self.remote_endpoint = IpEndpoint::default(); self.set_state(State::Listen); Ok(()) } /// Connect to a given endpoint. /// /// The local port must be provided explicitly. Assuming `fn get_ephemeral_port() -> u16` /// allocates a port between 49152 and 65535, a connection may be established as follows: /// /// ```rust,ignore /// socket.connect((IpAddress::v4(10, 0, 0, 1), 80), get_ephemeral_port()) /// ``` /// /// The local address may optionally be provided. /// /// This function returns an error if the socket was open; see [is_open](#method.is_open). /// It also returns an error if the local or remote port is zero, or if the remote address /// is unspecified. pub fn connect(&mut self, remote_endpoint: T, local_endpoint: U) -> Result<()> where T: Into, U: Into { let remote_endpoint = remote_endpoint.into(); let local_endpoint = local_endpoint.into(); if self.is_open() { return Err(Error::Illegal) } if !remote_endpoint.is_specified() { return Err(Error::Unaddressable) } if local_endpoint.port == 0 { return Err(Error::Unaddressable) } // If local address is not provided, use an unspecified address but a specified protocol. // This lets us lower IpRepr later to determine IP header size and calculate MSS, // but without committing to a specific address right away. let local_addr = match remote_endpoint.addr { IpAddress::Unspecified => return Err(Error::Unaddressable), _ => remote_endpoint.addr.to_unspecified(), }; let local_endpoint = IpEndpoint { addr: local_addr, ..local_endpoint }; // Carry over the local sequence number. let local_seq_no = self.local_seq_no; self.reset(); self.local_endpoint = local_endpoint; self.remote_endpoint = remote_endpoint; self.local_seq_no = local_seq_no; self.set_state(State::SynSent); Ok(()) } /// Close the transmit half of the full-duplex connection. /// /// Note that there is no corresponding function for the receive half of the full-duplex /// connection; only the remote end can close it. If you no longer wish to receive any /// data and would like to reuse the socket right away, use [abort](#method.abort). pub fn close(&mut self) { match self.state { // In the LISTEN state there is no established connection. State::Listen => self.set_state(State::Closed), // In the SYN-SENT state the remote endpoint is not yet synchronized and, upon // receiving an RST, will abort the connection. State::SynSent => self.set_state(State::Closed), // In the SYN-RECEIVED, ESTABLISHED and CLOSE-WAIT states the transmit half // of the connection is open, and needs to be explicitly closed with a FIN. State::SynReceived | State::Established => { self.retransmit.reset(); self.set_state(State::FinWait1); } State::CloseWait => { self.retransmit.reset(); self.set_state(State::LastAck); } // In the FIN-WAIT-1, FIN-WAIT-2, CLOSING, LAST-ACK, TIME-WAIT and CLOSED states, // the transmit half of the connection is already closed, and no further // action is needed. State::FinWait1 | State::FinWait2 | State::Closing | State::TimeWait | State::LastAck | State::Closed => () } } /// Aborts the connection, if any. /// /// This function instantly closes the socket. One reset packet will be sent to the remote /// endpoint. /// /// In terms of the TCP state machine, the socket may be in any state and is moved to /// the `CLOSED` state. pub fn abort(&mut self) { self.set_state(State::Closed); } /// Return whether the socket is passively listening for incoming connections. /// /// In terms of the TCP state machine, the socket must be in the `LISTEN` state. #[inline] pub fn is_listening(&self) -> bool { match self.state { State::Listen => true, _ => false } } /// Return whether the socket is open. /// /// This function returns true if the socket will process incoming or dispatch outgoing /// packets. Note that this does not mean that it is possible to send or receive data through /// the socket; for that, use [can_send](#method.can_send) or [can_recv](#method.can_recv). /// /// In terms of the TCP state machine, the socket must be in the `CLOSED` or `TIME-WAIT` state. #[inline] pub fn is_open(&self) -> bool { match self.state { State::Closed => false, State::TimeWait => false, _ => true } } /// Return whether a connection is active. /// /// This function returns true if the socket is actively exchanging packets with /// a remote endpoint. Note that this does not mean that it is possible to send or receive /// data through the socket; for that, use [can_send](#method.can_send) or /// [can_recv](#method.can_recv). /// /// If a connection is established, [abort](#method.close) will send a reset to /// the remote endpoint. /// /// In terms of the TCP state machine, the socket must be in the `CLOSED`, `TIME-WAIT`, /// or `LISTEN` state. #[inline] pub fn is_active(&self) -> bool { match self.state { State::Closed => false, State::TimeWait => false, State::Listen => false, _ => true } } /// Return whether the transmit half of the full-duplex connection is open. /// /// This function returns true if it's possible to send data and have it arrive /// to the remote endpoint. However, it does not make any guarantees about the state /// of the transmit buffer, and even if it returns true, [send](#method.send) may /// not be able to enqueue any octets. /// /// In terms of the TCP state machine, the socket must be in the `ESTABLISHED` or /// `CLOSE-WAIT` state. #[inline] pub fn may_send(&self) -> bool { match self.state { State::Established => true, // In CLOSE-WAIT, the remote endpoint has closed our receive half of the connection // but we still can transmit indefinitely. State::CloseWait => true, _ => false } } /// Return whether the receive half of the full-duplex connection is open. /// /// This function returns true if it's possible to receive data from the remote endpoint. /// It will return true while there is data in the receive buffer, and if there isn't, /// as long as the remote endpoint has not closed the connection. /// /// In terms of the TCP state machine, the socket must be in the `ESTABLISHED`, /// `FIN-WAIT-1`, or `FIN-WAIT-2` state, or have data in the receive buffer instead. #[inline] pub fn may_recv(&self) -> bool { match self.state { State::Established => true, // In FIN-WAIT-1/2, we have closed our transmit half of the connection but // we still can receive indefinitely. State::FinWait1 | State::FinWait2 => true, // If we have something in the receive buffer, we can receive that. _ if self.rx_buffer.len() > 0 => true, _ => false } } /// Check whether the transmit half of the full-duplex connection is open /// (see [may_send](#method.may_send), and the transmit buffer is not full. #[inline] pub fn can_send(&self) -> bool { if !self.may_send() { return false } !self.tx_buffer.full() } /// Check whether the receive half of the full-duplex connection buffer is open /// (see [may_recv](#method.may_recv), and the receive buffer is not empty. #[inline] pub fn can_recv(&self) -> bool { if !self.may_recv() { return false } !self.rx_buffer.empty() } /// Enqueue a sequence of octets to be sent, and return a pointer to it. /// /// This function may return a slice smaller than the requested size in case /// there is not enough contiguous free space in the transmit buffer, down to /// an empty slice. /// /// This function returns `Err(Error::Illegal) if the transmit half of /// the connection is not open; see [may_send](#method.may_send). pub fn send(&mut self, size: usize) -> Result<&mut [u8]> { if !self.may_send() { return Err(Error::Illegal) } #[cfg(any(test, feature = "verbose"))] let old_length = self.tx_buffer.len(); let buffer = self.tx_buffer.enqueue(size); if buffer.len() > 0 { #[cfg(any(test, feature = "verbose"))] net_trace!("[{}]{}:{}: tx buffer: enqueueing {} octets (now {})", self.debug_id, self.local_endpoint, self.remote_endpoint, buffer.len(), old_length + buffer.len()); self.retransmit.reset(); } Ok(buffer) } /// Enqueue a sequence of octets to be sent, and fill it from a slice. /// /// This function returns the amount of bytes actually enqueued, which is limited /// by the amount of free space in the transmit buffer; down to zero. /// /// See also [send](#method.send). pub fn send_slice(&mut self, data: &[u8]) -> Result { let buffer = self.send(data.len())?; let data = &data[..buffer.len()]; buffer.copy_from_slice(data); Ok(buffer.len()) } /// Dequeue a sequence of received octets, and return a pointer to it. /// /// This function may return a slice smaller than the requested size in case /// there are not enough octets queued in the receive buffer, down to /// an empty slice. /// /// This function returns `Err(Error::Illegal) if the receive half of /// the connection is not open; see [may_recv](#method.may_recv). pub fn recv(&mut self, size: usize) -> Result<&[u8]> { // We may have received some data inside the initial SYN, but until the connection // is fully open we must not dequeue any data, as it may be overwritten by e.g. // another (stale) SYN. if !self.may_recv() { return Err(Error::Illegal) } #[cfg(any(test, feature = "verbose"))] let old_length = self.rx_buffer.len(); let buffer = self.rx_buffer.dequeue(size); self.remote_seq_no += buffer.len(); if buffer.len() > 0 { #[cfg(any(test, feature = "verbose"))] net_trace!("[{}]{}:{}: rx buffer: dequeueing {} octets (now {})", self.debug_id, self.local_endpoint, self.remote_endpoint, buffer.len(), old_length - buffer.len()); } Ok(buffer) } /// Dequeue a sequence of received octets, and fill a slice from it. /// /// This function returns the amount of bytes actually dequeued, which is limited /// by the amount of free space in the transmit buffer; down to zero. /// /// See also [recv](#method.recv). pub fn recv_slice(&mut self, data: &mut [u8]) -> Result { let buffer = self.recv(data.len())?; let data = &mut data[..buffer.len()]; data.copy_from_slice(buffer); Ok(buffer.len()) } /// Peek at a sequence of received octets without removing them from /// the receive buffer, and return a pointer to it. /// /// This function otherwise behaves identically to [recv](#method.recv). pub fn peek(&mut self, size: usize) -> Result<&[u8]> { // See recv() above. if !self.may_recv() { return Err(Error::Illegal) } let buffer = self.rx_buffer.peek(0, size); if buffer.len() > 0 { #[cfg(any(test, feature = "verbose"))] net_trace!("[{}]{}:{}: rx buffer: peeking at {} octets", self.debug_id, self.local_endpoint, self.remote_endpoint, buffer.len()); } Ok(buffer) } /// Peek at a sequence of received octets without removing them from /// the receive buffer, and fill a slice from it. /// /// This function otherwise behaves identically to [recv_slice](#method.recv_slice). pub fn peek_slice(&mut self, data: &mut [u8]) -> Result { let buffer = self.peek(data.len())?; let data = &mut data[..buffer.len()]; data.copy_from_slice(buffer); Ok(buffer.len()) } fn set_state(&mut self, state: State) { if self.state != state { if self.remote_endpoint.addr.is_unspecified() { net_trace!("[{}]{}: state={}=>{}", self.debug_id, self.local_endpoint, self.state, state); } else { net_trace!("[{}]{}:{}: state={}=>{}", self.debug_id, self.local_endpoint, self.remote_endpoint, self.state, state); } } self.state = state } pub(crate) fn reply(ip_repr: &IpRepr, tcp_repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) { let tcp_reply_repr = TcpRepr { src_port: tcp_repr.dst_port, dst_port: tcp_repr.src_port, control: TcpControl::None, push: false, seq_number: TcpSeqNumber(0), ack_number: None, window_len: 0, max_seg_size: None, payload: &[] }; let ip_reply_repr = IpRepr::Unspecified { src_addr: ip_repr.dst_addr(), dst_addr: ip_repr.src_addr(), protocol: IpProtocol::Tcp, payload_len: tcp_reply_repr.buffer_len() }; (ip_reply_repr, tcp_reply_repr) } pub(crate) fn rst_reply(ip_repr: &IpRepr, tcp_repr: &TcpRepr) -> (IpRepr, TcpRepr<'static>) { debug_assert!(tcp_repr.control != TcpControl::Rst); let (ip_reply_repr, mut tcp_reply_repr) = Self::reply(ip_repr, tcp_repr); // See https://www.snellman.net/blog/archive/2016-02-01-tcp-rst/ for explanation // of why we sometimes send an RST and sometimes an RST|ACK tcp_reply_repr.control = TcpControl::Rst; tcp_reply_repr.seq_number = tcp_repr.ack_number.unwrap_or_default(); if tcp_repr.control == TcpControl::Syn { tcp_reply_repr.ack_number = Some(tcp_repr.seq_number + tcp_repr.segment_len()); } (ip_reply_repr, tcp_reply_repr) } pub(crate) fn process(&mut self, timestamp: u64, ip_repr: &IpRepr, payload: &[u8]) -> Result<()> { debug_assert!(ip_repr.protocol() == IpProtocol::Tcp); if self.state == State::Closed { return Err(Error::Rejected) } let packet = TcpPacket::new_checked(&payload[..ip_repr.payload_len()])?; let repr = TcpRepr::parse(&packet, &ip_repr.src_addr(), &ip_repr.dst_addr())?; // If we're still listening for SYNs and the packet has an ACK, it cannot // be destined to this socket, but another one may well listen on the same // local endpoint. if self.state == State::Listen && repr.ack_number.is_some() { return Err(Error::Rejected) } // Reject packets with a wrong destination. if self.local_endpoint.port != repr.dst_port { return Err(Error::Rejected) } if !self.local_endpoint.addr.is_unspecified() && self.local_endpoint.addr != ip_repr.dst_addr() { return Err(Error::Rejected) } // Reject packets from a source to which we aren't connected. if self.remote_endpoint.port != 0 && self.remote_endpoint.port != repr.src_port { return Err(Error::Rejected) } if !self.remote_endpoint.addr.is_unspecified() && self.remote_endpoint.addr != ip_repr.src_addr() { return Err(Error::Rejected) } // Consider how much the sequence number space differs from the transmit buffer space. let (sent_syn, sent_fin) = match self.state { // In SYN-SENT or SYN-RECEIVED, we've just sent a SYN. State::SynSent | State::SynReceived => (true, false), // In FIN-WAIT-1, LAST-ACK, or CLOSING, we've just sent a FIN. State::FinWait1 | State::LastAck | State::Closing => (false, true), // In all other states we've already got acknowledgemetns for // all of the control flags we sent. _ => (false, false) }; let control_len = (sent_syn as usize) + (sent_fin as usize); // Reject unacceptable acknowledgements. match (self.state, repr) { // An RST received in response to initial SYN is acceptable if it acknowledges // the initial SYN. (State::SynSent, TcpRepr { control: TcpControl::Rst, ack_number: None, .. }) => { net_debug!("[{}]{}:{}: unacceptable RST (expecting RST|ACK) \ in response to initial SYN", self.debug_id, self.local_endpoint, self.remote_endpoint); return Err(Error::Malformed) } (State::SynSent, TcpRepr { control: TcpControl::Rst, ack_number: Some(ack_number), .. }) => { if ack_number != self.local_seq_no + 1 { net_debug!("[{}]{}:{}: unacceptable RST|ACK in response to initial SYN", self.debug_id, self.local_endpoint, self.remote_endpoint); return Err(Error::Malformed) } } // Any other RST need only have a valid sequence number. (_, TcpRepr { control: TcpControl::Rst, .. }) => (), // The initial SYN cannot contain an acknowledgement. (State::Listen, TcpRepr { ack_number: None, .. }) => (), // This case is handled above. (State::Listen, TcpRepr { ack_number: Some(_), .. }) => unreachable!(), // Every packet after the initial SYN must be an acknowledgement. (_, TcpRepr { ack_number: None, .. }) => { net_debug!("[{}]{}:{}: expecting an ACK", self.debug_id, self.local_endpoint, self.remote_endpoint); return Err(Error::Malformed) } // Every acknowledgement must be for transmitted but unacknowledged data. (_, TcpRepr { ack_number: Some(ack_number), .. }) => { let unacknowledged = self.tx_buffer.len() + control_len; if ack_number < self.local_seq_no { net_debug!("[{}]{}:{}: duplicate ACK ({} not in {}...{})", self.debug_id, self.local_endpoint, self.remote_endpoint, ack_number, self.local_seq_no, self.local_seq_no + unacknowledged); // FIXME: instead of waiting for the retransmit timer to kick in, // reset it here. return Err(Error::Dropped) } if ack_number > self.local_seq_no + unacknowledged { net_debug!("[{}]{}:{}: unacceptable ACK ({} not in {}...{})", self.debug_id, self.local_endpoint, self.remote_endpoint, ack_number, self.local_seq_no, self.local_seq_no + unacknowledged); return Err(Error::Dropped) } } } match (self.state, repr) { // In LISTEN and SYN-SENT states, we have not yet synchronized with the remote end. (State::Listen, _) => (), (State::SynSent, _) => (), // In all other states, segments must occupy a valid portion of the receive window. // For now, do not try to reassemble out-of-order segments. (_, TcpRepr { seq_number, .. }) => { let next_remote_seq = self.remote_seq_no + self.rx_buffer.len(); let mut send_ack_again = false; if seq_number > next_remote_seq { net_debug!("[{}]{}:{}: unacceptable SEQ ({} not in {}..), \ will send duplicate ACK", self.debug_id, self.local_endpoint, self.remote_endpoint, seq_number, next_remote_seq); // Some segments between what we have last received and this segment // went missing. Send a duplicate ACK; RFC 793 does not specify the behavior // required when receiving a duplicate ACK, but in practice (see RFC 1122 // section 4.2.2.21) most congestion control algorithms implement what's called // a "fast retransmit", where a threshold amount of duplicate ACKs triggers // retransmission. send_ack_again = true; } else if seq_number != next_remote_seq { net_debug!("[{}]{}:{}: duplicate SEQ ({} in ..{}), \ will re-send ACK", self.debug_id, self.local_endpoint, self.remote_endpoint, seq_number, next_remote_seq); // If we've seen this sequence number already but the remote end is not aware // of that, make sure we send the acknowledgement again. send_ack_again = true; } if send_ack_again { self.remote_last_ack = next_remote_seq - 1; self.retransmit.reset(); // If we're in the TIME-WAIT state, restart the TIME-WAIT timeout, since // the remote end may not realize we've closed the connection. if self.state == State::TimeWait { self.time_wait_since = timestamp; } return Err(Error::Dropped) } } } // Compute the amount of acknowledged octets, removing the SYN and FIN bits // from the sequence space. let mut ack_len = 0; let mut ack_of_fin = false; if repr.control != TcpControl::Rst { if let Some(ack_number) = repr.ack_number { ack_len = ack_number - self.local_seq_no; // There could have been no data sent before the SYN, so we always remove it // from the sequence space. if sent_syn { ack_len -= 1 } // We could've sent data before the FIN, so only remove FIN from the sequence // space if all of that data is acknowledged. if sent_fin && self.tx_buffer.len() + 1 == ack_len { ack_len -= 1; net_trace!("[{}]{}:{}: received ACK of FIN", self.debug_id, self.local_endpoint, self.remote_endpoint); ack_of_fin = true; } } } // Validate and update the state. match (self.state, repr) { // RSTs are not accepted in the LISTEN state. (State::Listen, TcpRepr { control: TcpControl::Rst, .. }) => return Err(Error::Dropped), // RSTs in SYN-RECEIVED flip the socket back to the LISTEN state. (State::SynReceived, TcpRepr { control: TcpControl::Rst, .. }) => { net_trace!("[{}]{}:{}: received RST", self.debug_id, self.local_endpoint, self.remote_endpoint); self.local_endpoint.addr = self.listen_address; self.remote_endpoint = IpEndpoint::default(); self.set_state(State::Listen); return Ok(()) } // RSTs in any other state close the socket. (_, TcpRepr { control: TcpControl::Rst, .. }) => { net_trace!("[{}]{}:{}: received RST", self.debug_id, self.local_endpoint, self.remote_endpoint); self.set_state(State::Closed); self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); return Ok(()) } // SYN packets in the LISTEN state change it to SYN-RECEIVED. (State::Listen, TcpRepr { src_port, dst_port, control: TcpControl::Syn, seq_number, ack_number: None, max_seg_size, .. }) => { net_trace!("[{}]{}: received SYN", self.debug_id, self.local_endpoint); self.local_endpoint = IpEndpoint::new(ip_repr.dst_addr(), dst_port); self.remote_endpoint = IpEndpoint::new(ip_repr.src_addr(), src_port); // FIXME: use something more secure here self.local_seq_no = TcpSeqNumber(-seq_number.0); self.remote_last_seq = self.local_seq_no + 1; self.remote_seq_no = seq_number + 1; if let Some(max_seg_size) = max_seg_size { self.remote_mss = max_seg_size as usize } self.set_state(State::SynReceived); self.retransmit.reset(); } // ACK packets in the SYN-RECEIVED state change it to ESTABLISHED. (State::SynReceived, TcpRepr { control: TcpControl::None, .. }) => { self.set_state(State::Established); self.retransmit.reset(); } // FIN packets in the SYN-RECEIVED state change it to CLOSE-WAIT. // It's not obvious from RFC 793 that this is permitted, but // 7th and 8th steps in the "SEGMENT ARRIVES" event describe this behavior. (State::SynReceived, TcpRepr { control: TcpControl::Fin, .. }) => { self.remote_seq_no += 1; self.set_state(State::CloseWait); self.retransmit.reset(); } // SYN|ACK packets in the SYN-SENT state change it to ESTABLISHED. (State::SynSent, TcpRepr { control: TcpControl::Syn, seq_number, ack_number: Some(_), max_seg_size, .. }) => { net_trace!("[{}]{}:{}: received SYN|ACK", self.debug_id, self.local_endpoint, self.remote_endpoint); self.local_endpoint = IpEndpoint::new(ip_repr.dst_addr(), repr.dst_port); self.remote_last_seq = self.local_seq_no + 1; self.remote_seq_no = seq_number + 1; self.remote_last_ack = seq_number; if let Some(max_seg_size) = max_seg_size { self.remote_mss = max_seg_size as usize; } self.set_state(State::Established); self.retransmit.reset(); } // ACK packets in ESTABLISHED state reset the retransmit timer. (State::Established, TcpRepr { control: TcpControl::None, .. }) => { self.retransmit.reset() }, // FIN packets in ESTABLISHED state indicate the remote side has closed. (State::Established, TcpRepr { control: TcpControl::Fin, .. }) => { self.remote_seq_no += 1; self.set_state(State::CloseWait); self.retransmit.reset(); } // ACK packets in FIN-WAIT-1 state change it to FIN-WAIT-2, if we've already // sent everything in the transmit buffer. If not, they reset the retransmit timer. (State::FinWait1, TcpRepr { control: TcpControl::None, .. }) => { if ack_of_fin { self.set_state(State::FinWait2); } else { self.retransmit.reset(); } } // FIN packets in FIN-WAIT-1 state change it to CLOSING, or to TIME-WAIT // if they also acknowledge our FIN. (State::FinWait1, TcpRepr { control: TcpControl::Fin, .. }) => { self.remote_seq_no += 1; if ack_of_fin { self.time_wait_since = timestamp; self.set_state(State::TimeWait); } else { self.set_state(State::Closing); } self.retransmit.reset(); } // FIN packets in FIN-WAIT-2 state change it to TIME-WAIT. (State::FinWait2, TcpRepr { control: TcpControl::Fin, .. }) => { self.remote_seq_no += 1; self.time_wait_since = timestamp; self.set_state(State::TimeWait); self.retransmit.reset(); } // ACK packets in CLOSING state change it to TIME-WAIT. (State::Closing, TcpRepr { control: TcpControl::None, .. }) => { if ack_of_fin { self.time_wait_since = timestamp; self.set_state(State::TimeWait); } else { self.retransmit.reset(); } } // ACK packets in CLOSE-WAIT state reset the retransmit timer. (State::CloseWait, TcpRepr { control: TcpControl::None, .. }) => { self.retransmit.reset(); } // ACK packets in LAST-ACK state change it to CLOSED. (State::LastAck, TcpRepr { control: TcpControl::None, .. }) => { // Clear the remote endpoint, or we'll send an RST there. self.set_state(State::Closed); self.remote_endpoint = IpEndpoint::default(); } _ => { net_debug!("[{}]{}:{}: unexpected packet {}", self.debug_id, self.local_endpoint, self.remote_endpoint, repr); return Err(Error::Malformed) } } // Dequeue acknowledged octets. if ack_len > 0 { net_trace!("[{}]{}:{}: tx buffer: dequeueing {} octets (now {})", self.debug_id, self.local_endpoint, self.remote_endpoint, ack_len, self.tx_buffer.len() - ack_len); self.tx_buffer.advance(ack_len); } // We've processed everything in the incoming segment, so advance the local // sequence number past it. if let Some(ack_number) = repr.ack_number { self.local_seq_no = ack_number; } // Enqueue payload octets, which is guaranteed to be in order, unless we already did. if repr.payload.len() > 0 { net_trace!("[{}]{}:{}: rx buffer: enqueueing {} octets (now {})", self.debug_id, self.local_endpoint, self.remote_endpoint, repr.payload.len(), self.rx_buffer.len() + repr.payload.len()); self.rx_buffer.enqueue_slice(repr.payload) } // Update window length. self.remote_win_len = repr.window_len as usize; Ok(()) } pub(crate) fn dispatch(&mut self, timestamp: u64, limits: &DeviceLimits, emit: &mut F) -> Result where F: FnMut(&IpRepr, &IpPayload) -> Result { if !self.remote_endpoint.is_specified() { return Err(Error::Exhausted) } let mut repr = TcpRepr { src_port: self.local_endpoint.port, dst_port: self.remote_endpoint.port, control: TcpControl::None, push: false, seq_number: self.local_seq_no, ack_number: None, window_len: self.rx_buffer.window() as u16, max_seg_size: None, payload: &[] }; if self.state == State::Closed { // If we have a specified local and remote endpoint, but are in the CLOSED state, // we've ended up here after aborting a connection. Send exactly one RST packet. net_trace!("[{}]{}:{}: sending RST", self.debug_id, self.local_endpoint, self.remote_endpoint); repr.control = TcpControl::Rst; repr.ack_number = Some(self.remote_seq_no); let ip_repr = IpRepr::Unspecified { src_addr: self.local_endpoint.addr, dst_addr: self.remote_endpoint.addr, protocol: IpProtocol::Tcp, payload_len: repr.buffer_len() }; let result = emit(&ip_repr, &repr); self.local_endpoint = IpEndpoint::default(); self.remote_endpoint = IpEndpoint::default(); return result } if self.state == State::TimeWait { if timestamp >= self.time_wait_since + TIME_WAIT_TIMEOUT { net_trace!("[{}]{}:{}: TIME-WAIT timeout", self.debug_id, self.local_endpoint, self.remote_endpoint); self.reset(); return Err(Error::Exhausted) } } if self.retransmit.may_send_old(timestamp) { // The retransmit timer has expired, so assume all in-flight data that // has not been acknowledged is lost. match self.state { // Retransmission of SYN is handled elsewhere. State::SynReceived => (), _ => self.remote_last_seq = self.local_seq_no } } else if self.retransmit.may_send_new(timestamp) { // The retransmit timer has been reset, and we can send something new. } else { // We don't have anything to send at this time. return Err(Error::Exhausted) } let mut should_send = false; match self.state { // We never transmit anything in the CLOSED, LISTEN, or FIN-WAIT-2 states. State::Closed | State::Listen | State::FinWait2 => { return Err(Error::Exhausted) } // We transmit a SYN|ACK in the SYN-RECEIVED state. // We transmit a SYN in the SYN-SENT state. State::SynReceived | State::SynSent => { repr.control = TcpControl::Syn; net_trace!("[{}]{}:{}: sending SYN{}", self.debug_id, self.local_endpoint, self.remote_endpoint, if self.state == State::SynReceived { "|ACK" } else { "" }); should_send = true; } // We transmit data in the ESTABLISHED state, // ACK in CLOSE-WAIT, CLOSING, and TIME-WAIT states, // FIN in FIN-WAIT-1 and LAST-ACK states, // but only if the receiver has a nonzero window. State::Established | State::CloseWait | State::Closing | State::TimeWait | State::FinWait1 | State::LastAck if self.remote_win_len > 0 => { // We can send something, so let's try doing that. let mut size = self.tx_buffer.len(); // Clamp to remote window length. if size > self.remote_win_len { size = self.remote_win_len } // Clamp to MSS. if size > self.remote_mss { size = self.remote_mss } // Extract data from the buffer. This may return less than what we want, // in case it's not possible to extract a contiguous slice. let offset = self.remote_last_seq - self.local_seq_no; let data = self.tx_buffer.peek(offset, size); if data.len() > 0 { // Send the extracted data. net_trace!("[{}]{}:{}: tx buffer: peeking at {} octets (from {})", self.debug_id, self.local_endpoint, self.remote_endpoint, data.len(), offset); repr.seq_number += offset; repr.payload = data; // If that was the last data we had buffered, set the PSH flag. if offset + data.len() == self.tx_buffer.len() { repr.push = true; } // Speculatively shrink the remote window. This will get updated // the next time we receive a packet. self.remote_win_len -= data.len(); // Advance the in-flight sequence number. self.remote_last_seq += data.len(); should_send = true; } // The FIN control flag occupies the place in the sequence space after // the data in the current segment. If we still have some data left for the next // segment (e.g. the receiver window is too small), then don't send FIN just yet. let all_data_sent = self.tx_buffer.len() == offset + data.len(); match self.state { State::FinWait1 | State::LastAck if all_data_sent => { // We should notify the other side that we've closed the transmit half // of the connection. net_trace!("[{}]{}:{}: sending FIN|ACK", self.debug_id, self.local_endpoint, self.remote_endpoint); repr.control = TcpControl::Fin; self.remote_last_seq += 1; should_send = true; } _ => () } } // We don't transmit anything (except ACKs) if the receiver has a zero window. State::Established | State::CloseWait | State::Closing | State::TimeWait | State::FinWait1 | State::LastAck => () } let ack_number = self.remote_seq_no + self.rx_buffer.len(); if !should_send && self.remote_last_ack != ack_number { // Acknowledge all data we have received, since it is all in order. net_trace!("[{}]{}:{}: sending ACK", self.debug_id, self.local_endpoint, self.remote_endpoint); should_send = true; } if should_send { if let Some(actual_delay) = self.retransmit.commit(timestamp) { net_debug!("[{}]{}:{}: retransmitting at t+{}ms ", self.debug_id, self.local_endpoint, self.remote_endpoint, actual_delay); } if self.state != State::SynSent { repr.ack_number = Some(ack_number); self.remote_last_ack = ack_number; } // Remember the header length before enabling the MSS option, since that option // only affects SYN packets. let header_len = repr.header_len(); if repr.control == TcpControl::Syn { // First enable the option, without assigning any value, to get a correct // result for the payload_len field of ip_repr below. repr.max_seg_size = Some(0); } let ip_repr = IpRepr::Unspecified { src_addr: self.local_endpoint.addr, dst_addr: self.remote_endpoint.addr, protocol: IpProtocol::Tcp, payload_len: repr.buffer_len() }; let ip_repr = ip_repr.lower(&[])?; let mut max_segment_size = limits.max_transmission_unit; max_segment_size -= header_len; max_segment_size -= ip_repr.buffer_len(); if repr.control == TcpControl::Syn { repr.max_seg_size = Some(max_segment_size as u16); } if let Some(max_burst_size) = limits.max_burst_size { let max_window_size = max_burst_size * max_segment_size; if repr.window_len as usize > max_window_size { repr.window_len = max_window_size as u16; } } emit(&ip_repr, &repr) } else { Err(Error::Exhausted) } } } impl<'a> fmt::Write for TcpSocket<'a> { fn write_str(&mut self, slice: &str) -> fmt::Result { let slice = slice.as_bytes(); if self.send_slice(slice) == Ok(slice.len()) { Ok(()) } else { Err(fmt::Error) } } } impl<'a> IpPayload for TcpRepr<'a> { fn buffer_len(&self) -> usize { self.buffer_len() } fn emit(&self, ip_repr: &IpRepr, payload: &mut [u8]) { let mut packet = TcpPacket::new(payload); self.emit(&mut packet, &ip_repr.src_addr(), &ip_repr.dst_addr()) } } #[cfg(test)] mod test { use wire::{IpAddress, Ipv4Address}; use super::*; #[test] fn test_buffer() { let mut buffer = SocketBuffer::new(vec![0; 8]); // ........ buffer.enqueue(6).copy_from_slice(b"foobar"); // foobar.. assert_eq!(buffer.dequeue(3), b"foo"); // ...bar.. buffer.enqueue(6).copy_from_slice(b"ba"); // ...barba buffer.enqueue(4).copy_from_slice(b"zho"); // zhobarba assert_eq!(buffer.dequeue(6), b"barba"); // zho..... assert_eq!(buffer.dequeue(8), b"zho"); // ........ buffer.enqueue(8).copy_from_slice(b"gefug"); // ...gefug } #[test] fn test_buffer_wraparound() { let mut buffer = SocketBuffer::new(vec![0; 8]); // ........ buffer.enqueue_slice(&b"foobar"[..]); // foobar.. assert_eq!(buffer.dequeue(3), b"foo"); // ...bar.. buffer.enqueue_slice(&b"bazhoge"[..]); // zhobarba } #[test] fn test_buffer_peek() { let mut buffer = SocketBuffer::new(vec![0; 8]); // ........ buffer.enqueue_slice(&b"foobar"[..]); // foobar.. assert_eq!(buffer.peek(0, 8), &b"foobar"[..]); assert_eq!(buffer.peek(3, 8), &b"bar"[..]); } #[test] fn test_retransmit_may_send() { fn may_send(r: &mut Retransmit, t: u64) -> (bool, bool) { (r.may_send_old(t), r.may_send_new(t)) } let mut r = Retransmit::new(); assert_eq!(may_send(&mut r, 1000), (false, true)); r.commit(1000); assert_eq!(may_send(&mut r, 1000), (false, false)); assert_eq!(may_send(&mut r, 1050), (false, false)); assert_eq!(may_send(&mut r, 1101), (true, false)); r.commit(1101); assert_eq!(may_send(&mut r, 1150), (false, false)); assert_eq!(may_send(&mut r, 1200), (false, false)); assert_eq!(may_send(&mut r, 1301), (true, false)); r.reset(); assert_eq!(may_send(&mut r, 1350), (false, true)); } const LOCAL_IP: IpAddress = IpAddress::Ipv4(Ipv4Address([10, 0, 0, 1])); const REMOTE_IP: IpAddress = IpAddress::Ipv4(Ipv4Address([10, 0, 0, 2])); const LOCAL_PORT: u16 = 80; const REMOTE_PORT: u16 = 49500; const LOCAL_END: IpEndpoint = IpEndpoint { addr: LOCAL_IP, port: LOCAL_PORT }; const REMOTE_END: IpEndpoint = IpEndpoint { addr: REMOTE_IP, port: REMOTE_PORT }; const LOCAL_SEQ: TcpSeqNumber = TcpSeqNumber(10000); const REMOTE_SEQ: TcpSeqNumber = TcpSeqNumber(-10000); const SEND_TEMPL: TcpRepr<'static> = TcpRepr { src_port: REMOTE_PORT, dst_port: LOCAL_PORT, control: TcpControl::None, push: false, seq_number: TcpSeqNumber(0), ack_number: Some(TcpSeqNumber(0)), window_len: 256, max_seg_size: None, payload: &[] }; const RECV_TEMPL: TcpRepr<'static> = TcpRepr { src_port: LOCAL_PORT, dst_port: REMOTE_PORT, control: TcpControl::None, push: false, seq_number: TcpSeqNumber(0), ack_number: Some(TcpSeqNumber(0)), window_len: 64, max_seg_size: None, payload: &[] }; fn send(socket: &mut TcpSocket, timestamp: u64, repr: &TcpRepr) -> Result<()> { trace!("send: {}", repr); let mut buffer = vec![0; repr.buffer_len()]; let mut packet = TcpPacket::new(&mut buffer); repr.emit(&mut packet, &REMOTE_IP, &LOCAL_IP); let ip_repr = IpRepr::Unspecified { src_addr: REMOTE_IP, dst_addr: LOCAL_IP, protocol: IpProtocol::Tcp, payload_len: repr.buffer_len() }; socket.process(timestamp, &ip_repr, &packet.into_inner()[..]) } fn recv(socket: &mut TcpSocket, timestamp: u64, mut f: F) where F: FnMut(Result) { let mut buffer = vec![]; let mut limits = DeviceLimits::default(); limits.max_transmission_unit = 1520; let result = socket.dispatch(timestamp, &limits, &mut |ip_repr, payload| { let ip_repr = ip_repr.lower(&[LOCAL_END.addr.into()]).unwrap(); assert_eq!(ip_repr.protocol(), IpProtocol::Tcp); assert_eq!(ip_repr.src_addr(), LOCAL_IP); assert_eq!(ip_repr.dst_addr(), REMOTE_IP); buffer.resize(payload.buffer_len(), 0); payload.emit(&ip_repr, &mut buffer[..]); let packet = TcpPacket::new(&buffer[..]); let repr = TcpRepr::parse(&packet, &ip_repr.src_addr(), &ip_repr.dst_addr())?; trace!("recv: {}", repr); Ok(f(Ok(repr))) }); // Appease borrow checker. match result { Ok(()) => (), Err(e) => f(Err(e)) } } macro_rules! send { ($socket:ident, $repr:expr) => (send!($socket, time 0, $repr)); ($socket:ident, $repr:expr, $result:expr) => (send!($socket, time 0, $repr, $result)); ($socket:ident, time $time:expr, $repr:expr) => (send!($socket, time $time, $repr, Ok(()))); ($socket:ident, time $time:expr, $repr:expr, $result:expr) => (assert_eq!(send(&mut $socket, $time, &$repr), $result)); } macro_rules! recv { ($socket:ident, [$( $repr:expr )*]) => ({ $( recv!($socket, Ok($repr)); )* recv!($socket, Err(Error::Exhausted)) }); ($socket:ident, $result:expr) => (recv!($socket, time 0, $result)); ($socket:ident, time $time:expr, $result:expr) => (recv(&mut $socket, $time, |repr| { // Most of the time we don't care about the PSH flag. let repr = repr.map(|r| TcpRepr { push: false, ..r }); assert_eq!(repr, $result) })); ($socket:ident, time $time:expr, $result:expr, exact) => (recv(&mut $socket, $time, |repr| assert_eq!(repr, $result))); } macro_rules! sanity { ($socket1:expr, $socket2:expr, retransmit: $retransmit:expr) => ({ let (s1, s2) = ($socket1, $socket2); assert_eq!(s1.state, s2.state, "state"); assert_eq!(s1.listen_address, s2.listen_address, "listen_address"); assert_eq!(s1.local_endpoint, s2.local_endpoint, "local_endpoint"); assert_eq!(s1.remote_endpoint, s2.remote_endpoint, "remote_endpoint"); assert_eq!(s1.local_seq_no, s2.local_seq_no, "local_seq_no"); assert_eq!(s1.remote_seq_no, s2.remote_seq_no, "remote_seq_no"); assert_eq!(s1.remote_last_seq, s2.remote_last_seq, "remote_last_seq"); assert_eq!(s1.remote_last_ack, s2.remote_last_ack, "remote_last_ack"); assert_eq!(s1.remote_win_len, s2.remote_win_len, "remote_win_len"); assert_eq!(s1.time_wait_since, s2.time_wait_since, "time_wait_since"); if $retransmit { assert_eq!(s1.retransmit, s2.retransmit, "retransmit"); } else { let retransmit = Retransmit { resend_at: 100, delay: 100 }; assert_eq!(s1.retransmit, retransmit, "retransmit (delaying)"); } }); ($socket1:expr, $socket2:expr) => (sanity!($socket1, $socket2, retransmit: true)) } fn init_logger() { extern crate log; use std::boxed::Box; struct Logger(()); impl log::Log for Logger { fn enabled(&self, _metadata: &log::LogMetadata) -> bool { true } fn log(&self, record: &log::LogRecord) { println!("{}", record.args()); } } let _ = log::set_logger(|max_level| { max_level.set(log::LogLevelFilter::Trace); Box::new(Logger(())) }); println!(""); } fn socket() -> TcpSocket<'static> { init_logger(); let rx_buffer = SocketBuffer::new(vec![0; 64]); let tx_buffer = SocketBuffer::new(vec![0; 64]); match TcpSocket::new(rx_buffer, tx_buffer) { Socket::Tcp(socket) => socket, _ => unreachable!() } } // =========================================================================================// // Tests for the CLOSED state. // =========================================================================================// #[test] fn test_closed_reject() { let mut s = socket(); assert_eq!(s.state, State::Closed); send!(s, TcpRepr { control: TcpControl::Syn, ..SEND_TEMPL }, Err(Error::Rejected)); } #[test] fn test_closed_reject_after_listen() { let mut s = socket(); s.listen(LOCAL_END).unwrap(); s.close(); send!(s, TcpRepr { control: TcpControl::Syn, ..SEND_TEMPL }, Err(Error::Rejected)); } #[test] fn test_closed_close() { let mut s = socket(); s.close(); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the LISTEN state. // =========================================================================================// fn socket_listen() -> TcpSocket<'static> { let mut s = socket(); s.state = State::Listen; s.local_endpoint = IpEndpoint::new(IpAddress::default(), LOCAL_PORT); s } #[test] fn test_listen_sanity() { let mut s = socket(); s.listen(LOCAL_PORT).unwrap(); sanity!(s, socket_listen()); } #[test] fn test_listen_validation() { let mut s = socket(); assert_eq!(s.listen(0), Err(Error::Unaddressable)); } #[test] fn test_listen_twice() { let mut s = socket(); assert_eq!(s.listen(80), Ok(())); assert_eq!(s.listen(80), Err(Error::Illegal)); } #[test] fn test_listen_syn() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }); sanity!(s, socket_syn_received()); } #[test] fn test_listen_syn_reject_ack() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ), ..SEND_TEMPL }, Err(Error::Rejected)); assert_eq!(s.state, State::Listen); } #[test] fn test_listen_rst() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }, Err(Error::Dropped)); } #[test] fn test_listen_close() { let mut s = socket_listen(); s.close(); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the SYN-RECEIVED state. // =========================================================================================// fn socket_syn_received() -> TcpSocket<'static> { let mut s = socket(); s.state = State::SynReceived; s.local_endpoint = LOCAL_END; s.remote_endpoint = REMOTE_END; s.local_seq_no = LOCAL_SEQ; s.remote_seq_no = REMOTE_SEQ + 1; s.remote_last_seq = LOCAL_SEQ + 1; s.remote_win_len = 256; s } #[test] fn test_syn_received_ack() { let mut s = socket_syn_received(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(1480), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Established); sanity!(s, socket_established()); } #[test] fn test_syn_received_fin() { let mut s = socket_syn_received(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(1480), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); assert_eq!(s.state, State::CloseWait); sanity!(s, TcpSocket { remote_last_ack: REMOTE_SEQ + 1, ..socket_close_wait() }); } #[test] fn test_syn_received_rst() { let mut s = socket_syn_received(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ), ..SEND_TEMPL }); assert_eq!(s.state, State::Listen); assert_eq!(s.local_endpoint, IpEndpoint::new(IpAddress::Unspecified, LOCAL_END.port)); assert_eq!(s.remote_endpoint, IpEndpoint::default()); } #[test] fn test_syn_received_close() { let mut s = socket_syn_received(); s.close(); assert_eq!(s.state, State::FinWait1); } // =========================================================================================// // Tests for the SYN-SENT state. // =========================================================================================// fn socket_syn_sent() -> TcpSocket<'static> { let mut s = socket(); s.state = State::SynSent; s.local_endpoint = IpEndpoint::new(IpAddress::v4(0, 0, 0, 0), LOCAL_PORT); s.remote_endpoint = REMOTE_END; s.local_seq_no = LOCAL_SEQ; s } #[test] fn test_connect_validation() { let mut s = socket(); assert_eq!(s.connect((IpAddress::v4(0, 0, 0, 0), 80), LOCAL_END), Err(Error::Unaddressable)); assert_eq!(s.connect(REMOTE_END, (IpAddress::v4(10, 0, 0, 0), 0)), Err(Error::Unaddressable)); assert_eq!(s.connect((IpAddress::v4(10, 0, 0, 0), 0), LOCAL_END), Err(Error::Unaddressable)); assert_eq!(s.connect((IpAddress::Unspecified, 80), LOCAL_END), Err(Error::Unaddressable)); } #[test] fn test_connect() { let mut s = socket(); s.local_seq_no = LOCAL_SEQ; s.connect(REMOTE_END, LOCAL_END.port).unwrap(); assert_eq!(s.local_endpoint, IpEndpoint::new(IpAddress::v4(0, 0, 0, 0), LOCAL_END.port)); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: None, max_seg_size: Some(1480), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), max_seg_size: Some(1400), ..SEND_TEMPL }); assert_eq!(s.local_endpoint, LOCAL_END); } #[test] fn test_connect_unspecified_local() { let mut s = socket(); assert_eq!(s.connect(REMOTE_END, (IpAddress::v4(0, 0, 0, 0), 80)), Ok(())); s.abort(); assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Ok(())); s.abort(); } #[test] fn test_connect_specified_local() { let mut s = socket(); assert_eq!(s.connect(REMOTE_END, (IpAddress::v4(10, 0, 0, 2), 80)), Ok(())); } #[test] fn test_connect_twice() { let mut s = socket(); assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Ok(())); assert_eq!(s.connect(REMOTE_END, (IpAddress::Unspecified, 80)), Err(Error::Illegal)); } #[test] fn test_syn_sent_sanity() { let mut s = socket(); s.local_seq_no = LOCAL_SEQ; s.connect(REMOTE_END, LOCAL_END).unwrap(); sanity!(s, socket_syn_sent()); } #[test] fn test_syn_sent_syn_ack() { let mut s = socket_syn_sent(); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: None, max_seg_size: Some(1480), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), max_seg_size: Some(1400), ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::Established); sanity!(s, socket_established(), retransmit: false); } #[test] fn test_syn_sent_rst() { let mut s = socket_syn_sent(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_syn_sent_rst_no_ack() { let mut s = socket_syn_sent(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }, Err(Error::Malformed)); assert_eq!(s.state, State::SynSent); } #[test] fn test_syn_sent_rst_bad_ack() { let mut s = socket_syn_sent(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ, ack_number: Some(TcpSeqNumber(1234)), ..SEND_TEMPL }, Err(Error::Malformed)); assert_eq!(s.state, State::SynSent); } #[test] fn test_syn_sent_close() { let mut s = socket(); s.close(); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the ESTABLISHED state. // =========================================================================================// fn socket_established() -> TcpSocket<'static> { let mut s = socket_syn_received(); s.state = State::Established; s.local_seq_no = LOCAL_SEQ + 1; s.remote_last_ack = REMOTE_SEQ + 1; s } #[test] fn test_established_recv() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); assert_eq!(s.rx_buffer.dequeue(6), &b"abcdef"[..]); } #[test] fn test_established_send() { let mut s = socket_established(); // First roundtrip after establishing. s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); assert_eq!(s.tx_buffer.len(), 6); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), ..SEND_TEMPL }); assert_eq!(s.tx_buffer.len(), 0); // Second roundtrip. s.send_slice(b"foobar").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"foobar"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), ..SEND_TEMPL }); assert_eq!(s.tx_buffer.len(), 0); } #[test] fn test_established_send_no_ack_send() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); s.send_slice(b"foobar").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"foobar"[..], ..RECV_TEMPL }]); } #[test] fn test_established_send_buf_gt_win() { let mut s = socket_established(); s.remote_win_len = 16; // First roundtrip after establishing. s.send_slice(&[0; 32][..]).unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &[0; 16][..], ..RECV_TEMPL }]); } #[test] fn test_established_no_ack() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: None, ..SEND_TEMPL }, Err(Error::Malformed)); } #[test] fn test_established_bad_ack() { let mut s = socket_established(); // Already acknowledged data. send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(TcpSeqNumber(LOCAL_SEQ.0 - 1)), ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.local_seq_no, LOCAL_SEQ + 1); // Data not yet transmitted. send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 10), ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.local_seq_no, LOCAL_SEQ + 1); } #[test] fn test_established_bad_seq() { let mut s = socket_established(); // Data outside of receive window. send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 256, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1); } #[test] fn test_established_fin() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::CloseWait); sanity!(s, socket_close_wait(), retransmit: false); } #[test] fn test_established_send_fin() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::CloseWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); } #[test] fn test_established_rst() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_established_rst_no_ack() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Rst, seq_number: REMOTE_SEQ + 1, ack_number: None, ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_established_close() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); sanity!(s, socket_fin_wait_1()); } #[test] fn test_established_abort() { let mut s = socket_established(); s.abort(); assert_eq!(s.state, State::Closed); recv!(s, [TcpRepr { control: TcpControl::Rst, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); } // =========================================================================================// // Tests for the FIN-WAIT-1 state. // =========================================================================================// fn socket_fin_wait_1() -> TcpSocket<'static> { let mut s = socket_established(); s.state = State::FinWait1; s } #[test] fn test_fin_wait_1_fin_ack() { let mut s = socket_fin_wait_1(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait2); sanity!(s, TcpSocket { remote_last_seq: LOCAL_SEQ + 1 + 1, ..socket_fin_wait_2() }, retransmit: false); } #[test] fn test_fin_wait_1_fin_fin() { let mut s = socket_fin_wait_1(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closing); sanity!(s, TcpSocket { remote_last_seq: LOCAL_SEQ + 1 + 1, ..socket_closing() }); } #[test] fn test_fin_wait_1_fin_with_data_queued() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef123456").unwrap(); s.close(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait1); } #[test] fn test_fin_wait_1_close() { let mut s = socket_fin_wait_1(); s.close(); assert_eq!(s.state, State::FinWait1); } // =========================================================================================// // Tests for the FIN-WAIT-2 state. // =========================================================================================// fn socket_fin_wait_2() -> TcpSocket<'static> { let mut s = socket_fin_wait_1(); s.state = State::FinWait2; s.local_seq_no = LOCAL_SEQ + 1 + 1; s } #[test] fn test_fin_wait_2_fin() { let mut s = socket_fin_wait_2(); send!(s, time 1_000, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); sanity!(s, socket_time_wait(false)); } #[test] fn test_fin_wait_2_close() { let mut s = socket_fin_wait_2(); s.close(); assert_eq!(s.state, State::FinWait2); } // =========================================================================================// // Tests for the CLOSING state. // =========================================================================================// fn socket_closing() -> TcpSocket<'static> { let mut s = socket_fin_wait_1(); s.state = State::Closing; s.local_seq_no = LOCAL_SEQ + 1; s.remote_seq_no = REMOTE_SEQ + 1 + 1; s } #[test] fn test_closing_ack_fin() { let mut s = socket_closing(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); send!(s, time 1_000, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); sanity!(s, socket_time_wait(true), retransmit: false); } #[test] fn test_closing_close() { let mut s = socket_closing(); s.close(); assert_eq!(s.state, State::Closing); } // =========================================================================================// // Tests for the TIME-WAIT state. // =========================================================================================// fn socket_time_wait(from_closing: bool) -> TcpSocket<'static> { let mut s = socket_fin_wait_2(); s.state = State::TimeWait; s.remote_seq_no = REMOTE_SEQ + 1 + 1; if from_closing { s.remote_last_ack = REMOTE_SEQ + 1 + 1; } s.time_wait_since = 1_000; s } #[test] fn test_time_wait_from_fin_wait_2_ack() { let mut s = socket_time_wait(false); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); } #[test] fn test_time_wait_from_closing_no_ack() { let mut s = socket_time_wait(true); recv!(s, []); } #[test] fn test_time_wait_close() { let mut s = socket_time_wait(false); s.close(); assert_eq!(s.state, State::TimeWait); } #[test] fn test_time_wait_retransmit() { let mut s = socket_time_wait(false); send!(s, time 5_000, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }, Err(Error::Dropped)); assert_eq!(s.time_wait_since, 5_000); } #[test] fn test_time_wait_timeout() { let mut s = socket_time_wait(false); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::TimeWait); recv!(s, time 60_000, Err(Error::Exhausted)); assert_eq!(s.state, State::Closed); } // =========================================================================================// // Tests for the CLOSE-WAIT state. // =========================================================================================// fn socket_close_wait() -> TcpSocket<'static> { let mut s = socket_established(); s.state = State::CloseWait; s.remote_seq_no = REMOTE_SEQ + 1 + 1; s.remote_last_ack = REMOTE_SEQ + 1 + 1; s } #[test] fn test_close_wait_ack() { let mut s = socket_close_wait(); s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), ..SEND_TEMPL }); } #[test] fn test_close_wait_close() { let mut s = socket_close_wait(); s.close(); assert_eq!(s.state, State::LastAck); sanity!(s, socket_last_ack()); } // =========================================================================================// // Tests for the LAST-ACK state. // =========================================================================================// fn socket_last_ack() -> TcpSocket<'static> { let mut s = socket_close_wait(); s.state = State::LastAck; s } #[test] fn test_last_ack_fin_ack() { let mut s = socket_last_ack(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::LastAck); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_last_ack_close() { let mut s = socket_last_ack(); s.close(); assert_eq!(s.state, State::LastAck); } // =========================================================================================// // Tests for transitioning through multiple states. // =========================================================================================// #[test] fn test_listen() { let mut s = socket(); s.listen(IpEndpoint::new(IpAddress::default(), LOCAL_PORT)).unwrap(); assert_eq!(s.state, State::Listen); } #[test] fn test_three_way_handshake() { let mut s = socket_listen(); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: None, ..SEND_TEMPL }); assert_eq!(s.state(), State::SynReceived); assert_eq!(s.local_endpoint(), LOCAL_END); assert_eq!(s.remote_endpoint(), REMOTE_END); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(1480), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state(), State::Established); assert_eq!(s.local_seq_no, LOCAL_SEQ + 1); assert_eq!(s.remote_seq_no, REMOTE_SEQ + 1); } #[test] fn test_remote_close() { let mut s = socket_established(); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::CloseWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); s.close(); assert_eq!(s.state, State::LastAck); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closed); } #[test] fn test_local_close() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait2); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); } #[test] fn test_simultaneous_close() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { // this is logically located... control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::Closing); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); // ... at this point send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); recv!(s, []); } #[test] fn test_simultaneous_close_combined_fin_ack() { let mut s = socket_established(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::TimeWait); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); } #[test] fn test_fin_with_data() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); s.close(); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]) } #[test] fn test_mutual_close_with_data_1() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 1), ..SEND_TEMPL }); } #[test] fn test_mutual_close_with_data_2() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); s.close(); assert_eq!(s.state, State::FinWait1); recv!(s, [TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 1), ..SEND_TEMPL }); assert_eq!(s.state, State::FinWait2); send!(s, TcpRepr { control: TcpControl::Fin, seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 1), ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), ..RECV_TEMPL }]); assert_eq!(s.state, State::TimeWait); } // =========================================================================================// // Tests for retransmission on packet loss. // =========================================================================================// fn socket_recved() -> TcpSocket<'static> { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); s } #[test] fn test_duplicate_seq_ack() { let mut s = socket_recved(); // remote retransmission send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }, Err(Error::Dropped)); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); } #[test] fn test_missing_segment() { let mut s = socket_established(); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), payload: &b"abcdef"[..], ..SEND_TEMPL }); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1 + 6 + 6, ack_number: Some(LOCAL_SEQ + 1), payload: &b"mnopqr"[..], ..SEND_TEMPL }, Err(Error::Dropped)); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 6), window_len: 58, ..RECV_TEMPL }]); } #[test] fn test_data_retransmit() { let mut s = socket_established(); s.send_slice(b"abcdef").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); recv!(s, time 1050, Err(Error::Exhausted)); recv!(s, time 1100, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); } #[test] fn test_send_data_after_syn_ack_retransmit() { let mut s = socket_syn_received(); recv!(s, time 50, Ok(TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(1480), ..RECV_TEMPL })); recv!(s, time 150, Ok(TcpRepr { // retransmit control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(1480), ..RECV_TEMPL })); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), ..SEND_TEMPL }); assert_eq!(s.state(), State::Established); s.send_slice(b"abcdef").unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL }]) } #[test] fn test_established_retransmit_reset_after_ack() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.send_slice(b"ABCDEF").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, time 1005, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL })); send!(s, time 1015, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1020, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); } #[test] fn test_close_wait_retransmit_reset_after_ack() { let mut s = socket_close_wait(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.send_slice(b"ABCDEF").unwrap(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, time 1005, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"123456"[..], ..RECV_TEMPL })); send!(s, time 1015, TcpRepr { seq_number: REMOTE_SEQ + 1 + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1020, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1 + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); } #[test] fn test_fin_wait_1_retransmit_reset_after_ack() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.send_slice(b"ABCDEF").unwrap(); s.close(); recv!(s, time 1000, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &b"abcdef"[..], ..RECV_TEMPL })); send!(s, time 1005, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1010, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"123456"[..], ..RECV_TEMPL })); send!(s, time 1015, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 1020, Ok(TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1 + 6 + 6, ack_number: Some(REMOTE_SEQ + 1), payload: &b"ABCDEF"[..], ..RECV_TEMPL })); } #[test] fn test_maximum_segment_size() { let mut s = socket_listen(); s.tx_buffer = SocketBuffer::new(vec![0; 32767]); send!(s, TcpRepr { control: TcpControl::Syn, seq_number: REMOTE_SEQ, ack_number: None, max_seg_size: Some(1000), ..SEND_TEMPL }); recv!(s, [TcpRepr { control: TcpControl::Syn, seq_number: LOCAL_SEQ, ack_number: Some(REMOTE_SEQ + 1), max_seg_size: Some(1480), ..RECV_TEMPL }]); send!(s, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1), window_len: 32767, ..SEND_TEMPL }); s.send_slice(&[0; 1200][..]).unwrap(); recv!(s, [TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), payload: &[0; 1000][..], ..RECV_TEMPL }]) } // =========================================================================================// // Tests for window management. // =========================================================================================// #[test] fn test_window_size_clamp() { let mut s = socket_established(); s.rx_buffer = SocketBuffer::new(vec![0; 32767]); let mut limits = DeviceLimits::default(); limits.max_transmission_unit = 1520; limits.max_burst_size = None; s.send_slice(b"abcdef").unwrap(); s.dispatch(0, &limits, &mut |ip_repr, payload| { let mut buffer = vec![0; payload.buffer_len()]; payload.emit(&ip_repr, &mut buffer[..]); let packet = TcpPacket::new(&buffer[..]); assert_eq!(packet.window_len(), 32767); Ok(()) }).unwrap(); limits.max_burst_size = Some(4); s.send_slice(b"abcdef").unwrap(); s.dispatch(0, &limits, &mut |ip_repr, payload| { let mut buffer = vec![0; payload.buffer_len()]; payload.emit(&ip_repr, &mut buffer[..]); let packet = TcpPacket::new(&buffer[..]); assert_eq!(packet.window_len(), 5920); Ok(()) }).unwrap(); } // =========================================================================================// // Tests for flow control. // =========================================================================================// #[test] fn test_psh() { let mut s = socket_established(); s.remote_win_len = 6; s.send_slice(b"abcdef").unwrap(); s.send_slice(b"123456").unwrap(); s.close(); recv!(s, time 0, Ok(TcpRepr { seq_number: LOCAL_SEQ + 1, ack_number: Some(REMOTE_SEQ + 1), push: false, payload: &b"abcdef"[..], ..RECV_TEMPL }), exact); send!(s, time 0, TcpRepr { seq_number: REMOTE_SEQ + 1, ack_number: Some(LOCAL_SEQ + 1 + 6), window_len: 6, ..SEND_TEMPL }); recv!(s, time 0, Ok(TcpRepr { control: TcpControl::Fin, seq_number: LOCAL_SEQ + 1 + 6, ack_number: Some(REMOTE_SEQ + 1), push: true, payload: &b"123456"[..], ..RECV_TEMPL }), exact); } }