// Heads up! Before working on this file you should read the parts // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work // and RFCs 8200 and 4861 for any IPv6 and NDISC work. use core::cmp; use managed::{ManagedMap, ManagedSlice}; use crate::iface::Routes; #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] use crate::iface::{NeighborAnswer, NeighborCache}; use crate::phy::{Device, DeviceCapabilities, Medium, RxToken, TxToken}; use crate::socket::*; use crate::time::{Duration, Instant}; use crate::wire::*; use crate::{Error, Result}; /// A network interface. /// /// The network interface logically owns a number of other data structures; to avoid /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be /// a `&mut [T]`, or `Vec` if a heap is available. pub struct Interface<'a, DeviceT: for<'d> Device<'d>> { device: DeviceT, sockets: SocketSet<'a>, inner: InterfaceInner<'a>, } /// The device independent part of an Ethernet network interface. /// /// Separating the device from the data required for prorcessing and dispatching makes /// it possible to borrow them independently. For example, the tx and rx tokens borrow /// the `device` mutably until they're used, which makes it impossible to call other /// methods on the `Interface` in this time (since its `device` field is borrowed /// exclusively). However, it is still possible to call methods on its `inner` field. struct InterfaceInner<'a> { #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] neighbor_cache: Option>, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] hardware_addr: Option, #[cfg(feature = "medium-ieee802154")] sequence_no: u8, #[cfg(feature = "medium-ieee802154")] pan_id: Option, ip_addrs: ManagedSlice<'a, IpCidr>, #[cfg(feature = "proto-ipv4")] any_ip: bool, routes: Routes<'a>, #[cfg(feature = "proto-igmp")] ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>, /// When to report for (all or) the next multicast group membership via IGMP #[cfg(feature = "proto-igmp")] igmp_report_state: IgmpReportState, } /// A builder structure used for creating a network interface. pub struct InterfaceBuilder<'a, DeviceT: for<'d> Device<'d>> { device: DeviceT, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] hardware_addr: Option, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] neighbor_cache: Option>, #[cfg(feature = "medium-ieee802154")] sequence_no: u8, #[cfg(feature = "medium-ieee802154")] pan_id: Option, ip_addrs: ManagedSlice<'a, IpCidr>, sockets: SocketSet<'a>, #[cfg(feature = "proto-ipv4")] any_ip: bool, routes: Routes<'a>, /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead. #[cfg(feature = "proto-igmp")] ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>, } impl<'a, DeviceT> InterfaceBuilder<'a, DeviceT> where DeviceT: for<'d> Device<'d>, { /// Create a builder used for creating a network interface using the /// given device and address. #[cfg_attr( feature = "medium-ethernet", doc = r##" # Examples ``` # use std::collections::BTreeMap; use smoltcp::iface::{InterfaceBuilder, NeighborCache}; # use smoltcp::phy::{Loopback, Medium}; use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress}; let device = // ... # Loopback::new(Medium::Ethernet); let hw_addr = // ... # EthernetAddress::default(); let neighbor_cache = // ... # NeighborCache::new(BTreeMap::new()); let ip_addrs = // ... # []; let iface = InterfaceBuilder::new(device, vec![]) .hardware_addr(hw_addr.into()) .neighbor_cache(neighbor_cache) .ip_addrs(ip_addrs) .finalize(); ``` "## )] pub fn new(device: DeviceT, sockets: SocketsT) -> Self where SocketsT: Into>>>, { InterfaceBuilder { device: device, sockets: SocketSet::new(sockets), #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] hardware_addr: None, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] neighbor_cache: None, #[cfg(feature = "medium-ieee802154")] sequence_no: 1, #[cfg(feature = "medium-ieee802154")] pan_id: None, ip_addrs: ManagedSlice::Borrowed(&mut []), #[cfg(feature = "proto-ipv4")] any_ip: false, routes: Routes::new(ManagedMap::Borrowed(&mut [])), #[cfg(feature = "proto-igmp")] ipv4_multicast_groups: ManagedMap::Borrowed(&mut []), } } /// Set the Hardware address the interface will use. See also /// [ethernet_addr]. /// /// # Panics /// This function panics if the address is not unicast. /// /// [ethernet_addr]: struct.Interface.html#method.ethernet_addr #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] pub fn hardware_addr(mut self, addr: HardwareAddress) -> Self { InterfaceInner::check_hardware_addr(&addr); self.hardware_addr = Some(addr); self } /// Set the initial IEEE802.15.4 sequence number the interface will use. /// /// **NOTE**: this needs to be initailized randomly and not equal to 0. #[cfg(feature = "medium-ieee802154")] pub fn sequence_no(mut self, sequence_no: u8) -> Self { self.sequence_no = sequence_no; self } /// Set the IEEE802.15.4 PAN ID the interface will use. /// /// **NOTE**: we use the same PAN ID for destination and source. #[cfg(feature = "medium-ieee802154")] pub fn pan_id(mut self, pan_id: Ieee802154Pan) -> Self { self.pan_id = Some(pan_id); self } /// Set the IP addresses the interface will use. See also /// [ip_addrs]. /// /// # Panics /// This function panics if any of the addresses are not unicast. /// /// [ip_addrs]: struct.Interface.html#method.ip_addrs pub fn ip_addrs(mut self, ip_addrs: T) -> Self where T: Into>, { let ip_addrs = ip_addrs.into(); InterfaceInner::check_ip_addrs(&ip_addrs); self.ip_addrs = ip_addrs; self } /// Enable or disable the AnyIP capability, allowing packets to be received /// locally on IPv4 addresses other than the interface's configured [ip_addrs]. /// When AnyIP is enabled and a route prefix in [routes] specifies one of /// the interface's [ip_addrs] as its gateway, the interface will accept /// packets addressed to that prefix. /// /// # IPv6 /// /// This option is not available or required for IPv6 as packets sent to /// the interface are not filtered by IPv6 address. /// /// [routes]: struct.Interface.html#method.routes /// [ip_addrs]: struct.Interface.html#method.ip_addrs #[cfg(feature = "proto-ipv4")] pub fn any_ip(mut self, enabled: bool) -> Self { self.any_ip = enabled; self } /// Set the IP routes the interface will use. See also /// [routes]. /// /// [routes]: struct.Interface.html#method.routes pub fn routes(mut self, routes: T) -> InterfaceBuilder<'a, DeviceT> where T: Into>, { self.routes = routes.into(); self } /// Provide storage for multicast groups. /// /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`. /// Using [`join_multicast_group()`] will send initial membership reports. /// /// A previously destroyed interface can be recreated by reusing the multicast group /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`. /// Note that this way initial membership reports are **not** sent. /// /// [`join_multicast_group()`]: struct.Interface.html#method.join_multicast_group #[cfg(feature = "proto-igmp")] pub fn ipv4_multicast_groups(mut self, ipv4_multicast_groups: T) -> Self where T: Into>, { self.ipv4_multicast_groups = ipv4_multicast_groups.into(); self } /// Set the Neighbor Cache the interface will use. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'a>) -> Self { self.neighbor_cache = Some(neighbor_cache); self } /// Create a network interface using the previously provided configuration. /// /// # Panics /// If a required option is not provided, this function will panic. Required /// options are: /// /// - [ethernet_addr] /// - [neighbor_cache] /// /// [ethernet_addr]: #method.ethernet_addr /// [neighbor_cache]: #method.neighbor_cache pub fn finalize(self) -> Interface<'a, DeviceT> { let device_capabilities = self.device.capabilities(); let (hardware_addr, neighbor_cache) = match device_capabilities.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => ( Some( self.hardware_addr .expect("hardware_addr required option was not set"), ), Some( self.neighbor_cache .expect("neighbor_cache required option was not set"), ), ), #[cfg(feature = "medium-ip")] Medium::Ip => { assert!( self.hardware_addr.is_none(), "hardware_addr is set, but device medium is IP" ); assert!( self.neighbor_cache.is_none(), "neighbor_cache is set, but device medium is IP" ); (None, None) } #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => ( Some( self.hardware_addr .expect("hardware_addr required option was not set"), ), Some( self.neighbor_cache .expect("neighbor_cache required option was not set"), ), ), }; Interface { device: self.device, sockets: self.sockets, inner: InterfaceInner { #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] hardware_addr, ip_addrs: self.ip_addrs, #[cfg(feature = "proto-ipv4")] any_ip: self.any_ip, routes: self.routes, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] neighbor_cache, #[cfg(feature = "proto-igmp")] ipv4_multicast_groups: self.ipv4_multicast_groups, #[cfg(feature = "proto-igmp")] igmp_report_state: IgmpReportState::Inactive, #[cfg(feature = "medium-ieee802154")] sequence_no: self.sequence_no, #[cfg(feature = "medium-ieee802154")] pan_id: self.pan_id, }, } } } #[derive(Debug, PartialEq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[cfg(feature = "medium-ethernet")] enum EthernetPacket<'a> { #[cfg(feature = "proto-ipv4")] Arp(ArpRepr), Ip(IpPacket<'a>), } #[derive(Debug, PartialEq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub(crate) enum IpPacket<'a> { #[cfg(feature = "proto-ipv4")] Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)), #[cfg(feature = "proto-igmp")] Igmp((Ipv4Repr, IgmpRepr)), #[cfg(feature = "proto-ipv6")] Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)), #[cfg(feature = "socket-raw")] Raw((IpRepr, &'a [u8])), #[cfg(feature = "socket-udp")] Udp((IpRepr, UdpRepr, &'a [u8])), #[cfg(feature = "socket-tcp")] Tcp((IpRepr, TcpRepr<'a>)), #[cfg(feature = "socket-dhcpv4")] Dhcpv4((Ipv4Repr, UdpRepr, DhcpRepr<'a>)), } impl<'a> IpPacket<'a> { pub(crate) fn ip_repr(&self) -> IpRepr { match self { #[cfg(feature = "proto-ipv4")] IpPacket::Icmpv4((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr), #[cfg(feature = "proto-igmp")] IpPacket::Igmp((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr), #[cfg(feature = "proto-ipv6")] IpPacket::Icmpv6((ipv6_repr, _)) => IpRepr::Ipv6(*ipv6_repr), #[cfg(feature = "socket-raw")] IpPacket::Raw((ip_repr, _)) => ip_repr.clone(), #[cfg(feature = "socket-udp")] IpPacket::Udp((ip_repr, _, _)) => ip_repr.clone(), #[cfg(feature = "socket-tcp")] IpPacket::Tcp((ip_repr, _)) => ip_repr.clone(), #[cfg(feature = "socket-dhcpv4")] IpPacket::Dhcpv4((ipv4_repr, _, _)) => IpRepr::Ipv4(*ipv4_repr), } } pub(crate) fn emit_payload( &self, _ip_repr: IpRepr, payload: &mut [u8], caps: &DeviceCapabilities, ) { match self { #[cfg(feature = "proto-ipv4")] IpPacket::Icmpv4((_, icmpv4_repr)) => { icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &caps.checksum) } #[cfg(feature = "proto-igmp")] IpPacket::Igmp((_, igmp_repr)) => { igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload)) } #[cfg(feature = "proto-ipv6")] IpPacket::Icmpv6((_, icmpv6_repr)) => icmpv6_repr.emit( &_ip_repr.src_addr(), &_ip_repr.dst_addr(), &mut Icmpv6Packet::new_unchecked(payload), &caps.checksum, ), #[cfg(feature = "socket-raw")] IpPacket::Raw((_, raw_packet)) => payload.copy_from_slice(raw_packet), #[cfg(feature = "socket-udp")] IpPacket::Udp((_, udp_repr, inner_payload)) => udp_repr.emit( &mut UdpPacket::new_unchecked(payload), &_ip_repr.src_addr(), &_ip_repr.dst_addr(), inner_payload.len(), |buf| buf.copy_from_slice(inner_payload), &caps.checksum, ), #[cfg(feature = "socket-tcp")] IpPacket::Tcp((_, mut tcp_repr)) => { // This is a terrible hack to make TCP performance more acceptable on systems // where the TCP buffers are significantly larger than network buffers, // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window) // together with four 1500 B Ethernet receive buffers. If left untreated, // this would result in our peer pushing our window and sever packet loss. // // I'm really not happy about this "solution" but I don't know what else to do. if let Some(max_burst_size) = caps.max_burst_size { let mut max_segment_size = caps.max_transmission_unit; max_segment_size -= _ip_repr.buffer_len(); max_segment_size -= tcp_repr.header_len(); let max_window_size = max_burst_size * max_segment_size; if tcp_repr.window_len as usize > max_window_size { tcp_repr.window_len = max_window_size as u16; } } tcp_repr.emit( &mut TcpPacket::new_unchecked(payload), &_ip_repr.src_addr(), &_ip_repr.dst_addr(), &caps.checksum, ); } #[cfg(feature = "socket-dhcpv4")] IpPacket::Dhcpv4((_, udp_repr, dhcp_repr)) => udp_repr.emit( &mut UdpPacket::new_unchecked(payload), &_ip_repr.src_addr(), &_ip_repr.dst_addr(), dhcp_repr.buffer_len(), |buf| dhcp_repr.emit(&mut DhcpPacket::new_unchecked(buf)).unwrap(), &caps.checksum, ), } } } #[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))] fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize { // Send back as much of the original payload as will fit within // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for // more details. // // Since the entire network layer packet must fit within the minumum // MTU supported, the payload must not exceed the following: // // - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size cmp::min(len, mtu - header_len * 2 - 8) } #[cfg(feature = "proto-igmp")] enum IgmpReportState { Inactive, ToGeneralQuery { version: IgmpVersion, timeout: Instant, interval: Duration, next_index: usize, }, ToSpecificQuery { version: IgmpVersion, timeout: Instant, group: Ipv4Address, }, } impl<'a, DeviceT> Interface<'a, DeviceT> where DeviceT: for<'d> Device<'d>, { /// Add a socket to the interface with the reference count 1, and return its handle. /// /// # Panics /// This function panics if the storage is fixed-size (not a `Vec`) and is full. pub fn add_socket(&mut self, socket: T) -> SocketHandle where T: Into>, { self.sockets.add(socket) } /// Get a socket from the interface by its handle, as mutable. /// /// # Panics /// This function may panic if the handle does not belong to this socket set /// or the socket has the wrong type. pub fn get_socket>(&mut self, handle: SocketHandle) -> &mut T { self.sockets.get(handle) } /// Remove a socket from the set, without changing its state. /// /// # Panics /// This function may panic if the handle does not belong to this socket set. pub fn remove_socket(&mut self, handle: SocketHandle) -> Socket<'a> { self.sockets.remove(handle) } /// Get the HardwareAddress address of the interface. /// /// # Panics /// This function panics if the medium is not Ethernet or Ieee802154. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] pub fn hardware_addr(&self) -> HardwareAddress { #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))] assert!(self.device().capabilities().medium == Medium::Ethernet); #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))] assert!(self.device().capabilities().medium == Medium::Ieee802154); #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))] assert!( self.device().capabilities().medium == Medium::Ethernet || self.device().capabilities().medium == Medium::Ethernet ); self.inner.hardware_addr.unwrap() } /// Set the HardwareAddress address of the interface. /// /// # Panics /// This function panics if the address is not unicast, and if the medium is not Ethernet or /// Ieee802154. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] pub fn set_hardware_addr(&mut self, addr: HardwareAddress) { #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))] assert!(self.device().capabilities().medium == Medium::Ethernet); #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))] assert!(self.device().capabilities().medium == Medium::Ieee802154); #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))] assert!( self.device().capabilities().medium == Medium::Ethernet || self.device().capabilities().medium == Medium::Ethernet ); InterfaceInner::check_hardware_addr(&addr); self.inner.hardware_addr = Some(addr); } /// Get a reference to the inner device. pub fn device(&self) -> &DeviceT { &self.device } /// Get a mutable reference to the inner device. /// /// There are no invariants imposed on the device by the interface itself. Furthermore the /// trait implementations, required for references of all lifetimes, guarantees that the /// mutable reference can not invalidate the device as such. For some devices, such access may /// still allow modifications with adverse effects on the usability as a `phy` device. You /// should not use them this way. pub fn device_mut(&mut self) -> &mut DeviceT { &mut self.device } /// Add an address to a list of subscribed multicast IP addresses. /// /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent` /// indicates whether an initial immediate announcement has been sent. pub fn join_multicast_group>( &mut self, addr: T, _timestamp: Instant, ) -> Result { match addr.into() { #[cfg(feature = "proto-igmp")] IpAddress::Ipv4(addr) => { let is_not_new = self .inner .ipv4_multicast_groups .insert(addr, ()) .map_err(|_| Error::Exhausted)? .is_some(); if is_not_new { Ok(false) } else if let Some(pkt) = self.inner.igmp_report_packet(IgmpVersion::Version2, addr) { let cx = self.context(_timestamp); // Send initial membership report let tx_token = self.device.transmit().ok_or(Error::Exhausted)?; self.inner.dispatch_ip(&cx, tx_token, pkt)?; Ok(true) } else { Ok(false) } } // Multicast is not yet implemented for other address families _ => Err(Error::Unaddressable), } } /// Remove an address from the subscribed multicast IP addresses. /// /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent` /// indicates whether an immediate leave packet has been sent. pub fn leave_multicast_group>( &mut self, addr: T, _timestamp: Instant, ) -> Result { match addr.into() { #[cfg(feature = "proto-igmp")] IpAddress::Ipv4(addr) => { let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr).is_none(); if was_not_present { Ok(false) } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) { let cx = self.context(_timestamp); // Send group leave packet let tx_token = self.device.transmit().ok_or(Error::Exhausted)?; self.inner.dispatch_ip(&cx, tx_token, pkt)?; Ok(true) } else { Ok(false) } } // Multicast is not yet implemented for other address families _ => Err(Error::Unaddressable), } } /// Check whether the interface listens to given destination multicast IP address. pub fn has_multicast_group>(&self, addr: T) -> bool { self.inner.has_multicast_group(addr) } /// Get the IP addresses of the interface. pub fn ip_addrs(&self) -> &[IpCidr] { self.inner.ip_addrs.as_ref() } /// Get the first IPv4 address if present. #[cfg(feature = "proto-ipv4")] pub fn ipv4_addr(&self) -> Option { self.ip_addrs() .iter() .filter_map(|cidr| match cidr.address() { IpAddress::Ipv4(addr) => Some(addr), _ => None, }) .next() } /// Update the IP addresses of the interface. /// /// # Panics /// This function panics if any of the addresses are not unicast. pub fn update_ip_addrs)>(&mut self, f: F) { f(&mut self.inner.ip_addrs); InterfaceInner::flush_cache(&mut self.inner); InterfaceInner::check_ip_addrs(&self.inner.ip_addrs) } /// Check whether the interface has the given IP address assigned. pub fn has_ip_addr>(&self, addr: T) -> bool { self.inner.has_ip_addr(addr) } /// Get the first IPv4 address of the interface. #[cfg(feature = "proto-ipv4")] pub fn ipv4_address(&self) -> Option { self.inner.ipv4_address() } pub fn routes(&self) -> &Routes<'a> { &self.inner.routes } pub fn routes_mut(&mut self) -> &mut Routes<'a> { &mut self.inner.routes } /// Transmit packets queued in the given sockets, and receive packets queued /// in the device. /// /// This function returns a boolean value indicating whether any packets were /// processed or emitted, and thus, whether the readiness of any socket might /// have changed. /// /// # Errors /// This method will routinely return errors in response to normal network /// activity as well as certain boundary conditions such as buffer exhaustion. /// These errors are provided as an aid for troubleshooting, and are meant /// to be logged and ignored. /// /// As a special case, `Err(Error::Unrecognized)` is returned in response to /// packets containing any unsupported protocol, option, or form, which is /// a very common occurrence and on a production system it should not even /// be logged. pub fn poll(&mut self, timestamp: Instant) -> Result { let cx = self.context(timestamp); let mut readiness_may_have_changed = false; loop { let processed_any = self.socket_ingress(&cx); let emitted_any = self.socket_egress(&cx)?; #[cfg(feature = "proto-igmp")] self.igmp_egress(&cx, timestamp)?; if processed_any || emitted_any { readiness_may_have_changed = true; } else { break; } } Ok(readiness_may_have_changed) } /// Return a _soft deadline_ for calling [poll] the next time. /// The [Instant] returned is the time at which you should call [poll] next. /// It is harmless (but wastes energy) to call it before the [Instant], and /// potentially harmful (impacting quality of service) to call it after the /// [Instant] /// /// [poll]: #method.poll /// [Instant]: struct.Instant.html pub fn poll_at(&self, timestamp: Instant) -> Option { let cx = self.context(timestamp); self.sockets .iter() .filter_map(|socket| { let socket_poll_at = socket.poll_at(&cx); match socket.meta().poll_at(socket_poll_at, |ip_addr| { self.inner.has_neighbor(&cx, &ip_addr) }) { PollAt::Ingress => None, PollAt::Time(instant) => Some(instant), PollAt::Now => Some(Instant::from_millis(0)), } }) .min() } /// Return an _advisory wait time_ for calling [poll] the next time. /// The [Duration] returned is the time left to wait before calling [poll] next. /// It is harmless (but wastes energy) to call it before the [Duration] has passed, /// and potentially harmful (impacting quality of service) to call it after the /// [Duration] has passed. /// /// [poll]: #method.poll /// [Duration]: struct.Duration.html pub fn poll_delay(&self, timestamp: Instant) -> Option { match self.poll_at(timestamp) { Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp), Some(_) => Some(Duration::from_millis(0)), _ => None, } } fn socket_ingress(&mut self, cx: &Context) -> bool { let mut processed_any = false; let Self { device, inner, sockets, } = self; while let Some((rx_token, tx_token)) = device.receive() { if let Err(err) = rx_token.consume(cx.now, |frame| match cx.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => match inner.process_ethernet(cx, sockets, &frame) { Ok(response) => { processed_any = true; if let Some(packet) = response { if let Err(err) = inner.dispatch(cx, tx_token, packet) { net_debug!("Failed to send response: {}", err); } } Ok(()) } Err(err) => { net_debug!("cannot process ingress packet: {}", err); #[cfg(not(feature = "defmt"))] net_debug!( "packet dump follows:\n{}", PrettyPrinter::>::new("", &frame) ); Err(err) } }, #[cfg(feature = "medium-ip")] Medium::Ip => match inner.process_ip(cx, sockets, &frame) { Ok(response) => { processed_any = true; if let Some(packet) = response { if let Err(err) = inner.dispatch_ip(cx, tx_token, packet) { net_debug!("Failed to send response: {}", err); } } Ok(()) } Err(err) => { net_debug!("cannot process ingress packet: {}", err); Err(err) } }, #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => match inner.process_ieee802154(cx, sockets, &frame) { Ok(response) => { processed_any = true; if let Some(packet) = response { if let Err(err) = inner.dispatch_ieee802154(cx, tx_token, packet) { net_debug!("Failed to send response: {}", err); } } Ok(()) } Err(err) => { net_debug!("cannot process ingress packet: {}", err); Err(err) } }, }) { net_debug!("Failed to consume RX token: {}", err); } } processed_any } fn socket_egress(&mut self, cx: &Context) -> Result { let Self { device, inner, sockets, } = self; let _caps = device.capabilities(); let mut emitted_any = false; for socket in sockets.iter_mut() { if !socket .meta_mut() .egress_permitted(cx.now, |ip_addr| inner.has_neighbor(cx, &ip_addr)) { continue; } let mut neighbor_addr = None; let mut device_result = Ok(()); macro_rules! respond { ($response:expr) => {{ let response = $response; neighbor_addr = Some(response.ip_repr().dst_addr()); let tx_token = device.transmit().ok_or(Error::Exhausted)?; device_result = inner.dispatch_ip(cx, tx_token, response); device_result }}; } let socket_result = match *socket { #[cfg(feature = "socket-raw")] Socket::Raw(ref mut socket) => { socket.dispatch(cx, |response| respond!(IpPacket::Raw(response))) } #[cfg(all( feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6") ))] Socket::Icmp(ref mut socket) => socket.dispatch(cx, |response| match response { #[cfg(feature = "proto-ipv4")] (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => { respond!(IpPacket::Icmpv4((ipv4_repr, icmpv4_repr))) } #[cfg(feature = "proto-ipv6")] (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => { respond!(IpPacket::Icmpv6((ipv6_repr, icmpv6_repr))) } _ => Err(Error::Unaddressable), }), #[cfg(feature = "socket-udp")] Socket::Udp(ref mut socket) => { socket.dispatch(cx, |response| respond!(IpPacket::Udp(response))) } #[cfg(feature = "socket-tcp")] Socket::Tcp(ref mut socket) => { socket.dispatch(cx, |response| respond!(IpPacket::Tcp(response))) } #[cfg(feature = "socket-dhcpv4")] Socket::Dhcpv4(ref mut socket) => { socket.dispatch(cx, |response| respond!(IpPacket::Dhcpv4(response))) } }; match (device_result, socket_result) { (Err(Error::Exhausted), _) => break, // nowhere to transmit (Ok(()), Err(Error::Exhausted)) => (), // nothing to transmit (Err(Error::Unaddressable), _) => { // `NeighborCache` already takes care of rate limiting the neighbor discovery // requests from the socket. However, without an additional rate limiting // mechanism, we would spin on every socket that has yet to discover its // neighboor. socket .meta_mut() .neighbor_missing(cx.now, neighbor_addr.expect("non-IP response packet")); break; } (Err(err), _) | (_, Err(err)) => { net_debug!( "{}: cannot dispatch egress packet: {}", socket.meta().handle, err ); return Err(err); } (Ok(()), Ok(())) => emitted_any = true, } } Ok(emitted_any) } /// Depending on `igmp_report_state` and the therein contained /// timeouts, send IGMP membership reports. #[cfg(feature = "proto-igmp")] fn igmp_egress(&mut self, cx: &Context, timestamp: Instant) -> Result { match self.inner.igmp_report_state { IgmpReportState::ToSpecificQuery { version, timeout, group, } if timestamp >= timeout => { if let Some(pkt) = self.inner.igmp_report_packet(version, group) { // Send initial membership report let tx_token = self.device.transmit().ok_or(Error::Exhausted)?; self.inner.dispatch_ip(cx, tx_token, pkt)?; } self.inner.igmp_report_state = IgmpReportState::Inactive; Ok(true) } IgmpReportState::ToGeneralQuery { version, timeout, interval, next_index, } if timestamp >= timeout => { let addr = self .inner .ipv4_multicast_groups .iter() .nth(next_index) .map(|(addr, ())| *addr); match addr { Some(addr) => { if let Some(pkt) = self.inner.igmp_report_packet(version, addr) { // Send initial membership report let tx_token = self.device.transmit().ok_or(Error::Exhausted)?; self.inner.dispatch_ip(cx, tx_token, pkt)?; } let next_timeout = (timeout + interval).max(timestamp); self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery { version, timeout: next_timeout, interval, next_index: next_index + 1, }; Ok(true) } None => { self.inner.igmp_report_state = IgmpReportState::Inactive; Ok(false) } } } _ => Ok(false), } } fn context(&self, now: Instant) -> Context { Context { now, caps: self.device.capabilities(), #[cfg(all( any(feature = "medium-ethernet", feature = "medium-ieee802154"), feature = "socket-dhcpv4" ))] hardware_addr: self.inner.hardware_addr, #[cfg(feature = "medium-ieee802154")] pan_id: self.inner.pan_id, } } } impl<'a> InterfaceInner<'a> { #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] fn check_hardware_addr(addr: &HardwareAddress) { if !addr.is_unicast() { panic!("Ethernet address {} is not unicast", addr) } } fn check_ip_addrs(addrs: &[IpCidr]) { for cidr in addrs { if !cidr.address().is_unicast() && !cidr.address().is_unspecified() { panic!("IP address {} is not unicast", cidr.address()) } } } #[cfg(feature = "medium-ieee802154")] fn get_sequence_number(&mut self) -> u8 { let no = self.sequence_no; self.sequence_no = self.sequence_no.wrapping_add(1); no } /// Determine if the given `Ipv6Address` is the solicited node /// multicast address for a IPv6 addresses assigned to the interface. /// See [RFC 4291 § 2.7.1] for more details. /// /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1 #[cfg(feature = "proto-ipv6")] pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool { self.ip_addrs.iter().any(|cidr| { match *cidr { IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK => { // Take the lower order 24 bits of the IPv6 address and // append those bits to FF02:0:0:0:0:1:FF00::/104. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..] } _ => false, } }) } /// Check whether the interface has the given IP address assigned. fn has_ip_addr>(&self, addr: T) -> bool { let addr = addr.into(); self.ip_addrs.iter().any(|probe| probe.address() == addr) } /// Get the first IPv4 address of the interface. #[cfg(feature = "proto-ipv4")] pub fn ipv4_address(&self) -> Option { self.ip_addrs .iter() .filter_map(|addr| match *addr { IpCidr::Ipv4(cidr) => Some(cidr.address()), #[cfg(feature = "proto-ipv6")] IpCidr::Ipv6(_) => None, }) .next() } /// Check whether the interface listens to given destination multicast IP address. /// /// If built without feature `proto-igmp` this function will /// always return `false`. pub fn has_multicast_group>(&self, addr: T) -> bool { match addr.into() { #[cfg(feature = "proto-igmp")] IpAddress::Ipv4(key) => { key == Ipv4Address::MULTICAST_ALL_SYSTEMS || self.ipv4_multicast_groups.get(&key).is_some() } _ => false, } } #[cfg(feature = "medium-ethernet")] fn process_ethernet<'frame, T: AsRef<[u8]>>( &mut self, cx: &Context, sockets: &mut SocketSet, frame: &'frame T, ) -> Result>> { let eth_frame = EthernetFrame::new_checked(frame)?; // Ignore any packets not directed to our hardware address or any of the multicast groups. if !eth_frame.dst_addr().is_broadcast() && !eth_frame.dst_addr().is_multicast() && HardwareAddress::Ethernet(eth_frame.dst_addr()) != self.hardware_addr.unwrap() { return Ok(None); } match eth_frame.ethertype() { #[cfg(feature = "proto-ipv4")] EthernetProtocol::Arp => self.process_arp(cx.now, ð_frame), #[cfg(feature = "proto-ipv4")] EthernetProtocol::Ipv4 => { let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload())?; self.process_ipv4(cx, sockets, &ipv4_packet) .map(|o| o.map(EthernetPacket::Ip)) } #[cfg(feature = "proto-ipv6")] EthernetProtocol::Ipv6 => { let ipv6_packet = Ipv6Packet::new_checked(eth_frame.payload())?; self.process_ipv6(cx, sockets, &ipv6_packet) .map(|o| o.map(EthernetPacket::Ip)) } // Drop all other traffic. _ => Err(Error::Unrecognized), } } #[cfg(feature = "medium-ip")] fn process_ip<'frame, T: AsRef<[u8]>>( &mut self, cx: &Context, sockets: &mut SocketSet, ip_payload: &'frame T, ) -> Result>> { match IpVersion::of_packet(ip_payload.as_ref()) { #[cfg(feature = "proto-ipv4")] Ok(IpVersion::Ipv4) => { let ipv4_packet = Ipv4Packet::new_checked(ip_payload)?; self.process_ipv4(cx, sockets, &ipv4_packet) } #[cfg(feature = "proto-ipv6")] Ok(IpVersion::Ipv6) => { let ipv6_packet = Ipv6Packet::new_checked(ip_payload)?; self.process_ipv6(cx, sockets, &ipv6_packet) } // Drop all other traffic. _ => Err(Error::Unrecognized), } } #[cfg(feature = "medium-ieee802154")] fn process_ieee802154<'frame, T: AsRef<[u8]> + ?Sized>( &mut self, cx: &Context, sockets: &mut SocketSet, sixlowpan_payload: &'frame T, ) -> Result>> { let ieee802154_frame = Ieee802154Frame::new_checked(sixlowpan_payload)?; let ieee802154_repr = Ieee802154Repr::parse(&ieee802154_frame)?; if ieee802154_repr.frame_type != Ieee802154FrameType::Data { return Ok(None); } // Drop frames when the user has set a PAN id and the PAN id from frame is not equal to this // When the user didn't set a PAN id (so it is None), then we accept all PAN id's. // We always accept the broadcast PAN id. if cx.pan_id.is_some() && ieee802154_repr.dst_pan_id != cx.pan_id && ieee802154_repr.dst_pan_id != Some(Ieee802154Pan::BROADCAST) { net_debug!( "dropping {:?} because not our PAN id (or not broadcast)", ieee802154_repr ); return Ok(None); } match ieee802154_frame.payload() { Some(payload) => self.process_sixlowpan(cx, sockets, &ieee802154_repr, payload), None => Ok(None), } } #[cfg(feature = "proto-sixlowpan")] fn process_sixlowpan<'frame, T: AsRef<[u8]> + ?Sized>( &mut self, cx: &Context, sockets: &mut SocketSet, ieee802154_repr: &Ieee802154Repr, payload: &'frame T, ) -> Result>> { // The first header needs to be an IPHC header. let iphc_packet = SixlowpanIphcPacket::new_checked(payload)?; let iphc_repr = SixlowpanIphcRepr::parse( &iphc_packet, ieee802154_repr.src_addr, ieee802154_repr.dst_addr, )?; let payload = iphc_packet.payload(); let mut ipv6_repr = Ipv6Repr { src_addr: iphc_repr.src_addr, dst_addr: iphc_repr.dst_addr, hop_limit: iphc_repr.hop_limit, next_header: IpProtocol::Unknown(0), payload_len: iphc_repr.buffer_len(), }; // Currently we assume the next header is a UDP, so we ignore everything else. match iphc_repr.next_header { SixlowpanNextHeader::Compressed => { match SixlowpanNhcPacket::dispatch(payload)? { SixlowpanNhcPacket::ExtensionHeader(_) => { net_debug!("Extension headers are currently not supported for 6LoWPAN"); Ok(None) } SixlowpanNhcPacket::UdpHeader(udp_packet) => { ipv6_repr.next_header = IpProtocol::Udp; // Handle the UDP let udp_repr = SixlowpanUdpRepr::parse( &udp_packet, &iphc_repr.src_addr, &iphc_repr.dst_addr, udp_packet.checksum(), )?; // Look for UDP sockets that will accept the UDP packet. // If it does not accept the packet, then send an ICMP message. for udp_socket in sockets.iter_mut().filter_map(UdpSocket::downcast) { if !udp_socket.accepts(&IpRepr::Ipv6(ipv6_repr), &udp_repr) { continue; } match udp_socket.process( cx, &IpRepr::Ipv6(ipv6_repr), &udp_repr, udp_packet.payload(), ) { Ok(()) => return Ok(None), Err(e) => return Err(e), } } let payload_len = icmp_reply_payload_len( payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len(), ); let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable { reason: Icmpv6DstUnreachable::PortUnreachable, header: ipv6_repr, data: &payload[0..payload_len], }; Ok(self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)) } } } SixlowpanNextHeader::Uncompressed(nxt_hdr) => match nxt_hdr { IpProtocol::Icmpv6 => { ipv6_repr.next_header = IpProtocol::Icmpv6; self.process_icmpv6(cx, sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload()) } _ => { net_debug!("Headers other than ICMPv6 and compressed headers are currently not supported for 6LoWPAN"); Ok(None) } }, } } #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))] fn process_arp<'frame, T: AsRef<[u8]>>( &mut self, timestamp: Instant, eth_frame: &EthernetFrame<&'frame T>, ) -> Result>> { let arp_packet = ArpPacket::new_checked(eth_frame.payload())?; let arp_repr = ArpRepr::parse(&arp_packet)?; match arp_repr { ArpRepr::EthernetIpv4 { operation, source_hardware_addr, source_protocol_addr, target_protocol_addr, .. } => { // Only process ARP packets for us. if !self.has_ip_addr(target_protocol_addr) { return Ok(None); } // Only process REQUEST and RESPONSE. if let ArpOperation::Unknown(_) = operation { net_debug!("arp: unknown operation code"); return Err(Error::Malformed); } // Discard packets with non-unicast source addresses. if !source_protocol_addr.is_unicast() || !source_hardware_addr.is_unicast() { net_debug!("arp: non-unicast source address"); return Err(Error::Malformed); } if !self.in_same_network(&IpAddress::Ipv4(source_protocol_addr)) { net_debug!("arp: source IP address not in same network as us"); return Err(Error::Malformed); } // Fill the ARP cache from any ARP packet aimed at us (both request or response). // We fill from requests too because if someone is requesting our address they // are probably going to talk to us, so we avoid having to request their address // when we later reply to them. self.neighbor_cache.as_mut().unwrap().fill( source_protocol_addr.into(), source_hardware_addr.into(), timestamp, ); if operation == ArpOperation::Request { let src_hardware_addr = match self.hardware_addr { Some(HardwareAddress::Ethernet(addr)) => addr, _ => unreachable!(), }; Ok(Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 { operation: ArpOperation::Reply, source_hardware_addr: src_hardware_addr, source_protocol_addr: target_protocol_addr, target_hardware_addr: source_hardware_addr, target_protocol_addr: source_protocol_addr, }))) } else { Ok(None) } } } } #[cfg(all( any(feature = "proto-ipv4", feature = "proto-ipv6"), feature = "socket-raw" ))] fn raw_socket_filter<'frame>( &mut self, cx: &Context, sockets: &mut SocketSet, ip_repr: &IpRepr, ip_payload: &'frame [u8], ) -> bool { let mut handled_by_raw_socket = false; // Pass every IP packet to all raw sockets we have registered. for raw_socket in sockets.iter_mut().filter_map(RawSocket::downcast) { if !raw_socket.accepts(ip_repr) { continue; } match raw_socket.process(cx, ip_repr, ip_payload) { // The packet is valid and handled by socket. Ok(()) => handled_by_raw_socket = true, // The socket buffer is full or the packet was truncated Err(Error::Exhausted) | Err(Error::Truncated) => (), // Raw sockets don't validate the packets in any way. Err(_) => unreachable!(), } } handled_by_raw_socket } #[cfg(feature = "proto-ipv6")] fn process_ipv6<'frame, T: AsRef<[u8]> + ?Sized>( &mut self, cx: &Context, sockets: &mut SocketSet, ipv6_packet: &Ipv6Packet<&'frame T>, ) -> Result>> { let ipv6_repr = Ipv6Repr::parse(ipv6_packet)?; if !ipv6_repr.src_addr.is_unicast() { // Discard packets with non-unicast source addresses. net_debug!("non-unicast source address"); return Err(Error::Malformed); } let ip_payload = ipv6_packet.payload(); #[cfg(feature = "socket-raw")] let handled_by_raw_socket = self.raw_socket_filter(cx, sockets, &ipv6_repr.into(), ip_payload); #[cfg(not(feature = "socket-raw"))] let handled_by_raw_socket = false; self.process_nxt_hdr( cx, sockets, ipv6_repr, ipv6_repr.next_header, handled_by_raw_socket, ip_payload, ) } /// Given the next header value forward the payload onto the correct process /// function. #[cfg(feature = "proto-ipv6")] fn process_nxt_hdr<'frame>( &mut self, cx: &Context, sockets: &mut SocketSet, ipv6_repr: Ipv6Repr, nxt_hdr: IpProtocol, handled_by_raw_socket: bool, ip_payload: &'frame [u8], ) -> Result>> { match nxt_hdr { IpProtocol::Icmpv6 => self.process_icmpv6(cx, sockets, ipv6_repr.into(), ip_payload), #[cfg(feature = "socket-udp")] IpProtocol::Udp => self.process_udp( cx, sockets, ipv6_repr.into(), handled_by_raw_socket, ip_payload, ), #[cfg(feature = "socket-tcp")] IpProtocol::Tcp => self.process_tcp(cx, sockets, ipv6_repr.into(), ip_payload), IpProtocol::HopByHop => { self.process_hopbyhop(cx, sockets, ipv6_repr, handled_by_raw_socket, ip_payload) } #[cfg(feature = "socket-raw")] _ if handled_by_raw_socket => Ok(None), _ => { // Send back as much of the original payload as we can. let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len()); let icmp_reply_repr = Icmpv6Repr::ParamProblem { reason: Icmpv6ParamProblem::UnrecognizedNxtHdr, // The offending packet is after the IPv6 header. pointer: ipv6_repr.buffer_len() as u32, header: ipv6_repr, data: &ip_payload[0..payload_len], }; Ok(self.icmpv6_reply(ipv6_repr, icmp_reply_repr)) } } } #[cfg(feature = "proto-ipv4")] fn process_ipv4<'frame, T: AsRef<[u8]> + ?Sized>( &mut self, cx: &Context, sockets: &mut SocketSet, ipv4_packet: &Ipv4Packet<&'frame T>, ) -> Result>> { let ipv4_repr = Ipv4Repr::parse(ipv4_packet, &cx.caps.checksum)?; if !self.is_unicast_v4(ipv4_repr.src_addr) { // Discard packets with non-unicast source addresses. net_debug!("non-unicast source address"); return Err(Error::Malformed); } let ip_repr = IpRepr::Ipv4(ipv4_repr); let ip_payload = ipv4_packet.payload(); #[cfg(feature = "socket-raw")] let handled_by_raw_socket = self.raw_socket_filter(cx, sockets, &ip_repr, ip_payload); #[cfg(not(feature = "socket-raw"))] let handled_by_raw_socket = false; #[cfg(feature = "socket-dhcpv4")] { if ipv4_repr.protocol == IpProtocol::Udp && self.hardware_addr.is_some() { // First check for source and dest ports, then do `UdpRepr::parse` if they match. // This way we avoid validating the UDP checksum twice for all non-DHCP UDP packets (one here, one in `process_udp`) let udp_packet = UdpPacket::new_checked(ip_payload)?; if udp_packet.src_port() == DHCP_SERVER_PORT && udp_packet.dst_port() == DHCP_CLIENT_PORT { if let Some(dhcp_socket) = sockets.iter_mut().filter_map(Dhcpv4Socket::downcast).next() { let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr()); let udp_repr = UdpRepr::parse(&udp_packet, &src_addr, &dst_addr, &cx.caps.checksum)?; let udp_payload = udp_packet.payload(); match dhcp_socket.process(cx, &ipv4_repr, &udp_repr, udp_payload) { // The packet is valid and handled by socket. Ok(()) => return Ok(None), // The packet is malformed, or the socket buffer is full. Err(e) => return Err(e), } } } } } if !self.has_ip_addr(ipv4_repr.dst_addr) && !self.has_multicast_group(ipv4_repr.dst_addr) && !self.is_broadcast_v4(ipv4_repr.dst_addr) { // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups. // If AnyIP is enabled, also check if the packet is routed locally. if !self.any_ip || !ipv4_repr.dst_addr.is_unicast() || self .routes .lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), cx.now) .map_or(true, |router_addr| !self.has_ip_addr(router_addr)) { return Ok(None); } } match ipv4_repr.protocol { IpProtocol::Icmp => self.process_icmpv4(cx, sockets, ip_repr, ip_payload), #[cfg(feature = "proto-igmp")] IpProtocol::Igmp => self.process_igmp(cx, ipv4_repr, ip_payload), #[cfg(feature = "socket-udp")] IpProtocol::Udp => { self.process_udp(cx, sockets, ip_repr, handled_by_raw_socket, ip_payload) } #[cfg(feature = "socket-tcp")] IpProtocol::Tcp => self.process_tcp(cx, sockets, ip_repr, ip_payload), _ if handled_by_raw_socket => Ok(None), _ => { // Send back as much of the original payload as we can. let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len()); let icmp_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::ProtoUnreachable, header: ipv4_repr, data: &ip_payload[0..payload_len], }; Ok(self.icmpv4_reply(ipv4_repr, icmp_reply_repr)) } } } /// Checks if an incoming packet has a broadcast address for the interfaces /// associated ipv4 addresses. #[cfg(feature = "proto-ipv4")] fn is_subnet_broadcast(&self, address: Ipv4Address) -> bool { self.ip_addrs .iter() .filter_map(|own_cidr| match own_cidr { IpCidr::Ipv4(own_ip) => Some(own_ip.broadcast()?), #[cfg(feature = "proto-ipv6")] IpCidr::Ipv6(_) => None, }) .any(|broadcast_address| address == broadcast_address) } /// Checks if an ipv4 address is broadcast, taking into account subnet broadcast addresses #[cfg(feature = "proto-ipv4")] fn is_broadcast_v4(&self, address: Ipv4Address) -> bool { address.is_broadcast() || self.is_subnet_broadcast(address) } /// Checks if an ipv4 address is unicast, taking into account subnet broadcast addresses #[cfg(feature = "proto-ipv4")] fn is_unicast_v4(&self, address: Ipv4Address) -> bool { address.is_unicast() && !self.is_subnet_broadcast(address) } /// Host duties of the **IGMPv2** protocol. /// /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries. /// Membership must not be reported immediately in order to avoid flooding the network /// after a query is broadcasted by a router; this is not currently done. #[cfg(feature = "proto-igmp")] fn process_igmp<'frame>( &mut self, cx: &Context, ipv4_repr: Ipv4Repr, ip_payload: &'frame [u8], ) -> Result>> { let igmp_packet = IgmpPacket::new_checked(ip_payload)?; let igmp_repr = IgmpRepr::parse(&igmp_packet)?; // FIXME: report membership after a delay match igmp_repr { IgmpRepr::MembershipQuery { group_addr, version, max_resp_time, } => { // General query if group_addr.is_unspecified() && ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS { // Are we member in any groups? if self.ipv4_multicast_groups.iter().next().is_some() { let interval = match version { IgmpVersion::Version1 => Duration::from_millis(100), IgmpVersion::Version2 => { // No dependence on a random generator // (see [#24](https://github.com/m-labs/smoltcp/issues/24)) // but at least spread reports evenly across max_resp_time. let intervals = self.ipv4_multicast_groups.len() as u32 + 1; max_resp_time / intervals } }; self.igmp_report_state = IgmpReportState::ToGeneralQuery { version, timeout: cx.now + interval, interval, next_index: 0, }; } } else { // Group-specific query if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr { // Don't respond immediately let timeout = max_resp_time / 4; self.igmp_report_state = IgmpReportState::ToSpecificQuery { version, timeout: cx.now + timeout, group: group_addr, }; } } } // Ignore membership reports IgmpRepr::MembershipReport { .. } => (), // Ignore hosts leaving groups IgmpRepr::LeaveGroup { .. } => (), } Ok(None) } #[cfg(feature = "proto-ipv6")] fn process_icmpv6<'frame>( &mut self, cx: &Context, _sockets: &mut SocketSet, ip_repr: IpRepr, ip_payload: &'frame [u8], ) -> Result>> { let icmp_packet = Icmpv6Packet::new_checked(ip_payload)?; let icmp_repr = Icmpv6Repr::parse( &ip_repr.src_addr(), &ip_repr.dst_addr(), &icmp_packet, &cx.caps.checksum, )?; #[cfg(feature = "socket-icmp")] let mut handled_by_icmp_socket = false; #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))] for icmp_socket in _sockets.iter_mut().filter_map(IcmpSocket::downcast) { if !icmp_socket.accepts(cx, &ip_repr, &icmp_repr.into()) { continue; } match icmp_socket.process(cx, &ip_repr, &icmp_repr.into()) { // The packet is valid and handled by socket. Ok(()) => handled_by_icmp_socket = true, // The socket buffer is full. Err(Error::Exhausted) => (), // ICMP sockets don't validate the packets in any way. Err(_) => unreachable!(), } } match icmp_repr { // Respond to echo requests. Icmpv6Repr::EchoRequest { ident, seq_no, data, } => match ip_repr { IpRepr::Ipv6(ipv6_repr) => { let icmp_reply_repr = Icmpv6Repr::EchoReply { ident, seq_no, data, }; Ok(self.icmpv6_reply(ipv6_repr, icmp_reply_repr)) } _ => Err(Error::Unrecognized), }, // Ignore any echo replies. Icmpv6Repr::EchoReply { .. } => Ok(None), // Forward any NDISC packets to the ndisc packet handler #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr { IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(cx, ipv6_repr, repr), _ => Ok(None), }, // Don't report an error if a packet with unknown type // has been handled by an ICMP socket #[cfg(feature = "socket-icmp")] _ if handled_by_icmp_socket => Ok(None), // FIXME: do something correct here? _ => Err(Error::Unrecognized), } } #[cfg(all( any(feature = "medium-ethernet", feature = "medium-ieee802154"), feature = "proto-ipv6" ))] fn process_ndisc<'frame>( &mut self, cx: &Context, ip_repr: Ipv6Repr, repr: NdiscRepr<'frame>, ) -> Result>> { match repr { NdiscRepr::NeighborAdvert { lladdr, target_addr, flags, } => { let ip_addr = ip_repr.src_addr.into(); if let Some(lladdr) = lladdr { let lladdr = lladdr.parse(cx.caps.medium)?; if !lladdr.is_unicast() || !target_addr.is_unicast() { return Err(Error::Malformed); } if flags.contains(NdiscNeighborFlags::OVERRIDE) || !self .neighbor_cache .as_mut() .unwrap() .lookup(&ip_addr, cx.now) .found() { self.neighbor_cache .as_mut() .unwrap() .fill(ip_addr, lladdr, cx.now) } } Ok(None) } NdiscRepr::NeighborSolicit { target_addr, lladdr, .. } => { if let Some(lladdr) = lladdr { let lladdr = lladdr.parse(cx.caps.medium)?; if !lladdr.is_unicast() || !target_addr.is_unicast() { return Err(Error::Malformed); } self.neighbor_cache.as_mut().unwrap().fill( ip_repr.src_addr.into(), lladdr, cx.now, ); } if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) { let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert { flags: NdiscNeighborFlags::SOLICITED, target_addr, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] lladdr: Some(self.hardware_addr.unwrap().into()), }); let ip_repr = Ipv6Repr { src_addr: target_addr, dst_addr: ip_repr.src_addr, next_header: IpProtocol::Icmpv6, hop_limit: 0xff, payload_len: advert.buffer_len(), }; Ok(Some(IpPacket::Icmpv6((ip_repr, advert)))) } else { Ok(None) } } _ => Ok(None), } } #[cfg(feature = "proto-ipv6")] fn process_hopbyhop<'frame>( &mut self, cx: &Context, sockets: &mut SocketSet, ipv6_repr: Ipv6Repr, handled_by_raw_socket: bool, ip_payload: &'frame [u8], ) -> Result>> { let hbh_pkt = Ipv6HopByHopHeader::new_checked(ip_payload)?; let hbh_repr = Ipv6HopByHopRepr::parse(&hbh_pkt)?; for result in hbh_repr.options() { let opt_repr = result?; match opt_repr { Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (), Ipv6OptionRepr::Unknown { type_, .. } => { match Ipv6OptionFailureType::from(type_) { Ipv6OptionFailureType::Skip => (), Ipv6OptionFailureType::Discard => { return Ok(None); } _ => { // FIXME(dlrobertson): Send an ICMPv6 parameter problem message // here. return Err(Error::Unrecognized); } } } } } self.process_nxt_hdr( cx, sockets, ipv6_repr, hbh_repr.next_header, handled_by_raw_socket, &ip_payload[hbh_repr.buffer_len()..], ) } #[cfg(feature = "proto-ipv4")] fn process_icmpv4<'frame>( &self, cx: &Context, _sockets: &mut SocketSet, ip_repr: IpRepr, ip_payload: &'frame [u8], ) -> Result>> { let icmp_packet = Icmpv4Packet::new_checked(ip_payload)?; let icmp_repr = Icmpv4Repr::parse(&icmp_packet, &cx.caps.checksum)?; #[cfg(feature = "socket-icmp")] let mut handled_by_icmp_socket = false; #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))] for icmp_socket in _sockets.iter_mut().filter_map(IcmpSocket::downcast) { if !icmp_socket.accepts(cx, &ip_repr, &icmp_repr.into()) { continue; } match icmp_socket.process(cx, &ip_repr, &icmp_repr.into()) { // The packet is valid and handled by socket. Ok(()) => handled_by_icmp_socket = true, // The socket buffer is full. Err(Error::Exhausted) => (), // ICMP sockets don't validate the packets in any way. Err(_) => unreachable!(), } } match icmp_repr { // Respond to echo requests. #[cfg(feature = "proto-ipv4")] Icmpv4Repr::EchoRequest { ident, seq_no, data, } => { let icmp_reply_repr = Icmpv4Repr::EchoReply { ident, seq_no, data, }; match ip_repr { IpRepr::Ipv4(ipv4_repr) => Ok(self.icmpv4_reply(ipv4_repr, icmp_reply_repr)), _ => Err(Error::Unrecognized), } } // Ignore any echo replies. Icmpv4Repr::EchoReply { .. } => Ok(None), // Don't report an error if a packet with unknown type // has been handled by an ICMP socket #[cfg(feature = "socket-icmp")] _ if handled_by_icmp_socket => Ok(None), // FIXME: do something correct here? _ => Err(Error::Unrecognized), } } #[cfg(feature = "proto-ipv4")] fn icmpv4_reply<'frame, 'icmp: 'frame>( &self, ipv4_repr: Ipv4Repr, icmp_repr: Icmpv4Repr<'icmp>, ) -> Option> { if !self.is_unicast_v4(ipv4_repr.src_addr) { // Do not send ICMP replies to non-unicast sources None } else if self.is_unicast_v4(ipv4_repr.dst_addr) { // Reply as normal when src_addr and dst_addr are both unicast let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_repr.buffer_len(), hop_limit: 64, }; Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr))) } else if self.is_broadcast_v4(ipv4_repr.dst_addr) { // Only reply to broadcasts for echo replies and not other ICMP messages match icmp_repr { Icmpv4Repr::EchoReply { .. } => match self.ipv4_address() { Some(src_addr) => { let ipv4_reply_repr = Ipv4Repr { src_addr: src_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_repr.buffer_len(), hop_limit: 64, }; Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr))) } None => None, }, _ => None, } } else { None } } #[cfg(feature = "proto-ipv6")] fn icmpv6_reply<'frame, 'icmp: 'frame>( &self, ipv6_repr: Ipv6Repr, icmp_repr: Icmpv6Repr<'icmp>, ) -> Option> { if ipv6_repr.dst_addr.is_unicast() { let ipv6_reply_repr = Ipv6Repr { src_addr: ipv6_repr.dst_addr, dst_addr: ipv6_repr.src_addr, next_header: IpProtocol::Icmpv6, payload_len: icmp_repr.buffer_len(), hop_limit: 64, }; Some(IpPacket::Icmpv6((ipv6_reply_repr, icmp_repr))) } else { // Do not send any ICMP replies to a broadcast destination address. None } } #[cfg(feature = "socket-udp")] fn process_udp<'frame>( &self, cx: &Context, sockets: &mut SocketSet, ip_repr: IpRepr, handled_by_raw_socket: bool, ip_payload: &'frame [u8], ) -> Result>> { let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr()); let udp_packet = UdpPacket::new_checked(ip_payload)?; let udp_repr = UdpRepr::parse(&udp_packet, &src_addr, &dst_addr, &cx.caps.checksum)?; let udp_payload = udp_packet.payload(); for udp_socket in sockets.iter_mut().filter_map(UdpSocket::downcast) { if !udp_socket.accepts(&ip_repr, &udp_repr) { continue; } match udp_socket.process(cx, &ip_repr, &udp_repr, udp_payload) { // The packet is valid and handled by socket. Ok(()) => return Ok(None), // The packet is malformed, or the socket buffer is full. Err(e) => return Err(e), } } // The packet wasn't handled by a socket, send an ICMP port unreachable packet. match ip_repr { #[cfg(feature = "proto-ipv4")] IpRepr::Ipv4(_) if handled_by_raw_socket => Ok(None), #[cfg(feature = "proto-ipv6")] IpRepr::Ipv6(_) if handled_by_raw_socket => Ok(None), #[cfg(feature = "proto-ipv4")] IpRepr::Ipv4(ipv4_repr) => { let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len()); let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: ipv4_repr, data: &ip_payload[0..payload_len], }; Ok(self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr)) } #[cfg(feature = "proto-ipv6")] IpRepr::Ipv6(ipv6_repr) => { let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len()); let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable { reason: Icmpv6DstUnreachable::PortUnreachable, header: ipv6_repr, data: &ip_payload[0..payload_len], }; Ok(self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)) } IpRepr::Unspecified { .. } => Err(Error::Unaddressable), } } #[cfg(feature = "socket-tcp")] fn process_tcp<'frame>( &self, cx: &Context, sockets: &mut SocketSet, ip_repr: IpRepr, ip_payload: &'frame [u8], ) -> Result>> { let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr()); let tcp_packet = TcpPacket::new_checked(ip_payload)?; let tcp_repr = TcpRepr::parse(&tcp_packet, &src_addr, &dst_addr, &cx.caps.checksum)?; for tcp_socket in sockets.iter_mut().filter_map(TcpSocket::downcast) { if !tcp_socket.accepts(&ip_repr, &tcp_repr) { continue; } match tcp_socket.process(cx, &ip_repr, &tcp_repr) { // The packet is valid and handled by socket. Ok(reply) => return Ok(reply.map(IpPacket::Tcp)), // The packet is malformed, or doesn't match the socket state, // or the socket buffer is full. Err(e) => return Err(e), } } if tcp_repr.control == TcpControl::Rst { // Never reply to a TCP RST packet with another TCP RST packet. Ok(None) } else { // The packet wasn't handled by a socket, send a TCP RST packet. Ok(Some(IpPacket::Tcp(TcpSocket::rst_reply( &ip_repr, &tcp_repr, )))) } } #[cfg(feature = "medium-ethernet")] fn dispatch(&mut self, cx: &Context, tx_token: Tx, packet: EthernetPacket) -> Result<()> where Tx: TxToken, { match packet { #[cfg(feature = "proto-ipv4")] EthernetPacket::Arp(arp_repr) => { let dst_hardware_addr = match arp_repr { ArpRepr::EthernetIpv4 { target_hardware_addr, .. } => target_hardware_addr, }; self.dispatch_ethernet(cx, tx_token, arp_repr.buffer_len(), |mut frame| { frame.set_dst_addr(dst_hardware_addr); frame.set_ethertype(EthernetProtocol::Arp); let mut packet = ArpPacket::new_unchecked(frame.payload_mut()); arp_repr.emit(&mut packet); }) } EthernetPacket::Ip(packet) => self.dispatch_ip(cx, tx_token, packet), } } #[cfg(feature = "medium-ethernet")] fn dispatch_ethernet( &mut self, cx: &Context, tx_token: Tx, buffer_len: usize, f: F, ) -> Result<()> where Tx: TxToken, F: FnOnce(EthernetFrame<&mut [u8]>), { let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len); tx_token.consume(cx.now, tx_len, |tx_buffer| { debug_assert!(tx_buffer.as_ref().len() == tx_len); let mut frame = EthernetFrame::new_unchecked(tx_buffer); let src_addr = if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr { addr } else { return Err(Error::Malformed); }; frame.set_src_addr(src_addr); f(frame); Ok(()) }) } fn in_same_network(&self, addr: &IpAddress) -> bool { self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr)) } fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result { // Send directly. if self.in_same_network(addr) || addr.is_broadcast() { return Ok(*addr); } // Route via a router. match self.routes.lookup(addr, timestamp) { Some(router_addr) => Ok(router_addr), None => Err(Error::Unaddressable), } } fn has_neighbor(&self, cx: &Context, addr: &IpAddress) -> bool { match self.route(addr, cx.now) { Ok(_routed_addr) => match cx.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => self .neighbor_cache .as_ref() .unwrap() .lookup(&_routed_addr, cx.now) .found(), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => self .neighbor_cache .as_ref() .unwrap() .lookup(&_routed_addr, cx.now) .found(), #[cfg(feature = "medium-ip")] Medium::Ip => true, }, Err(_) => false, } } #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] fn lookup_hardware_addr( &mut self, cx: &Context, tx_token: Tx, src_addr: &IpAddress, dst_addr: &IpAddress, ) -> Result<(HardwareAddress, Tx)> where Tx: TxToken, { if dst_addr.is_broadcast() { let hardware_addr = match cx.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST), #[cfg(feature = "medium-ip")] Medium::Ip => unreachable!(), }; return Ok((hardware_addr, tx_token)); } if dst_addr.is_multicast() { let b = dst_addr.as_bytes(); let hardware_addr = match *dst_addr { IpAddress::Unspecified => unreachable!(), #[cfg(feature = "proto-ipv4")] IpAddress::Ipv4(_addr) => { HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[ 0x01, 0x00, 0x5e, b[1] & 0x7F, b[2], b[3], ])) } #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(_addr) => match cx.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[ 0x33, 0x33, b[12], b[13], b[14], b[15], ])), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => { // Not sure if this is correct HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST) } #[cfg(feature = "medium-ip")] Medium::Ip => unreachable!(), }, }; return Ok((hardware_addr, tx_token)); } let dst_addr = self.route(dst_addr, cx.now)?; match self .neighbor_cache .as_mut() .unwrap() .lookup(&dst_addr, cx.now) { NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)), NeighborAnswer::RateLimited => return Err(Error::Unaddressable), _ => (), // XXX } match (src_addr, dst_addr) { #[cfg(feature = "proto-ipv4")] (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => { net_debug!( "address {} not in neighbor cache, sending ARP request", dst_addr ); let src_hardware_addr = if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr { addr } else { return Err(Error::Malformed); }; let arp_repr = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: src_hardware_addr, source_protocol_addr: src_addr, target_hardware_addr: EthernetAddress::BROADCAST, target_protocol_addr: dst_addr, }; self.dispatch_ethernet(cx, tx_token, arp_repr.buffer_len(), |mut frame| { frame.set_dst_addr(EthernetAddress::BROADCAST); frame.set_ethertype(EthernetProtocol::Arp); arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut())) })?; } #[cfg(feature = "proto-ipv6")] (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => { net_debug!( "address {} not in neighbor cache, sending Neighbor Solicitation", dst_addr ); let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit { target_addr: dst_addr, lladdr: Some(self.hardware_addr.unwrap().into()), }); let packet = IpPacket::Icmpv6(( Ipv6Repr { src_addr, dst_addr: dst_addr.solicited_node(), next_header: IpProtocol::Icmpv6, payload_len: solicit.buffer_len(), hop_limit: 0xff, }, solicit, )); self.dispatch_ip(cx, tx_token, packet)?; } _ => (), } // The request got dispatched, limit the rate on the cache. self.neighbor_cache.as_mut().unwrap().limit_rate(cx.now); Err(Error::Unaddressable) } fn flush_cache(&mut self) { if let Some(cache) = self.neighbor_cache.as_mut() { cache.flush() } } fn dispatch_ip( &mut self, cx: &Context, tx_token: Tx, packet: IpPacket, ) -> Result<()> { let ip_repr = packet.ip_repr().lower(&self.ip_addrs)?; match cx.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => { let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr( cx, tx_token, &ip_repr.src_addr(), &ip_repr.dst_addr(), )? { (HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token), #[cfg(feature = "medium-ieee802154")] (HardwareAddress::Ieee802154(_), _) => unreachable!(), }; self.dispatch_ethernet(cx, tx_token, ip_repr.total_len(), |mut frame| { frame.set_dst_addr(dst_hardware_addr); match ip_repr { #[cfg(feature = "proto-ipv4")] IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4), #[cfg(feature = "proto-ipv6")] IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6), _ => return, } ip_repr.emit(frame.payload_mut(), &cx.caps.checksum); let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..]; packet.emit_payload(ip_repr, payload, &cx.caps); }) } #[cfg(feature = "medium-ip")] Medium::Ip => { let tx_len = ip_repr.total_len(); tx_token.consume(cx.now, tx_len, |mut tx_buffer| { debug_assert!(tx_buffer.as_ref().len() == tx_len); ip_repr.emit(&mut tx_buffer, &cx.caps.checksum); let payload = &mut tx_buffer[ip_repr.buffer_len()..]; packet.emit_payload(ip_repr, payload, &cx.caps); Ok(()) }) } #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => self.dispatch_ieee802154(cx, tx_token, packet), } } #[cfg(feature = "medium-ieee802154")] fn dispatch_ieee802154( &mut self, cx: &Context, tx_token: Tx, packet: IpPacket, ) -> Result<()> { let ip_repr = packet.ip_repr().lower(&self.ip_addrs)?; match cx.caps.medium { #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => { let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr( cx, tx_token, &ip_repr.src_addr(), &ip_repr.dst_addr(), )? { (HardwareAddress::Ieee802154(addr), tx_token) => (addr, tx_token), _ => unreachable!(), }; let ack_request = dst_hardware_addr.is_unicast(); let ack_request = match packet { IpPacket::Icmpv6(_) => false, _ => ack_request, }; let mut tx_len = 0; let ll_src_addr = if let Some(HardwareAddress::Ieee802154(addr)) = self.hardware_addr { Some(addr) } else { return Err(Error::Malformed); }; let ieee_repr = Ieee802154Repr { frame_type: Ieee802154FrameType::Data, security_enabled: false, frame_pending: false, ack_request, sequence_number: Some(self.get_sequence_number()), pan_id_compression: true, frame_version: Ieee802154FrameVersion::Ieee802154_2003, dst_pan_id: cx.pan_id, dst_addr: Some(dst_hardware_addr), src_pan_id: cx.pan_id, src_addr: ll_src_addr, }; let (src_addr, dst_addr) = match (ip_repr.src_addr(), ip_repr.dst_addr()) { (IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => (src_addr, dst_addr), _ => return Err(Error::Unaddressable), }; let next_header = match &packet { IpPacket::Udp(_) => SixlowpanNextHeader::Compressed, IpPacket::Icmpv6(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Icmpv6), _ => return Err(Error::Unrecognized), }; let hop_limit = match packet { IpPacket::Icmpv6((_, Icmpv6Repr::Ndisc(_))) => 255, IpPacket::Icmpv6((_, Icmpv6Repr::EchoReply { .. })) => 64, IpPacket::Udp(..) => 64, _ => return Err(Error::Unrecognized), }; let iphc_repr = SixlowpanIphcRepr { src_addr, ll_src_addr, dst_addr, ll_dst_addr: Some(dst_hardware_addr), next_header, hop_limit, }; tx_len += ieee_repr.buffer_len(); tx_len += iphc_repr.buffer_len(); match &packet { IpPacket::Udp((_, udp_repr, payload)) => { let udp_repr = SixlowpanUdpRepr(*udp_repr); tx_len += udp_repr.header_len() + payload.len(); } IpPacket::Icmpv6((_, icmp)) => { tx_len += icmp.buffer_len(); } _ => return Err(Error::Unrecognized), } tx_token.consume(cx.now, tx_len, |mut tx_buffer| { // 1. Create the header of 802.15.4 let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buffer); ieee_repr.emit(&mut ieee_packet); let mut start = ieee_repr.buffer_len(); // 2. Create the header for 6LoWPAN IPHC let mut iphc_packet = SixlowpanIphcPacket::new_unchecked(&mut tx_buffer[start..tx_len]); iphc_repr.emit(&mut iphc_packet); start += iphc_repr.buffer_len(); match packet { IpPacket::Udp((_, udp_repr, payload)) => { // 3. Create the header for 6LoWPAN UDP let mut udp_packet = SixlowpanUdpPacket::new_unchecked(&mut tx_buffer[start..tx_len]); SixlowpanUdpRepr(udp_repr).emit( &mut udp_packet, &iphc_repr.src_addr, &iphc_repr.dst_addr, payload.len(), |buf| buf.copy_from_slice(payload), ); } IpPacket::Icmpv6((_, icmp_repr)) => { // 3. Create the header for ICMPv6 let mut icmp_packet = Icmpv6Packet::new_unchecked(&mut tx_buffer[start..tx_len]); icmp_repr.emit( &iphc_repr.src_addr.into(), &iphc_repr.dst_addr.into(), &mut icmp_packet, &cx.caps.checksum, ); } _ => return Err(Error::Unrecognized), } Ok(()) }) } _ => Err(Error::NotSupported), } } #[cfg(feature = "proto-igmp")] fn igmp_report_packet<'any>( &self, version: IgmpVersion, group_addr: Ipv4Address, ) -> Option> { let iface_addr = self.ipv4_address()?; let igmp_repr = IgmpRepr::MembershipReport { group_addr, version, }; let pkt = IpPacket::Igmp(( Ipv4Repr { src_addr: iface_addr, // Send to the group being reported dst_addr: group_addr, protocol: IpProtocol::Igmp, payload_len: igmp_repr.buffer_len(), hop_limit: 1, // TODO: add Router Alert IPv4 header option. See // [#183](https://github.com/m-labs/smoltcp/issues/183). }, igmp_repr, )); Some(pkt) } #[cfg(feature = "proto-igmp")] fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option> { self.ipv4_address().map(|iface_addr| { let igmp_repr = IgmpRepr::LeaveGroup { group_addr }; IpPacket::Igmp(( Ipv4Repr { src_addr: iface_addr, dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS, protocol: IpProtocol::Igmp, payload_len: igmp_repr.buffer_len(), hop_limit: 1, }, igmp_repr, )) }) } } #[cfg(test)] mod test { use std::collections::BTreeMap; #[cfg(feature = "proto-igmp")] use std::vec::Vec; use super::*; use crate::iface::Interface; #[cfg(feature = "medium-ethernet")] use crate::iface::NeighborCache; use crate::phy::{ChecksumCapabilities, Loopback}; #[cfg(feature = "proto-igmp")] use crate::time::Instant; use crate::{Error, Result}; #[allow(unused)] fn fill_slice(s: &mut [u8], val: u8) { for x in s.iter_mut() { *x = val } } fn create_loopback<'a>() -> Interface<'a, Loopback> { #[cfg(feature = "medium-ethernet")] return create_loopback_ethernet(); #[cfg(not(feature = "medium-ethernet"))] return create_loopback_ip(); } #[cfg(all(feature = "medium-ip"))] #[allow(unused)] fn create_loopback_ip<'a>() -> Interface<'a, Loopback> { // Create a basic device let device = Loopback::new(Medium::Ip); let ip_addrs = [ #[cfg(feature = "proto-ipv4")] IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8), #[cfg(feature = "proto-ipv6")] IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128), #[cfg(feature = "proto-ipv6")] IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64), ]; let iface_builder = InterfaceBuilder::new(device, vec![]).ip_addrs(ip_addrs); #[cfg(feature = "proto-igmp")] let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new()); iface_builder.finalize() } #[cfg(all(feature = "medium-ethernet"))] fn create_loopback_ethernet<'a>() -> Interface<'a, Loopback> { // Create a basic device let device = Loopback::new(Medium::Ethernet); let ip_addrs = [ #[cfg(feature = "proto-ipv4")] IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8), #[cfg(feature = "proto-ipv6")] IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128), #[cfg(feature = "proto-ipv6")] IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64), ]; let iface_builder = InterfaceBuilder::new(device, vec![]) .hardware_addr(EthernetAddress::default().into()) .neighbor_cache(NeighborCache::new(BTreeMap::new())) .ip_addrs(ip_addrs); #[cfg(feature = "proto-igmp")] let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new()); iface_builder.finalize() } #[cfg(feature = "proto-igmp")] fn recv_all(iface: &mut Interface<'_, Loopback>, timestamp: Instant) -> Vec> { let mut pkts = Vec::new(); while let Some((rx, _tx)) = iface.device.receive() { rx.consume(timestamp, |pkt| { pkts.push(pkt.to_vec()); Ok(()) }) .unwrap(); } pkts } #[derive(Debug, PartialEq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] struct MockTxToken; impl TxToken for MockTxToken { fn consume(self, _: Instant, _: usize, _: F) -> Result where F: FnOnce(&mut [u8]) -> Result, { Err(Error::Unaddressable) } } #[test] #[should_panic(expected = "hardware_addr required option was not set")] #[cfg(all(feature = "medium-ethernet"))] fn test_builder_initialization_panic() { InterfaceBuilder::new(Loopback::new(Medium::Ethernet), vec![]).finalize(); } #[test] #[cfg(feature = "proto-ipv4")] fn test_no_icmp_no_unicast_ipv4() { let mut iface = create_loopback(); // Unknown Ipv4 Protocol // // Because the destination is the broadcast address // this should not trigger and Destination Unreachable // response. See RFC 1122 § 3.2.2. let repr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), dst_addr: Ipv4Address::BROADCAST, protocol: IpProtocol::Unknown(0x0c), payload_len: 0, hop_limit: 0x40, }); let mut bytes = vec![0u8; 54]; repr.emit(&mut bytes, &ChecksumCapabilities::default()); let frame = Ipv4Packet::new_unchecked(&bytes); // Ensure that the unknown protocol frame does not trigger an // ICMP error response when the destination address is a // broadcast address let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface.inner.process_ipv4(&cx, &mut iface.sockets, &frame), Ok(None) ); } #[test] #[cfg(feature = "proto-ipv6")] fn test_no_icmp_no_unicast_ipv6() { let mut iface = create_loopback(); // Unknown Ipv6 Protocol // // Because the destination is the broadcast address // this should not trigger and Destination Unreachable // response. See RFC 1122 § 3.2.2. let repr = IpRepr::Ipv6(Ipv6Repr { src_addr: Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1), dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES, next_header: IpProtocol::Unknown(0x0c), payload_len: 0, hop_limit: 0x40, }); let mut bytes = vec![0u8; 54]; repr.emit(&mut bytes, &ChecksumCapabilities::default()); let frame = Ipv6Packet::new_unchecked(&bytes); // Ensure that the unknown protocol frame does not trigger an // ICMP error response when the destination address is a // broadcast address let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface.inner.process_ipv6(&cx, &mut iface.sockets, &frame), Ok(None) ); } #[test] #[cfg(feature = "proto-ipv4")] fn test_icmp_error_no_payload() { static NO_BYTES: [u8; 0] = []; let mut iface = create_loopback(); // Unknown Ipv4 Protocol with no payload let repr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), protocol: IpProtocol::Unknown(0x0c), payload_len: 0, hop_limit: 0x40, }); let mut bytes = vec![0u8; 34]; repr.emit(&mut bytes, &ChecksumCapabilities::default()); let frame = Ipv4Packet::new_unchecked(&bytes); // The expected Destination Unreachable response due to the // unknown protocol let icmp_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::ProtoUnreachable, header: Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), protocol: IpProtocol::Unknown(12), payload_len: 0, hop_limit: 64, }, data: &NO_BYTES, }; let expected_repr = IpPacket::Icmpv4(( Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), protocol: IpProtocol::Icmp, payload_len: icmp_repr.buffer_len(), hop_limit: 64, }, icmp_repr, )); // Ensure that the unknown protocol triggers an error response. // And we correctly handle no payload. let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface.inner.process_ipv4(&cx, &mut iface.sockets, &frame), Ok(Some(expected_repr)) ); } #[test] #[cfg(feature = "proto-ipv4")] fn test_local_subnet_broadcasts() { let mut iface = create_loopback(); iface.update_ip_addrs(|addrs| { addrs.iter_mut().next().map(|addr| { *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 1, 23]), 24)); }); }); assert!(iface .inner .is_subnet_broadcast(Ipv4Address([192, 168, 1, 255])),); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 168, 1, 254])),); iface.update_ip_addrs(|addrs| { addrs.iter_mut().next().map(|addr| { *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 16)); }); }); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 168, 23, 255])),); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 168, 23, 254])),); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 168, 255, 254])),); assert!(iface .inner .is_subnet_broadcast(Ipv4Address([192, 168, 255, 255])),); iface.update_ip_addrs(|addrs| { addrs.iter_mut().next().map(|addr| { *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 8)); }); }); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 23, 1, 255])),); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 23, 1, 254])),); assert!(!iface .inner .is_subnet_broadcast(Ipv4Address([192, 255, 255, 254])),); assert!(iface .inner .is_subnet_broadcast(Ipv4Address([192, 255, 255, 255])),); } #[test] #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))] fn test_icmp_error_port_unreachable() { static UDP_PAYLOAD: [u8; 12] = [ 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x6c, 0x64, 0x21, ]; let mut iface = create_loopback(); let mut udp_bytes_unicast = vec![0u8; 20]; let mut udp_bytes_broadcast = vec![0u8; 20]; let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast); let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast); let udp_repr = UdpRepr { src_port: 67, dst_port: 68, }; let ip_repr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), protocol: IpProtocol::Udp, payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(), hop_limit: 64, }); // Emit the representations to a packet udp_repr.emit( &mut packet_unicast, &ip_repr.src_addr(), &ip_repr.dst_addr(), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(&UDP_PAYLOAD), &ChecksumCapabilities::default(), ); let data = packet_unicast.into_inner(); // The expected Destination Unreachable ICMPv4 error response due // to no sockets listening on the destination port. let icmp_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), protocol: IpProtocol::Udp, payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(), hop_limit: 64, }, data: data, }; let expected_repr = IpPacket::Icmpv4(( Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), protocol: IpProtocol::Icmp, payload_len: icmp_repr.buffer_len(), hop_limit: 64, }, icmp_repr, )); // Ensure that the unknown protocol triggers an error response. // And we correctly handle no payload. let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface .inner .process_udp(&cx, &mut iface.sockets, ip_repr, false, data), Ok(Some(expected_repr)) ); let ip_repr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]), dst_addr: Ipv4Address::BROADCAST, protocol: IpProtocol::Udp, payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(), hop_limit: 64, }); // Emit the representations to a packet udp_repr.emit( &mut packet_broadcast, &ip_repr.src_addr(), &IpAddress::Ipv4(Ipv4Address::BROADCAST), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(&UDP_PAYLOAD), &ChecksumCapabilities::default(), ); // Ensure that the port unreachable error does not trigger an // ICMP error response when the destination address is a // broadcast address and no socket is bound to the port. assert_eq!( iface.inner.process_udp( &cx, &mut iface.sockets, ip_repr, false, packet_broadcast.into_inner() ), Ok(None) ); } #[test] #[cfg(feature = "socket-udp")] fn test_handle_udp_broadcast() { use crate::socket::{UdpPacketMetadata, UdpSocket, UdpSocketBuffer}; use crate::wire::IpEndpoint; static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f]; let mut iface = create_loopback(); let rx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]); let tx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]); let udp_socket = UdpSocket::new(rx_buffer, tx_buffer); let mut udp_bytes = vec![0u8; 13]; let mut packet = UdpPacket::new_unchecked(&mut udp_bytes); let socket_handle = iface.add_socket(udp_socket); #[cfg(feature = "proto-ipv6")] let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1); #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))] let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02); let udp_repr = UdpRepr { src_port: 67, dst_port: 68, }; #[cfg(feature = "proto-ipv6")] let ip_repr = IpRepr::Ipv6(Ipv6Repr { src_addr: src_ip, dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES, next_header: IpProtocol::Udp, payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(), hop_limit: 0x40, }); #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))] let ip_repr = IpRepr::Ipv4(Ipv4Repr { src_addr: src_ip, dst_addr: Ipv4Address::BROADCAST, protocol: IpProtocol::Udp, payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(), hop_limit: 0x40, }); // Bind the socket to port 68 let socket = iface.get_socket::(socket_handle); assert_eq!(socket.bind(68), Ok(())); assert!(!socket.can_recv()); assert!(socket.can_send()); udp_repr.emit( &mut packet, &ip_repr.src_addr(), &ip_repr.dst_addr(), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(&UDP_PAYLOAD), &ChecksumCapabilities::default(), ); // Packet should be handled by bound UDP socket let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface .inner .process_udp(&cx, &mut iface.sockets, ip_repr, false, packet.into_inner()), Ok(None) ); // Make sure the payload to the UDP packet processed by process_udp is // appended to the bound sockets rx_buffer let socket = iface.get_socket::(socket_handle); assert!(socket.can_recv()); assert_eq!( socket.recv(), Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67))) ); } #[test] #[cfg(feature = "proto-ipv4")] fn test_handle_ipv4_broadcast() { use crate::wire::{Icmpv4Packet, Icmpv4Repr, Ipv4Packet}; let mut iface = create_loopback(); let our_ipv4_addr = iface.ipv4_address().unwrap(); let src_ipv4_addr = Ipv4Address([127, 0, 0, 2]); // ICMPv4 echo request let icmpv4_data: [u8; 4] = [0xaa, 0x00, 0x00, 0xff]; let icmpv4_repr = Icmpv4Repr::EchoRequest { ident: 0x1234, seq_no: 0xabcd, data: &icmpv4_data, }; // Send to IPv4 broadcast address let ipv4_repr = Ipv4Repr { src_addr: src_ipv4_addr, dst_addr: Ipv4Address::BROADCAST, protocol: IpProtocol::Icmp, hop_limit: 64, payload_len: icmpv4_repr.buffer_len(), }; // Emit to ip frame let mut bytes = vec![0u8; ipv4_repr.buffer_len() + icmpv4_repr.buffer_len()]; let frame = { ipv4_repr.emit( &mut Ipv4Packet::new_unchecked(&mut bytes), &ChecksumCapabilities::default(), ); icmpv4_repr.emit( &mut Icmpv4Packet::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]), &ChecksumCapabilities::default(), ); Ipv4Packet::new_unchecked(&bytes) }; // Expected ICMPv4 echo reply let expected_icmpv4_repr = Icmpv4Repr::EchoReply { ident: 0x1234, seq_no: 0xabcd, data: &icmpv4_data, }; let expected_ipv4_repr = Ipv4Repr { src_addr: our_ipv4_addr, dst_addr: src_ipv4_addr, protocol: IpProtocol::Icmp, hop_limit: 64, payload_len: expected_icmpv4_repr.buffer_len(), }; let expected_packet = IpPacket::Icmpv4((expected_ipv4_repr, expected_icmpv4_repr)); let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface.inner.process_ipv4(&cx, &mut iface.sockets, &frame), Ok(Some(expected_packet)) ); } #[test] #[cfg(feature = "socket-udp")] fn test_icmp_reply_size() { #[cfg(feature = "proto-ipv6")] use crate::wire::Icmpv6DstUnreachable; #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] use crate::wire::IPV4_MIN_MTU as MIN_MTU; #[cfg(feature = "proto-ipv6")] use crate::wire::IPV6_MIN_MTU as MIN_MTU; #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] const MAX_PAYLOAD_LEN: usize = 528; #[cfg(feature = "proto-ipv6")] const MAX_PAYLOAD_LEN: usize = 1192; let mut iface = create_loopback(); #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] let src_addr = Ipv4Address([192, 168, 1, 1]); #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] let dst_addr = Ipv4Address([192, 168, 1, 2]); #[cfg(feature = "proto-ipv6")] let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1); #[cfg(feature = "proto-ipv6")] let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2); // UDP packet that if not tructated will cause a icmp port unreachable reply // to exeed the minimum mtu bytes in length. let udp_repr = UdpRepr { src_port: 67, dst_port: 68, }; let mut bytes = vec![0xff; udp_repr.header_len() + MAX_PAYLOAD_LEN]; let mut packet = UdpPacket::new_unchecked(&mut bytes[..]); udp_repr.emit( &mut packet, &src_addr.into(), &dst_addr.into(), MAX_PAYLOAD_LEN, |buf| fill_slice(buf, 0x2a), &ChecksumCapabilities::default(), ); #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] let ip_repr = Ipv4Repr { src_addr: src_addr, dst_addr: dst_addr, protocol: IpProtocol::Udp, hop_limit: 64, payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN, }; #[cfg(feature = "proto-ipv6")] let ip_repr = Ipv6Repr { src_addr: src_addr, dst_addr: dst_addr, next_header: IpProtocol::Udp, hop_limit: 64, payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN, }; let payload = packet.into_inner(); // Expected packets #[cfg(feature = "proto-ipv6")] let expected_icmp_repr = Icmpv6Repr::DstUnreachable { reason: Icmpv6DstUnreachable::PortUnreachable, header: ip_repr, data: &payload[..MAX_PAYLOAD_LEN], }; #[cfg(feature = "proto-ipv6")] let expected_ip_repr = Ipv6Repr { src_addr: dst_addr, dst_addr: src_addr, next_header: IpProtocol::Icmpv6, hop_limit: 64, payload_len: expected_icmp_repr.buffer_len(), }; #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] let expected_icmp_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: ip_repr, data: &payload[..MAX_PAYLOAD_LEN], }; #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] let expected_ip_repr = Ipv4Repr { src_addr: dst_addr, dst_addr: src_addr, protocol: IpProtocol::Icmp, hop_limit: 64, payload_len: expected_icmp_repr.buffer_len(), }; let cx = iface.context(Instant::from_secs(0)); // The expected packet does not exceed the IPV4_MIN_MTU #[cfg(feature = "proto-ipv6")] assert_eq!( expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(), MIN_MTU ); // The expected packet does not exceed the IPV4_MIN_MTU #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] assert_eq!( expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(), MIN_MTU ); // The expected packet and the generated packet are equal #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))] assert_eq!( iface .inner .process_udp(&cx, &mut iface.sockets, ip_repr.into(), false, payload), Ok(Some(IpPacket::Icmpv4(( expected_ip_repr, expected_icmp_repr )))) ); #[cfg(feature = "proto-ipv6")] assert_eq!( iface .inner .process_udp(&cx, &mut iface.sockets, ip_repr.into(), false, payload), Ok(Some(IpPacket::Icmpv6(( expected_ip_repr, expected_icmp_repr )))) ); } #[test] #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))] fn test_handle_valid_arp_request() { let mut iface = create_loopback_ethernet(); let mut eth_bytes = vec![0u8; 42]; let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]); let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]); let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]); let repr = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: remote_hw_addr, source_protocol_addr: remote_ip_addr, target_hardware_addr: EthernetAddress::default(), target_protocol_addr: local_ip_addr, }; let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes); frame.set_dst_addr(EthernetAddress::BROADCAST); frame.set_src_addr(remote_hw_addr); frame.set_ethertype(EthernetProtocol::Arp); let mut packet = ArpPacket::new_unchecked(frame.payload_mut()); repr.emit(&mut packet); let cx = iface.context(Instant::from_secs(0)); // Ensure an ARP Request for us triggers an ARP Reply assert_eq!( iface .inner .process_ethernet(&cx, &mut iface.sockets, frame.into_inner()), Ok(Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 { operation: ArpOperation::Reply, source_hardware_addr: local_hw_addr, source_protocol_addr: local_ip_addr, target_hardware_addr: remote_hw_addr, target_protocol_addr: remote_ip_addr }))) ); // Ensure the address of the requestor was entered in the cache assert_eq!( iface.inner.lookup_hardware_addr( &cx, MockTxToken, &IpAddress::Ipv4(local_ip_addr), &IpAddress::Ipv4(remote_ip_addr) ), Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken)) ); } #[test] #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv6"))] fn test_handle_valid_ndisc_request() { let mut iface = create_loopback_ethernet(); let mut eth_bytes = vec![0u8; 86]; let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1); let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2); let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]); let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit { target_addr: local_ip_addr, lladdr: Some(remote_hw_addr.into()), }); let ip_repr = IpRepr::Ipv6(Ipv6Repr { src_addr: remote_ip_addr, dst_addr: local_ip_addr.solicited_node(), next_header: IpProtocol::Icmpv6, hop_limit: 0xff, payload_len: solicit.buffer_len(), }); let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes); frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00])); frame.set_src_addr(remote_hw_addr); frame.set_ethertype(EthernetProtocol::Ipv6); ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default()); solicit.emit( &remote_ip_addr.into(), &local_ip_addr.solicited_node().into(), &mut Icmpv6Packet::new_unchecked(&mut frame.payload_mut()[ip_repr.buffer_len()..]), &ChecksumCapabilities::default(), ); let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert { flags: NdiscNeighborFlags::SOLICITED, target_addr: local_ip_addr, lladdr: Some(local_hw_addr.into()), }); let ipv6_expected = Ipv6Repr { src_addr: local_ip_addr, dst_addr: remote_ip_addr, next_header: IpProtocol::Icmpv6, hop_limit: 0xff, payload_len: icmpv6_expected.buffer_len(), }; let cx = iface.context(Instant::from_secs(0)); // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement assert_eq!( iface .inner .process_ethernet(&cx, &mut iface.sockets, frame.into_inner()), Ok(Some(EthernetPacket::Ip(IpPacket::Icmpv6(( ipv6_expected, icmpv6_expected ))))) ); // Ensure the address of the requestor was entered in the cache assert_eq!( iface.inner.lookup_hardware_addr( &cx, MockTxToken, &IpAddress::Ipv6(local_ip_addr), &IpAddress::Ipv6(remote_ip_addr) ), Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken)) ); } #[test] #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))] fn test_handle_other_arp_request() { let mut iface = create_loopback_ethernet(); let mut eth_bytes = vec![0u8; 42]; let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]); let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]); let repr = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: remote_hw_addr, source_protocol_addr: remote_ip_addr, target_hardware_addr: EthernetAddress::default(), target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]), }; let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes); frame.set_dst_addr(EthernetAddress::BROADCAST); frame.set_src_addr(remote_hw_addr); frame.set_ethertype(EthernetProtocol::Arp); let mut packet = ArpPacket::new_unchecked(frame.payload_mut()); repr.emit(&mut packet); let cx = iface.context(Instant::from_secs(0)); // Ensure an ARP Request for someone else does not trigger an ARP Reply assert_eq!( iface .inner .process_ethernet(&cx, &mut iface.sockets, frame.into_inner()), Ok(None) ); // Ensure the address of the requestor was NOT entered in the cache assert_eq!( iface.inner.lookup_hardware_addr( &cx, MockTxToken, &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])), &IpAddress::Ipv4(remote_ip_addr) ), Err(Error::Unaddressable) ); } #[test] #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))] fn test_arp_flush_after_update_ip() { let mut iface = create_loopback_ethernet(); let mut eth_bytes = vec![0u8; 42]; let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]); let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]); let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]); let repr = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: remote_hw_addr, source_protocol_addr: remote_ip_addr, target_hardware_addr: EthernetAddress::default(), target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]), }; let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes); frame.set_dst_addr(EthernetAddress::BROADCAST); frame.set_src_addr(remote_hw_addr); frame.set_ethertype(EthernetProtocol::Arp); { let mut packet = ArpPacket::new_unchecked(frame.payload_mut()); repr.emit(&mut packet); } let cx = iface.context(Instant::from_secs(0)); // Ensure an ARP Request for us triggers an ARP Reply assert_eq!( iface .inner .process_ethernet(&cx, &mut iface.sockets, frame.into_inner()), Ok(Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 { operation: ArpOperation::Reply, source_hardware_addr: local_hw_addr, source_protocol_addr: local_ip_addr, target_hardware_addr: remote_hw_addr, target_protocol_addr: remote_ip_addr }))) ); // Ensure the address of the requestor was entered in the cache assert_eq!( iface.inner.lookup_hardware_addr( &cx, MockTxToken, &IpAddress::Ipv4(local_ip_addr), &IpAddress::Ipv4(remote_ip_addr) ), Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken)) ); // Update IP addrs to trigger ARP cache flush let local_ip_addr_new = Ipv4Address([0x7f, 0x00, 0x00, 0x01]); iface.update_ip_addrs(|addrs| { addrs.iter_mut().next().map(|addr| { *addr = IpCidr::Ipv4(Ipv4Cidr::new(local_ip_addr_new, 24)); }); }); // ARP cache flush after address change assert!(!iface .inner .has_neighbor(&cx, &IpAddress::Ipv4(remote_ip_addr))); } #[test] #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))] fn test_icmpv4_socket() { use crate::socket::{IcmpEndpoint, IcmpPacketMetadata, IcmpSocket, IcmpSocketBuffer}; use crate::wire::Icmpv4Packet; let mut iface = create_loopback(); let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 24]); let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 24]); let icmpv4_socket = IcmpSocket::new(rx_buffer, tx_buffer); let socket_handle = iface.add_socket(icmpv4_socket); let ident = 0x1234; let seq_no = 0x5432; let echo_data = &[0xff; 16]; let socket = iface.get_socket::(socket_handle); // Bind to the ID 0x1234 assert_eq!(socket.bind(IcmpEndpoint::Ident(ident)), Ok(())); // Ensure the ident we bound to and the ident of the packet are the same. let mut bytes = [0xff; 24]; let mut packet = Icmpv4Packet::new_unchecked(&mut bytes); let echo_repr = Icmpv4Repr::EchoRequest { ident, seq_no, data: echo_data, }; echo_repr.emit(&mut packet, &ChecksumCapabilities::default()); let icmp_data = &packet.into_inner()[..]; let ipv4_repr = Ipv4Repr { src_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x02), dst_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x01), protocol: IpProtocol::Icmp, payload_len: 24, hop_limit: 64, }; let ip_repr = IpRepr::Ipv4(ipv4_repr); // Open a socket and ensure the packet is handled due to the listening // socket. assert!(!iface.get_socket::(socket_handle).can_recv()); // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening let echo_reply = Icmpv4Repr::EchoReply { ident, seq_no, data: echo_data, }; let ipv4_reply = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, ..ipv4_repr }; let cx = iface.context(Instant::from_secs(0)); assert_eq!( iface .inner .process_icmpv4(&cx, &mut iface.sockets, ip_repr, icmp_data), Ok(Some(IpPacket::Icmpv4((ipv4_reply, echo_reply)))) ); let socket = iface.get_socket::(socket_handle); assert!(socket.can_recv()); assert_eq!( socket.recv(), Ok(( icmp_data, IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02)) )) ); } #[test] #[cfg(feature = "proto-ipv6")] fn test_solicited_node_addrs() { let mut iface = create_loopback(); let mut new_addrs = vec![ IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64), IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64), ]; iface.update_ip_addrs(|addrs| { new_addrs.extend(addrs.to_vec()); *addrs = From::from(new_addrs); }); assert!(iface .inner .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002))); assert!(iface .inner .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff))); assert!(!iface .inner .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003))); } #[test] #[cfg(feature = "proto-ipv6")] fn test_icmpv6_nxthdr_unknown() { let mut iface = create_loopback(); let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1); let payload = [0x12, 0x34, 0x56, 0x78]; let ipv6_repr = Ipv6Repr { src_addr: remote_ip_addr, dst_addr: Ipv6Address::LOOPBACK, next_header: IpProtocol::HopByHop, payload_len: 12, hop_limit: 0x40, }; let mut bytes = vec![0; 52]; let frame = { let ip_repr = IpRepr::Ipv6(ipv6_repr); ip_repr.emit(&mut bytes, &ChecksumCapabilities::default()); let mut offset = ipv6_repr.buffer_len(); { let mut hbh_pkt = Ipv6HopByHopHeader::new_unchecked(&mut bytes[offset..]); hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c)); hbh_pkt.set_header_len(0); offset += 8; { let mut pad_pkt = Ipv6Option::new_unchecked(&mut *hbh_pkt.options_mut()); Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt); } { let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]); Ipv6OptionRepr::Pad1.emit(&mut pad_pkt); } } bytes[offset..].copy_from_slice(&payload); Ipv6Packet::new_unchecked(&bytes) }; let reply_icmp_repr = Icmpv6Repr::ParamProblem { reason: Icmpv6ParamProblem::UnrecognizedNxtHdr, pointer: 40, header: ipv6_repr, data: &payload[..], }; let reply_ipv6_repr = Ipv6Repr { src_addr: Ipv6Address::LOOPBACK, dst_addr: remote_ip_addr, next_header: IpProtocol::Icmpv6, payload_len: reply_icmp_repr.buffer_len(), hop_limit: 0x40, }; let cx = iface.context(Instant::from_secs(0)); // Ensure the unknown next header causes a ICMPv6 Parameter Problem // error message to be sent to the sender. assert_eq!( iface.inner.process_ipv6(&cx, &mut iface.sockets, &frame), Ok(Some(IpPacket::Icmpv6((reply_ipv6_repr, reply_icmp_repr)))) ); } #[test] #[cfg(feature = "proto-igmp")] fn test_handle_igmp() { fn recv_igmp( mut iface: &mut Interface<'_, Loopback>, timestamp: Instant, ) -> Vec<(Ipv4Repr, IgmpRepr)> { let caps = iface.device.capabilities(); let checksum_caps = &caps.checksum; recv_all(&mut iface, timestamp) .iter() .filter_map(|frame| { let ipv4_packet = match caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => { let eth_frame = EthernetFrame::new_checked(frame).ok()?; Ipv4Packet::new_checked(eth_frame.payload()).ok()? } #[cfg(feature = "medium-ip")] Medium::Ip => Ipv4Packet::new_checked(&frame[..]).ok()?, #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => todo!(), }; let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, checksum_caps).ok()?; let ip_payload = ipv4_packet.payload(); let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?; let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?; Some((ipv4_repr, igmp_repr)) }) .collect::>() } let groups = [ Ipv4Address::new(224, 0, 0, 22), Ipv4Address::new(224, 0, 0, 56), ]; let mut iface = create_loopback(); // Join multicast groups let timestamp = Instant::now(); for group in &groups { iface.join_multicast_group(*group, timestamp).unwrap(); } let reports = recv_igmp(&mut iface, timestamp); assert_eq!(reports.len(), 2); for (i, group_addr) in groups.iter().enumerate() { assert_eq!(reports[i].0.protocol, IpProtocol::Igmp); assert_eq!(reports[i].0.dst_addr, *group_addr); assert_eq!( reports[i].1, IgmpRepr::MembershipReport { group_addr: *group_addr, version: IgmpVersion::Version2, } ); } // General query let timestamp = Instant::now(); const GENERAL_QUERY_BYTES: &[u8] = &[ 0x46, 0xc0, 0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02, 0x47, 0x43, 0xac, 0x16, 0x63, 0x04, 0xe0, 0x00, 0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64, 0xec, 0x8f, 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, ]; { // Transmit GENERAL_QUERY_BYTES into loopback let tx_token = iface.device.transmit().unwrap(); tx_token .consume(timestamp, GENERAL_QUERY_BYTES.len(), |buffer| { buffer.copy_from_slice(GENERAL_QUERY_BYTES); Ok(()) }) .unwrap(); } // Trigger processing until all packets received through the // loopback have been processed, including responses to // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0 // pkts that could be checked. let cx = iface.context(timestamp); iface.socket_ingress(&cx); // Leave multicast groups let timestamp = Instant::now(); for group in &groups { iface.leave_multicast_group(*group, timestamp).unwrap(); } let leaves = recv_igmp(&mut iface, timestamp); assert_eq!(leaves.len(), 2); for (i, group_addr) in groups.iter().cloned().enumerate() { assert_eq!(leaves[i].0.protocol, IpProtocol::Igmp); assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS); assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr }); } } #[test] #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))] fn test_raw_socket_no_reply() { use crate::socket::{RawPacketMetadata, RawSocket, RawSocketBuffer}; use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr}; let mut iface = create_loopback(); let packets = 1; let rx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * 1]); let tx_buffer = RawSocketBuffer::new( vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * packets], ); let raw_socket = RawSocket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer); iface.add_socket(raw_socket); let src_addr = Ipv4Address([127, 0, 0, 2]); let dst_addr = Ipv4Address([127, 0, 0, 1]); const PAYLOAD_LEN: usize = 10; let udp_repr = UdpRepr { src_port: 67, dst_port: 68, }; let mut bytes = vec![0xff; udp_repr.header_len() + PAYLOAD_LEN]; let mut packet = UdpPacket::new_unchecked(&mut bytes[..]); udp_repr.emit( &mut packet, &src_addr.into(), &dst_addr.into(), PAYLOAD_LEN, |buf| fill_slice(buf, 0x2a), &ChecksumCapabilities::default(), ); let ipv4_repr = Ipv4Repr { src_addr: src_addr, dst_addr: dst_addr, protocol: IpProtocol::Udp, hop_limit: 64, payload_len: udp_repr.header_len() + PAYLOAD_LEN, }; // Emit to frame let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + PAYLOAD_LEN]; let frame = { ipv4_repr.emit( &mut Ipv4Packet::new_unchecked(&mut bytes), &ChecksumCapabilities::default(), ); udp_repr.emit( &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]), &src_addr.into(), &dst_addr.into(), PAYLOAD_LEN, |buf| fill_slice(buf, 0x2a), &ChecksumCapabilities::default(), ); Ipv4Packet::new_unchecked(&bytes) }; let cx = iface.context(Instant::from_millis(0)); assert_eq!( iface.inner.process_ipv4(&cx, &mut iface.sockets, &frame), Ok(None) ); } #[test] #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))] fn test_raw_socket_truncated_packet() { use crate::socket::{RawPacketMetadata, RawSocket, RawSocketBuffer}; use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr}; let mut iface = create_loopback(); let packets = 1; let rx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * 1]); let tx_buffer = RawSocketBuffer::new( vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * packets], ); let raw_socket = RawSocket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer); iface.add_socket(raw_socket); let src_addr = Ipv4Address([127, 0, 0, 2]); let dst_addr = Ipv4Address([127, 0, 0, 1]); const PAYLOAD_LEN: usize = 49; // 49 > 48, hence packet will be truncated let udp_repr = UdpRepr { src_port: 67, dst_port: 68, }; let mut bytes = vec![0xff; udp_repr.header_len() + PAYLOAD_LEN]; let mut packet = UdpPacket::new_unchecked(&mut bytes[..]); udp_repr.emit( &mut packet, &src_addr.into(), &dst_addr.into(), PAYLOAD_LEN, |buf| fill_slice(buf, 0x2a), &ChecksumCapabilities::default(), ); let ipv4_repr = Ipv4Repr { src_addr: src_addr, dst_addr: dst_addr, protocol: IpProtocol::Udp, hop_limit: 64, payload_len: udp_repr.header_len() + PAYLOAD_LEN, }; // Emit to frame let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + PAYLOAD_LEN]; let frame = { ipv4_repr.emit( &mut Ipv4Packet::new_unchecked(&mut bytes), &ChecksumCapabilities::default(), ); udp_repr.emit( &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]), &src_addr.into(), &dst_addr.into(), PAYLOAD_LEN, |buf| fill_slice(buf, 0x2a), &ChecksumCapabilities::default(), ); Ipv4Packet::new_unchecked(&bytes) }; let cx = iface.context(Instant::from_millis(0)); let frame = iface.inner.process_ipv4(&cx, &mut iface.sockets, &frame); // because the packet could not be handled we should send an Icmp message assert!(match frame { Ok(Some(IpPacket::Icmpv4(_))) => true, _ => false, }); } #[test] #[cfg(all(feature = "proto-ipv4", feature = "socket-raw", feature = "socket-udp"))] fn test_raw_socket_with_udp_socket() { use crate::socket::{ RawPacketMetadata, RawSocket, RawSocketBuffer, UdpPacketMetadata, UdpSocket, UdpSocketBuffer, }; use crate::wire::{IpEndpoint, IpVersion, Ipv4Packet, UdpPacket, UdpRepr}; static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f]; let mut iface = create_loopback(); let udp_rx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]); let udp_tx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]); let udp_socket = UdpSocket::new(udp_rx_buffer, udp_tx_buffer); let udp_socket_handle = iface.add_socket(udp_socket); // Bind the socket to port 68 let socket = iface.get_socket::(udp_socket_handle); assert_eq!(socket.bind(68), Ok(())); assert!(!socket.can_recv()); assert!(socket.can_send()); let packets = 1; let raw_rx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * 1]); let raw_tx_buffer = RawSocketBuffer::new( vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * packets], ); let raw_socket = RawSocket::new( IpVersion::Ipv4, IpProtocol::Udp, raw_rx_buffer, raw_tx_buffer, ); iface.add_socket(raw_socket); let src_addr = Ipv4Address([127, 0, 0, 2]); let dst_addr = Ipv4Address([127, 0, 0, 1]); let udp_repr = UdpRepr { src_port: 67, dst_port: 68, }; let mut bytes = vec![0xff; udp_repr.header_len() + UDP_PAYLOAD.len()]; let mut packet = UdpPacket::new_unchecked(&mut bytes[..]); udp_repr.emit( &mut packet, &src_addr.into(), &dst_addr.into(), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(&UDP_PAYLOAD), &ChecksumCapabilities::default(), ); let ipv4_repr = Ipv4Repr { src_addr: src_addr, dst_addr: dst_addr, protocol: IpProtocol::Udp, hop_limit: 64, payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(), }; // Emit to frame let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + UDP_PAYLOAD.len()]; let frame = { ipv4_repr.emit( &mut Ipv4Packet::new_unchecked(&mut bytes), &ChecksumCapabilities::default(), ); udp_repr.emit( &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]), &src_addr.into(), &dst_addr.into(), UDP_PAYLOAD.len(), |buf| buf.copy_from_slice(&UDP_PAYLOAD), &ChecksumCapabilities::default(), ); Ipv4Packet::new_unchecked(&bytes) }; let cx = iface.context(Instant::from_millis(0)); assert_eq!( iface.inner.process_ipv4(&cx, &mut iface.sockets, &frame), Ok(None) ); // Make sure the UDP socket can still receive in presence of a Raw socket that handles UDP let socket = iface.get_socket::(udp_socket_handle); assert!(socket.can_recv()); assert_eq!( socket.recv(), Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_addr.into(), 67))) ); } }