use core::fmt; use Error; use Managed; use wire::{IpProtocol, IpAddress, IpEndpoint}; use wire::{TcpPacket, TcpRepr, TcpControl}; use socket::{Socket, PacketRepr}; /// A TCP stream ring buffer. #[derive(Debug)] pub struct SocketBuffer<'a> { storage: Managed<'a, [u8]>, read_at: usize, length: usize } impl<'a> SocketBuffer<'a> { /// Create a packet buffer with the given storage. pub fn new(storage: T) -> SocketBuffer<'a> where T: Into> { SocketBuffer { storage: storage.into(), read_at: 0, length: 0 } } /// Return the amount of octets enqueued in the buffer. pub fn len(&self) -> usize { self.length } /// Return the maximum amount of octets that can be enqueued in the buffer. pub fn capacity(&self) -> usize { self.storage.len() } /// Enqueue a slice of octets up to the given size into the buffer, and return a pointer /// to the slice. /// /// The returned slice may be shorter than requested, as short as an empty slice, /// if there is not enough contiguous free space in the buffer. pub fn enqueue(&mut self, mut size: usize) -> &mut [u8] { let write_at = (self.read_at + self.length) % self.storage.len(); // We can't enqueue more than there is free space. let free = self.storage.len() - self.length; if size > free { size = free } // We can't contiguously enqueue past the beginning of the storage. let until_end = self.storage.len() - write_at; if size > until_end { size = until_end } self.length += size; &mut self.storage[write_at..write_at + size] } /// Dequeue a slice of octets up to the given size from the buffer, and return a pointer /// to the slice. /// /// The returned slice may be shorter than requested, as short as an empty slice, /// if there is not enough contiguous filled space in the buffer. pub fn dequeue(&mut self, mut size: usize) -> &[u8] { let read_at = self.read_at; // We can't dequeue more than was queued. if size > self.length { size = self.length } // We can't contiguously dequeue past the end of the storage. let until_end = self.storage.len() - self.read_at; if size > until_end { size = until_end } self.read_at = (self.read_at + size) % self.storage.len(); self.length -= size; &self.storage[read_at..read_at + size] } } impl<'a> Into> for Managed<'a, [u8]> { fn into(self) -> SocketBuffer<'a> { SocketBuffer::new(self) } } #[derive(Debug, PartialEq, Eq, Clone, Copy)] pub enum State { Closed, Listen, SynSent, SynReceived, Established, FinWait1, FinWait2, CloseWait, Closing, LastAck, TimeWait } impl fmt::Display for State { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { &State::Closed => write!(f, "CLOSED"), &State::Listen => write!(f, "LISTEN"), &State::SynSent => write!(f, "SYN_SENT"), &State::SynReceived => write!(f, "SYN_RECEIVED"), &State::Established => write!(f, "ESTABLISHED"), &State::FinWait1 => write!(f, "FIN_WAIT_1"), &State::FinWait2 => write!(f, "FIN_WAIT_2"), &State::CloseWait => write!(f, "CLOSE_WAIT"), &State::Closing => write!(f, "CLOSING"), &State::LastAck => write!(f, "LAST_ACK"), &State::TimeWait => write!(f, "TIME_WAIT") } } } #[derive(Debug)] struct Retransmit { sent: bool // FIXME } impl Retransmit { fn new() -> Retransmit { Retransmit { sent: false } } fn reset(&mut self) { self.sent = false } fn check(&mut self) -> bool { let result = !self.sent; self.sent = true; result } } /// A Transmission Control Protocol data stream. #[derive(Debug)] pub struct TcpSocket<'a> { state: State, local_end: IpEndpoint, remote_end: IpEndpoint, local_seq_no: i32, remote_seq_no: i32, retransmit: Retransmit, rx_buffer: SocketBuffer<'a>, tx_buffer: SocketBuffer<'a> } impl<'a> TcpSocket<'a> { /// Create a socket using the given buffers. pub fn new(rx_buffer: T, tx_buffer: T) -> Socket<'a, 'static> where T: Into> { let rx_buffer = rx_buffer.into(); if rx_buffer.capacity() > ::max_value() as usize { panic!("buffers larger than {} require window scaling, which is not implemented", ::max_value()) } Socket::Tcp(TcpSocket { state: State::Closed, local_end: IpEndpoint::default(), remote_end: IpEndpoint::default(), local_seq_no: 0, remote_seq_no: 0, retransmit: Retransmit::new(), tx_buffer: tx_buffer.into(), rx_buffer: rx_buffer.into() }) } /// Return the connection state. #[inline(always)] pub fn state(&self) -> State { self.state } /// Return the local endpoint. #[inline(always)] pub fn local_endpoint(&self) -> IpEndpoint { self.local_end } /// Return the remote endpoint. #[inline(always)] pub fn remote_endpoint(&self) -> IpEndpoint { self.remote_end } fn set_state(&mut self, state: State) { if self.state != state { if self.remote_end.addr.is_unspecified() { net_trace!("tcp:{}: state={}→{}", self.local_end, self.state, state); } else { net_trace!("tcp:{}:{}: state={}→{}", self.local_end, self.remote_end, self.state, state); } } self.state = state } /// Start listening on the given endpoint. /// /// # Panics /// This function will panic if the socket is not in the CLOSED state. pub fn listen(&mut self, endpoint: IpEndpoint) { assert!(self.state == State::Closed); self.local_end = endpoint; self.remote_end = IpEndpoint::default(); self.set_state(State::Listen); } /// See [Socket::collect](enum.Socket.html#method.collect). pub fn collect(&mut self, src_addr: &IpAddress, dst_addr: &IpAddress, protocol: IpProtocol, payload: &[u8]) -> Result<(), Error> { if protocol != IpProtocol::Tcp { return Err(Error::Rejected) } let packet = try!(TcpPacket::new(payload)); let repr = try!(TcpRepr::parse(&packet, src_addr, dst_addr)); if self.local_end.port != repr.dst_port { return Err(Error::Rejected) } if !self.local_end.addr.is_unspecified() && self.local_end.addr != *dst_addr { return Err(Error::Rejected) } if self.remote_end.port != 0 && self.remote_end.port != repr.src_port { return Err(Error::Rejected) } if !self.remote_end.addr.is_unspecified() && self.remote_end.addr != *src_addr { return Err(Error::Rejected) } match (self.state, repr) { (State::Closed, _) => Err(Error::Rejected), (State::Listen, TcpRepr { src_port, dst_port, control: TcpControl::Syn, seq_number, ack_number: None, .. }) => { self.local_end = IpEndpoint::new(*dst_addr, dst_port); self.remote_end = IpEndpoint::new(*src_addr, src_port); self.remote_seq_no = seq_number; // FIXME: use something more secure self.local_seq_no = !seq_number; self.set_state(State::SynReceived); // FIXME: queue data from SYN self.retransmit.reset(); Ok(()) } _ => { // This will cause the interface to reply with an RST. Err(Error::Rejected) } } } /// See [Socket::dispatch](enum.Socket.html#method.dispatch). pub fn dispatch(&mut self, f: &mut FnMut(&IpAddress, &IpAddress, IpProtocol, &PacketRepr) -> Result<(), Error>) -> Result<(), Error> { let mut repr = TcpRepr { src_port: self.local_end.port, dst_port: self.remote_end.port, control: TcpControl::None, seq_number: 0, ack_number: None, window_len: (self.rx_buffer.capacity() - self.rx_buffer.len()) as u16, payload: &[] }; // FIXME: process match self.state { State::Closed | State::Listen => { return Err(Error::Exhausted) } State::SynReceived => { if !self.retransmit.check() { return Err(Error::Exhausted) } repr.control = TcpControl::Syn; repr.seq_number = self.local_seq_no; repr.ack_number = Some(self.remote_seq_no + 1); net_trace!("tcp:{}:{}: SYN sent", self.local_end, self.remote_end); } _ => unreachable!() } f(&self.local_end.addr, &self.remote_end.addr, IpProtocol::Tcp, &repr) } } impl<'a> PacketRepr for TcpRepr<'a> { fn buffer_len(&self) -> usize { self.buffer_len() } fn emit(&self, src_addr: &IpAddress, dst_addr: &IpAddress, payload: &mut [u8]) { let mut packet = TcpPacket::new(payload).expect("undersized payload"); self.emit(&mut packet, src_addr, dst_addr) } } #[cfg(test)] mod test { use super::*; #[test] fn test_buffer() { let mut buffer = SocketBuffer::new(vec![0; 8]); // ........ buffer.enqueue(6).copy_from_slice(b"foobar"); // foobar.. assert_eq!(buffer.dequeue(3), b"foo"); // ...bar.. buffer.enqueue(6).copy_from_slice(b"ba"); // ...barba buffer.enqueue(4).copy_from_slice(b"zho"); // zhobarba assert_eq!(buffer.dequeue(6), b"barba"); // zho..... assert_eq!(buffer.dequeue(8), b"zho"); // ........ buffer.enqueue(8).copy_from_slice(b"gefug"); // ...gefug } }