use core::cmp; use managed::{Managed, ManagedSlice}; use {Error, Result}; use super::Resettable; /// A ring buffer. /// /// This ring buffer implementation provides many ways to interact with it: /// /// * Enqueueing or dequeueing one element from corresponding side of the buffer; /// * Enqueueing or dequeueing a slice of elements from corresponding side of the buffer; /// * Accessing allocated and unallocated areas directly. /// /// It is also zero-copy; all methods provide references into the buffer's storage. /// Note that all references are mutable; it is considered more important to allow /// in-place processing than to protect from accidental mutation. /// /// This implementation is suitable for both simple uses such as a FIFO queue /// of UDP packets, and advanced ones such as a TCP reassembly buffer. #[derive(Debug)] pub struct RingBuffer<'a, T: 'a> { storage: ManagedSlice<'a, T>, read_at: usize, length: usize, } impl<'a, T: 'a> RingBuffer<'a, T> { /// Create a ring buffer with the given storage. /// /// During creation, every element in `storage` is reset. pub fn new(storage: S) -> RingBuffer<'a, T> where S: Into>, { RingBuffer { storage: storage.into(), read_at: 0, length: 0, } } /// Clear the ring buffer. pub fn clear(&mut self) { self.read_at = 0; self.length = 0; } /// Return the maximum number of elements in the ring buffer. pub fn capacity(&self) -> usize { self.storage.len() } /// Clear the ring buffer, and reset every element. pub fn reset(&mut self) where T: Resettable { self.clear(); for elem in self.storage.iter_mut() { elem.reset(); } } /// Return the current number of elements in the ring buffer. pub fn len(&self) -> usize { self.length } /// Set the current number of elements in the ring buffer. /// /// The newly added elements (if any) retain their old value. /// /// # Panics /// This function panics if the new length is greater than capacity. pub fn set_len(&mut self, length: usize) { assert!(length <= self.capacity()); self.length = length } /// Return the number of elements that can be added to the ring buffer. pub fn window(&self) -> usize { self.capacity() - self.len() } /// Query whether the buffer is empty. pub fn empty(&self) -> bool { self.len() == 0 } /// Query whether the buffer is full. pub fn full(&self) -> bool { self.window() == 0 } } /// This is the "discrete" ring buffer interface: it operates with single elements, /// and boundary conditions (empty/full) are errors. impl<'a, T: 'a> RingBuffer<'a, T> { /// Call `f` with a single buffer element, and enqueue the element if `f` /// returns successfully, or return `Err(Error::Exhausted)` if the buffer is full. pub fn enqueue_one_with<'b, R, F>(&'b mut self, f: F) -> Result where F: FnOnce(&'b mut T) -> Result { if self.full() { return Err(Error::Exhausted) } let index = (self.read_at + self.length) % self.capacity(); match f(&mut self.storage[index]) { Ok(result) => { self.length += 1; Ok(result) } Err(error) => Err(error) } } /// Enqueue a single element into the buffer, and return a reference to it, /// or return `Err(Error::Exhausted)` if the buffer is full. /// /// This function is a shortcut for `ring_buf.enqueue_one_with(Ok)`. pub fn enqueue_one<'b>(&'b mut self) -> Result<&'b mut T> { self.enqueue_one_with(Ok) } /// Call `f` with a single buffer element, and dequeue the element if `f` /// returns successfully, or return `Err(Error::Exhausted)` if the buffer is empty. pub fn dequeue_one_with<'b, R, F>(&'b mut self, f: F) -> Result where F: FnOnce(&'b mut T) -> Result { if self.empty() { return Err(Error::Exhausted) } let next_at = (self.read_at + 1) % self.capacity(); match f(&mut self.storage[self.read_at]) { Ok(result) => { self.length -= 1; self.read_at = next_at; Ok(result) } Err(error) => Err(error) } } /// Dequeue an element from the buffer, and return a reference to it, /// or return `Err(Error::Exhausted)` if the buffer is empty. /// /// This function is a shortcut for `ring_buf.dequeue_one_with(Ok)`. pub fn dequeue_one(&mut self) -> Result<&mut T> { self.dequeue_one_with(Ok) } } /// This is the "continuous" ring buffer interface: it operates with element slices, /// and boundary conditions (empty/full) simply result in empty slices. impl<'a, T: 'a> RingBuffer<'a, T> { /// Call `f` with the largest contiguous slice of unallocated buffer elements, /// and enqueue the amount of elements returned by `f`. /// /// # Panics /// This function panics if the amount of elements returned by `f` is larger /// than the size of the slice passed into it. pub fn enqueue_many_with<'b, R, F>(&'b mut self, f: F) -> (usize, R) where F: FnOnce(&'b mut [T]) -> (usize, R) { let write_at = (self.read_at + self.length) % self.capacity(); let max_size = cmp::min(self.window(), self.capacity() - write_at); let (size, result) = f(&mut self.storage[write_at..write_at + max_size]); assert!(size <= max_size); self.length += size; (size, result) } /// Enqueue a slice of elements up to the given size into the buffer, /// and return a reference to them. /// /// This function may return a slice smaller than the given size /// if the free space in the buffer is not contiguous. pub fn enqueue_many<'b>(&'b mut self, size: usize) -> &'b mut [T] { self.enqueue_many_with(|buf| { let size = cmp::min(size, buf.len()); (size, &mut buf[..size]) }).1 } /// Enqueue as many elements from the given slice into the buffer as possible, /// and return the amount of elements that could fit. pub fn enqueue_slice(&mut self, data: &[T]) -> usize where T: Copy { let (size_1, data) = self.enqueue_many_with(|buf| { let size = cmp::min(buf.len(), data.len()); buf[..size].copy_from_slice(&data[..size]); (size, &data[size..]) }); let (size_2, ()) = self.enqueue_many_with(|buf| { let size = cmp::min(buf.len(), data.len()); buf[..size].copy_from_slice(&data[..size]); (size, ()) }); size_1 + size_2 } /// Call `f` with the largest contiguous slice of allocated buffer elements, /// and dequeue the amount of elements returned by `f`. /// /// # Panics /// This function panics if the amount of elements returned by `f` is larger /// than the size of the slice passed into it. pub fn dequeue_many_with<'b, R, F>(&'b mut self, f: F) -> (usize, R) where F: FnOnce(&'b mut [T]) -> (usize, R) { let capacity = self.capacity(); let max_size = cmp::min(self.len(), capacity - self.read_at); let (size, result) = f(&mut self.storage[self.read_at..self.read_at + max_size]); assert!(size <= max_size); self.read_at = (self.read_at + size) % capacity; self.length -= size; (size, result) } /// Dequeue a slice of elements up to the given size from the buffer, /// and return a reference to them. /// /// This function may return a slice smaller than the given size /// if the allocated space in the buffer is not contiguous. pub fn dequeue_many<'b>(&'b mut self, size: usize) -> &'b mut [T] { self.dequeue_many_with(|buf| { let size = cmp::min(size, buf.len()); (size, &mut buf[..size]) }).1 } /// Dequeue as many elements from the buffer into the given slice as possible, /// and return the amount of elements that could fit. pub fn dequeue_slice(&mut self, data: &mut [T]) -> usize where T: Copy { let (size_1, data) = self.dequeue_many_with(|buf| { let size = cmp::min(buf.len(), data.len()); data[..size].copy_from_slice(&buf[..size]); (size, &mut data[size..]) }); let (size_2, ()) = self.dequeue_many_with(|buf| { let size = cmp::min(buf.len(), data.len()); data[..size].copy_from_slice(&buf[..size]); (size, ()) }); size_1 + size_2 } } /// This is the "random access" ring buffer interface: it operates with element slices, /// and allows to access elements of the buffer that are not adjacent to its head or tail. /// /// After calling these functions to inject or extract elements, one would normally /// use the `enqueue_many` or `dequeue_many` methods to adjust the head or tail. impl<'a, T: 'a> RingBuffer<'a, T> { /// Return the largest contiguous slice of unallocated buffer elements starting /// at the given offset past the last allocated element, and up to the given size. pub fn get_unallocated(&mut self, offset: usize, mut size: usize) -> &mut [T] { let start_at = (self.read_at + self.length + offset) % self.capacity(); // We can't access past the end of unallocated data. if offset > self.window() { return &mut [] } // We can't enqueue more than there is free space. let clamped_window = self.window() - offset; if size > clamped_window { size = clamped_window } // We can't contiguously enqueue past the end of the storage. let until_end = self.capacity() - start_at; if size > until_end { size = until_end } &mut self.storage[start_at..start_at + size] } /// Return the largest contiguous slice of allocated buffer elements starting /// at the given offset past the first allocated element, and up to the given size. pub fn get_allocated(&self, offset: usize, mut size: usize) -> &[T] { let start_at = (self.read_at + offset) % self.capacity(); // We can't read past the end of the allocated data. if offset > self.length { return &mut [] } // We can't read more than we have allocated. let clamped_length = self.length - offset; if size > clamped_length { size = clamped_length } // We can't contiguously dequeue past the end of the storage. let until_end = self.capacity() - start_at; if size > until_end { size = until_end } &self.storage[start_at..start_at + size] } } impl<'a, T: 'a> From> for RingBuffer<'a, T> { fn from(slice: ManagedSlice<'a, T>) -> RingBuffer<'a, T> { RingBuffer::new(slice) } } #[cfg(test)] mod test { use super::*; #[test] fn test_buffer_length_changes() { let mut ring = RingBuffer::new(vec![0; 2]); assert!(ring.empty()); assert!(!ring.full()); assert_eq!(ring.len(), 0); assert_eq!(ring.capacity(), 2); assert_eq!(ring.window(), 2); ring.set_len(1); assert!(!ring.empty()); assert!(!ring.full()); assert_eq!(ring.len(), 1); assert_eq!(ring.capacity(), 2); assert_eq!(ring.window(), 1); ring.set_len(2); assert!(!ring.empty()); assert!(ring.full()); assert_eq!(ring.len(), 2); assert_eq!(ring.capacity(), 2); assert_eq!(ring.window(), 0); } #[test] fn test_buffer_enqueue_dequeue_one_with() { let mut ring = RingBuffer::new(vec![0; 5]); assert_eq!(ring.dequeue_one_with(|_| unreachable!()) as Result<()>, Err(Error::Exhausted)); ring.enqueue_one_with(|e| Ok(e)).unwrap(); assert!(!ring.empty()); assert!(!ring.full()); for i in 1..5 { ring.enqueue_one_with(|e| Ok(*e = i)).unwrap(); assert!(!ring.empty()); } assert!(ring.full()); assert_eq!(ring.enqueue_one_with(|_| unreachable!()) as Result<()>, Err(Error::Exhausted)); for i in 0..5 { assert_eq!(ring.dequeue_one_with(|e| Ok(*e)).unwrap(), i); assert!(!ring.full()); } assert_eq!(ring.dequeue_one_with(|_| unreachable!()) as Result<()>, Err(Error::Exhausted)); assert!(ring.empty()); } #[test] fn test_buffer_enqueue_dequeue_one() { let mut ring = RingBuffer::new(vec![0; 5]); assert_eq!(ring.dequeue_one(), Err(Error::Exhausted)); ring.enqueue_one().unwrap(); assert!(!ring.empty()); assert!(!ring.full()); for i in 1..5 { *ring.enqueue_one().unwrap() = i; assert!(!ring.empty()); } assert!(ring.full()); assert_eq!(ring.enqueue_one(), Err(Error::Exhausted)); for i in 0..5 { assert_eq!(*ring.dequeue_one().unwrap(), i); assert!(!ring.full()); } assert_eq!(ring.dequeue_one(), Err(Error::Exhausted)); assert!(ring.empty()); } #[test] fn test_buffer_enqueue_many_with() { let mut ring = RingBuffer::new(vec![b'.'; 12]); assert_eq!(ring.enqueue_many_with(|buf| { assert_eq!(buf.len(), 12); buf[0..2].copy_from_slice(b"ab"); (2, true) }), (2, true)); assert_eq!(ring.len(), 2); assert_eq!(&ring.storage[..], b"ab.........."); ring.enqueue_many_with(|buf| { assert_eq!(buf.len(), 12 - 2); buf[0..4].copy_from_slice(b"cdXX"); (2, ()) }); assert_eq!(ring.len(), 4); assert_eq!(&ring.storage[..], b"abcdXX......"); ring.enqueue_many_with(|buf| { assert_eq!(buf.len(), 12 - 4); buf[0..4].copy_from_slice(b"efgh"); (4, ()) }); assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"abcdefgh...."); for i in 0..4 { *ring.dequeue_one().unwrap() = b'.'; } assert_eq!(ring.len(), 4); assert_eq!(&ring.storage[..], b"....efgh...."); ring.enqueue_many_with(|buf| { assert_eq!(buf.len(), 12 - 8); buf[0..4].copy_from_slice(b"ijkl"); (4, ()) }); assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"....efghijkl"); ring.enqueue_many_with(|buf| { assert_eq!(buf.len(), 4); buf[0..4].copy_from_slice(b"abcd"); (4, ()) }); assert_eq!(ring.len(), 12); assert_eq!(&ring.storage[..], b"abcdefghijkl"); for i in 0..4 { *ring.dequeue_one().unwrap() = b'.'; } assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"abcd....ijkl"); } #[test] fn test_buffer_enqueue_many() { let mut ring = RingBuffer::new(vec![b'.'; 12]); ring.enqueue_many(8).copy_from_slice(b"abcdefgh"); assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"abcdefgh...."); ring.enqueue_many(8).copy_from_slice(b"ijkl"); assert_eq!(ring.len(), 12); assert_eq!(&ring.storage[..], b"abcdefghijkl"); } #[test] fn test_buffer_enqueue_slice() { let mut ring = RingBuffer::new(vec![b'.'; 12]); assert_eq!(ring.enqueue_slice(b"abcdefgh"), 8); assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"abcdefgh...."); for i in 0..4 { *ring.dequeue_one().unwrap() = b'.'; } assert_eq!(ring.len(), 4); assert_eq!(&ring.storage[..], b"....efgh...."); assert_eq!(ring.enqueue_slice(b"ijklabcd"), 8); assert_eq!(ring.len(), 12); assert_eq!(&ring.storage[..], b"abcdefghijkl"); } #[test] fn test_buffer_dequeue_many_with() { let mut ring = RingBuffer::new(vec![b'.'; 12]); assert_eq!(ring.enqueue_slice(b"abcdefghijkl"), 12); assert_eq!(ring.dequeue_many_with(|buf| { assert_eq!(buf.len(), 12); assert_eq!(buf, b"abcdefghijkl"); buf[..4].copy_from_slice(b"...."); (4, true) }), (4, true)); assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"....efghijkl"); ring.dequeue_many_with(|buf| { assert_eq!(buf, b"efghijkl"); buf[..4].copy_from_slice(b"...."); (4, ()) }); assert_eq!(ring.len(), 4); assert_eq!(&ring.storage[..], b"........ijkl"); assert_eq!(ring.enqueue_slice(b"abcd"), 4); assert_eq!(ring.len(), 8); ring.dequeue_many_with(|buf| { assert_eq!(buf, b"ijkl"); buf[..4].copy_from_slice(b"...."); (4, ()) }); ring.dequeue_many_with(|buf| { assert_eq!(buf, b"abcd"); buf[..4].copy_from_slice(b"...."); (4, ()) }); assert_eq!(ring.len(), 0); assert_eq!(&ring.storage[..], b"............"); } #[test] fn test_buffer_dequeue_many() { let mut ring = RingBuffer::new(vec![b'.'; 12]); assert_eq!(ring.enqueue_slice(b"abcdefghijkl"), 12); { let mut buf = ring.dequeue_many(8); assert_eq!(buf, b"abcdefgh"); buf.copy_from_slice(b"........"); } assert_eq!(ring.len(), 4); assert_eq!(&ring.storage[..], b"........ijkl"); { let mut buf = ring.dequeue_many(8); assert_eq!(buf, b"ijkl"); buf.copy_from_slice(b"...."); } assert_eq!(ring.len(), 0); assert_eq!(&ring.storage[..], b"............"); } #[test] fn test_buffer_dequeue_slice() { let mut ring = RingBuffer::new(vec![b'.'; 12]); assert_eq!(ring.enqueue_slice(b"abcdefghijkl"), 12); { let mut buf = [0; 8]; assert_eq!(ring.dequeue_slice(&mut buf[..]), 8); assert_eq!(&buf[..], b"abcdefgh"); assert_eq!(ring.len(), 4); } assert_eq!(ring.enqueue_slice(b"abcd"), 4); { let mut buf = [0; 8]; assert_eq!(ring.dequeue_slice(&mut buf[..]), 8); assert_eq!(&buf[..], b"ijklabcd"); assert_eq!(ring.len(), 0); } } #[test] fn test_buffer_get_unallocated() { let mut ring = RingBuffer::new(vec![b'.'; 12]);; assert_eq!(ring.get_unallocated(16, 4), b""); { let buf = ring.get_unallocated(0, 4); buf.copy_from_slice(b"abcd"); } assert_eq!(&ring.storage[..], b"abcd........"); ring.enqueue_many(4); assert_eq!(ring.len(), 4); { let buf = ring.get_unallocated(4, 8); buf.copy_from_slice(b"ijkl"); } assert_eq!(&ring.storage[..], b"abcd....ijkl"); ring.enqueue_many(8).copy_from_slice(b"EFGHIJKL"); ring.dequeue_many(4).copy_from_slice(b"abcd"); assert_eq!(ring.len(), 8); assert_eq!(&ring.storage[..], b"abcdEFGHIJKL"); { let buf = ring.get_unallocated(0, 8); buf.copy_from_slice(b"ABCD"); } assert_eq!(&ring.storage[..], b"ABCDEFGHIJKL"); } #[test] fn test_buffer_get_allocated() { let mut ring = RingBuffer::new(vec![b'.'; 12]);; assert_eq!(ring.get_allocated(16, 4), b""); assert_eq!(ring.get_allocated(0, 4), b""); ring.enqueue_slice(b"abcd"); assert_eq!(ring.get_allocated(0, 8), b"abcd"); ring.enqueue_slice(b"efghijkl"); ring.dequeue_many(4).copy_from_slice(b"...."); assert_eq!(ring.get_allocated(4, 8), b"ijkl"); ring.enqueue_slice(b"abcd"); assert_eq!(ring.get_allocated(4, 8), b"ijkl"); } }