Refactor the "continuous" ring buffer interface.

This also makes TcpSocket::{send,recv}_slice slightly more efficient
in case when the slice wraps around the corresponding buffer,
halving the necessary amount of calls.
v0.7.x
whitequark 2017-09-07 21:17:31 +00:00
parent a9719f4a13
commit 5dc0353b2a
4 changed files with 392 additions and 111 deletions

View File

@ -127,7 +127,7 @@ impl<'a, 'b> RawSocket<'a, 'b> {
/// **Note:** The IP header is parsed and reserialized, and may not match
/// the header actually transmitted bit for bit.
pub fn send(&mut self, size: usize) -> Result<&mut [u8]> {
let packet_buf = self.tx_buffer.try_enqueue(|buf| buf.resize(size))?;
let packet_buf = self.tx_buffer.enqueue_one_with(|buf| buf.resize(size))?;
net_trace!("[{}]:{}:{}: buffer to send {} octets",
self.debug_id, self.ip_version, self.ip_protocol,
packet_buf.size);
@ -149,7 +149,7 @@ impl<'a, 'b> RawSocket<'a, 'b> {
/// **Note:** The IP header is parsed and reserialized, and may not match
/// the header actually received bit for bit.
pub fn recv(&mut self) -> Result<&[u8]> {
let packet_buf = self.rx_buffer.dequeue()?;
let packet_buf = self.rx_buffer.dequeue_one()?;
net_trace!("[{}]:{}:{}: receive {} buffered octets",
self.debug_id, self.ip_version, self.ip_protocol,
packet_buf.size);
@ -172,7 +172,7 @@ impl<'a, 'b> RawSocket<'a, 'b> {
let header_len = ip_repr.buffer_len();
let total_len = header_len + payload.len();
let packet_buf = self.rx_buffer.try_enqueue(|buf| buf.resize(total_len))?;
let packet_buf = self.rx_buffer.enqueue_one_with(|buf| buf.resize(total_len))?;
ip_repr.emit(&mut packet_buf.as_mut()[..header_len]);
packet_buf.as_mut()[header_len..].copy_from_slice(payload);
net_trace!("[{}]:{}:{}: receiving {} octets",
@ -202,7 +202,7 @@ impl<'a, 'b> RawSocket<'a, 'b> {
let debug_id = self.debug_id;
let ip_protocol = self.ip_protocol;
let ip_version = self.ip_version;
self.tx_buffer.try_dequeue(|packet_buf| {
self.tx_buffer.dequeue_one_with(|packet_buf| {
match prepare(ip_protocol, packet_buf.as_mut()) {
Ok((ip_repr, raw_packet)) => {
net_trace!("[{}]:{}:{}: sending {} octets",

View File

@ -475,14 +475,13 @@ impl<'a> TcpSocket<'a> {
pub fn send(&mut self, size: usize) -> Result<&mut [u8]> {
if !self.may_send() { return Err(Error::Illegal) }
#[cfg(any(test, feature = "verbose"))]
let old_length = self.tx_buffer.len();
let buffer = self.tx_buffer.enqueue_slice(size);
let _old_length = self.tx_buffer.len();
let buffer = self.tx_buffer.enqueue_many(size);
if buffer.len() > 0 {
#[cfg(any(test, feature = "verbose"))]
net_trace!("[{}]{}:{}: tx buffer: enqueueing {} octets (now {})",
self.debug_id, self.local_endpoint, self.remote_endpoint,
buffer.len(), old_length + buffer.len());
buffer.len(), _old_length + buffer.len());
self.timer.reset();
}
Ok(buffer)
@ -495,10 +494,18 @@ impl<'a> TcpSocket<'a> {
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, data: &[u8]) -> Result<usize> {
let buffer = self.send(data.len())?;
let data = &data[..buffer.len()];
buffer.copy_from_slice(data);
Ok(buffer.len())
if !self.may_send() { return Err(Error::Illegal) }
let old_length = self.tx_buffer.len();
let enqueued = self.tx_buffer.enqueue_slice(data);
if enqueued != 0 {
#[cfg(any(test, feature = "verbose"))]
net_trace!("[{}]{}:{}: tx buffer: enqueueing {} octets (now {})",
self.debug_id, self.local_endpoint, self.remote_endpoint,
enqueued, old_length + enqueued);
self.timer.reset();
}
Ok(enqueued)
}
/// Dequeue a sequence of received octets, and return a pointer to it.
@ -517,7 +524,7 @@ impl<'a> TcpSocket<'a> {
#[cfg(any(test, feature = "verbose"))]
let old_length = self.rx_buffer.len();
let buffer = self.rx_buffer.dequeue_slice(size);
let buffer = self.rx_buffer.dequeue_many(size);
self.remote_seq_no += buffer.len();
if buffer.len() > 0 {
#[cfg(any(test, feature = "verbose"))]
@ -535,10 +542,19 @@ impl<'a> TcpSocket<'a> {
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<usize> {
let buffer = self.recv(data.len())?;
let data = &mut data[..buffer.len()];
data.copy_from_slice(buffer);
Ok(buffer.len())
// See recv() above.
if !self.may_recv() { return Err(Error::Illegal) }
let old_length = self.rx_buffer.len();
let dequeued = self.rx_buffer.dequeue_slice(data);
self.remote_seq_no += dequeued;
if dequeued > 0 {
#[cfg(any(test, feature = "verbose"))]
net_trace!("[{}]{}:{}: rx buffer: dequeueing {} octets (now {})",
self.debug_id, self.local_endpoint, self.remote_endpoint,
dequeued, old_length - dequeued);
}
Ok(dequeued)
}
/// Peek at a sequence of received octets without removing them from
@ -972,7 +988,7 @@ impl<'a> TcpSocket<'a> {
net_trace!("[{}]{}:{}: tx buffer: dequeueing {} octets (now {})",
self.debug_id, self.local_endpoint, self.remote_endpoint,
ack_len, self.tx_buffer.len() - ack_len);
let acked = self.tx_buffer.dequeue_slice(ack_len);
let acked = self.tx_buffer.dequeue_many(ack_len);
debug_assert!(acked.len() == ack_len);
}
@ -987,7 +1003,7 @@ impl<'a> TcpSocket<'a> {
net_trace!("[{}]{}:{}: rx buffer: enqueueing {} octets (now {})",
self.debug_id, self.local_endpoint, self.remote_endpoint,
repr.payload.len(), self.rx_buffer.len() + repr.payload.len());
self.rx_buffer.enqueue_slice_all(repr.payload);
self.rx_buffer.enqueue_slice(repr.payload);
}
Ok(None)
@ -1750,7 +1766,7 @@ mod test {
window_len: 58,
..RECV_TEMPL
}]);
assert_eq!(s.rx_buffer.dequeue_slice(6), &b"abcdef"[..]);
assert_eq!(s.rx_buffer.dequeue_many(6), &b"abcdef"[..]);
}
#[test]

View File

@ -141,7 +141,7 @@ impl<'a, 'b> UdpSocket<'a, 'b> {
if self.endpoint.port == 0 { return Err(Error::Unaddressable) }
if !endpoint.is_specified() { return Err(Error::Unaddressable) }
let packet_buf = self.tx_buffer.try_enqueue(|buf| buf.resize(size))?;
let packet_buf = self.tx_buffer.enqueue_one_with(|buf| buf.resize(size))?;
packet_buf.endpoint = endpoint;
net_trace!("[{}]{}:{}: buffer to send {} octets",
self.debug_id, self.endpoint, packet_buf.endpoint, size);
@ -161,7 +161,7 @@ impl<'a, 'b> UdpSocket<'a, 'b> {
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn recv(&mut self) -> Result<(&[u8], IpEndpoint)> {
let packet_buf = self.rx_buffer.dequeue()?;
let packet_buf = self.rx_buffer.dequeue_one()?;
net_trace!("[{}]{}:{}: receive {} buffered octets",
self.debug_id, self.endpoint,
packet_buf.endpoint, packet_buf.size);
@ -185,7 +185,7 @@ impl<'a, 'b> UdpSocket<'a, 'b> {
if !self.endpoint.addr.is_unspecified() &&
self.endpoint.addr != ip_repr.dst_addr() { return Err(Error::Rejected) }
let packet_buf = self.rx_buffer.try_enqueue(|buf| buf.resize(repr.payload.len()))?;
let packet_buf = self.rx_buffer.enqueue_one_with(|buf| buf.resize(repr.payload.len()))?;
packet_buf.as_mut().copy_from_slice(repr.payload);
packet_buf.endpoint = IpEndpoint { addr: ip_repr.src_addr(), port: repr.src_port };
net_trace!("[{}]{}:{}: receiving {} octets",
@ -198,7 +198,7 @@ impl<'a, 'b> UdpSocket<'a, 'b> {
where F: FnOnce((IpRepr, UdpRepr)) -> Result<()> {
let debug_id = self.debug_id;
let endpoint = self.endpoint;
self.tx_buffer.try_dequeue(|packet_buf| {
self.tx_buffer.dequeue_one_with(|packet_buf| {
net_trace!("[{}]{}:{}: sending {} octets",
debug_id, endpoint,
packet_buf.endpoint, packet_buf.size);

View File

@ -1,3 +1,4 @@
use core::cmp;
use managed::{Managed, ManagedSlice};
use {Error, Result};
@ -31,6 +32,11 @@ impl<'a, T: 'a> RingBuffer<'a, T> {
self.length = 0;
}
/// Return the maximum number of elements in the ring buffer.
pub fn capacity(&self) -> usize {
self.storage.len()
}
/// Clear the ring buffer, and reset every element.
pub fn reset(&mut self)
where T: Resettable {
@ -45,9 +51,15 @@ impl<'a, T: 'a> RingBuffer<'a, T> {
self.length
}
/// Return the maximum number of elements in the ring buffer.
pub fn capacity(&self) -> usize {
self.storage.len()
/// Set the current number of elements in the ring buffer.
///
/// The newly added elements (if any) retain their old value.
///
/// # Panics
/// This function panics if the new length is greater than capacity.
pub fn set_len(&mut self, length: usize) {
assert!(length <= self.capacity());
self.length = length
}
/// Return the number of elements that can be added to the ring buffer.
@ -71,7 +83,7 @@ impl<'a, T: 'a> RingBuffer<'a, T> {
impl<'a, T: 'a> RingBuffer<'a, T> {
/// Call `f` with a single buffer element, and enqueue the element if `f`
/// returns successfully, or return `Err(Error::Exhausted)` if the buffer is full.
pub fn try_enqueue<'b, R, F>(&'b mut self, f: F) -> Result<R>
pub fn enqueue_one_with<'b, R, F>(&'b mut self, f: F) -> Result<R>
where F: FnOnce(&'b mut T) -> Result<R> {
if self.full() { return Err(Error::Exhausted) }
@ -85,15 +97,17 @@ impl<'a, T: 'a> RingBuffer<'a, T> {
}
}
/// Enqueue a single element into the buffer, and return a pointer to it,
/// Enqueue a single element into the buffer, and return a reference to it,
/// or return `Err(Error::Exhausted)` if the buffer is full.
pub fn enqueue<'b>(&'b mut self) -> Result<&'b mut T> {
self.try_enqueue(Ok)
///
/// This function is a shortcut for `ring_buf.enqueue_one_with(Ok)`.
pub fn enqueue_one<'b>(&'b mut self) -> Result<&'b mut T> {
self.enqueue_one_with(Ok)
}
/// Call `f` with a buffer element, and dequeue the element if `f` returns successfully, or
/// return `Err(Error::Exhausted)` if the buffer is empty.
pub fn try_dequeue<'b, R, F>(&'b mut self, f: F) -> Result<R>
/// Call `f` with a single buffer element, and dequeue the element if `f`
/// returns successfully, or return `Err(Error::Exhausted)` if the buffer is empty.
pub fn dequeue_one_with<'b, R, F>(&'b mut self, f: F) -> Result<R>
where F: FnOnce(&'b mut T) -> Result<R> {
if self.empty() { return Err(Error::Exhausted) }
@ -108,48 +122,113 @@ impl<'a, T: 'a> RingBuffer<'a, T> {
}
}
/// Dequeue an element from the buffer, and return a mutable reference to it, or return
/// `Err(Error::Exhausted)` if the buffer is empty.
pub fn dequeue(&mut self) -> Result<&mut T> {
self.try_dequeue(Ok)
/// Dequeue an element from the buffer, and return a reference to it,
/// or return `Err(Error::Exhausted)` if the buffer is empty.
///
/// This function is a shortcut for `ring_buf.dequeue_one_with(Ok)`.
pub fn dequeue_one(&mut self) -> Result<&mut T> {
self.dequeue_one_with(Ok)
}
}
// This is the "continuous" ring buffer interface: it operates with element slices,
// and boundary conditions (empty/full) simply result in empty slices.
impl<'a, T: 'a> RingBuffer<'a, T> {
fn clamp_writer(&self, mut size: usize) -> (usize, usize) {
/// Call `f` with the largest contiguous slice of unallocated buffer elements,
/// and enqueue the amount of elements returned by `f`.
///
/// # Panics
/// This function panics if the amount of elements returned by `f` is larger
/// than the size of the slice passed into it.
pub fn enqueue_many_with<'b, R, F>(&'b mut self, f: F) -> (usize, R)
where F: FnOnce(&'b mut [T]) -> (usize, R) {
let write_at = (self.read_at + self.length) % self.capacity();
// We can't enqueue more than there is free space.
let free = self.capacity() - self.length;
if size > free { size = free }
// We can't contiguously enqueue past the beginning of the storage.
let until_end = self.capacity() - write_at;
if size > until_end { size = until_end }
(write_at, size)
}
pub(crate) fn enqueue_slice<'b>(&'b mut self, size: usize) -> &'b mut [T] {
let (write_at, size) = self.clamp_writer(size);
let max_size = cmp::min(self.window(), self.capacity() - write_at);
let (size, result) = f(&mut self.storage[write_at..write_at + max_size]);
assert!(size <= max_size);
self.length += size;
&mut self.storage[write_at..write_at + size]
(size, result)
}
pub(crate) fn enqueue_slice_all(&mut self, data: &[T])
/// Enqueue a slice of elements up to the given size into the buffer,
/// and return a reference to them.
///
/// This function may return a slice smaller than the given size
/// if the free space in the buffer is not contiguous.
pub fn enqueue_many<'b>(&'b mut self, size: usize) -> &'b mut [T] {
self.enqueue_many_with(|buf| {
let size = cmp::min(size, buf.len());
(size, &mut buf[..size])
}).1
}
/// Enqueue as many elements from the given slice into the buffer as possible,
/// and return the amount of elements that could fit.
pub fn enqueue_slice(&mut self, data: &[T]) -> usize
where T: Copy {
let data = {
let mut dest = self.enqueue_slice(data.len());
let (data, rest) = data.split_at(dest.len());
dest.copy_from_slice(data);
rest
};
// Retry, in case we had a wraparound.
let mut dest = self.enqueue_slice(data.len());
let (data, _) = data.split_at(dest.len());
dest.copy_from_slice(data);
let (size_1, data) = self.enqueue_many_with(|buf| {
let size = cmp::min(buf.len(), data.len());
buf[..size].copy_from_slice(&data[..size]);
(size, &data[size..])
});
let (size_2, ()) = self.enqueue_many_with(|buf| {
let size = cmp::min(buf.len(), data.len());
buf[..size].copy_from_slice(&data[..size]);
(size, ())
});
size_1 + size_2
}
/// Call `f` with the largest contiguous slice of allocated buffer elements,
/// and dequeue the amount of elements returned by `f`.
///
/// # Panics
/// This function panics if the amount of elements returned by `f` is larger
/// than the size of the slice passed into it.
pub fn dequeue_many_with<'b, R, F>(&'b mut self, f: F) -> (usize, R)
where F: FnOnce(&'b mut [T]) -> (usize, R) {
let capacity = self.capacity();
let max_size = cmp::min(self.len(), capacity - self.read_at);
let (size, result) = f(&mut self.storage[self.read_at..self.read_at + max_size]);
assert!(size <= max_size);
self.read_at = (self.read_at + size) % capacity;
self.length -= size;
(size, result)
}
/// Dequeue a slice of elements up to the given size from the buffer,
/// and return a reference to them.
///
/// This function may return a slice smaller than the given size
/// if the allocated space in the buffer is not contiguous.
pub fn dequeue_many<'b>(&'b mut self, size: usize) -> &'b mut [T] {
self.dequeue_many_with(|buf| {
let size = cmp::min(size, buf.len());
(size, &mut buf[..size])
}).1
}
/// Dequeue as many elements from the buffer into the given slice as possible,
/// and return the amount of elements that could fit.
pub fn dequeue_slice(&mut self, data: &mut [T]) -> usize
where T: Copy {
let (size_1, data) = self.dequeue_many_with(|buf| {
let size = cmp::min(buf.len(), data.len());
data[..size].copy_from_slice(&buf[..size]);
(size, &mut data[size..])
});
let (size_2, ()) = self.dequeue_many_with(|buf| {
let size = cmp::min(buf.len(), data.len());
data[..size].copy_from_slice(&buf[..size]);
(size, ())
});
size_1 + size_2
}
}
// This is the "random access" ring buffer interface: it operates with element slices,
// and allows to access elements of the buffer that are not adjacent to its head or tail.
impl<'a, T: 'a> RingBuffer<'a, T> {
fn clamp_reader(&self, offset: usize, mut size: usize) -> (usize, usize) {
let read_at = (self.read_at + offset) % self.capacity();
// We can't read past the end of the queued data.
@ -164,13 +243,6 @@ impl<'a, T: 'a> RingBuffer<'a, T> {
(read_at, size)
}
pub(crate) fn dequeue_slice(&mut self, size: usize) -> &[T] {
let (read_at, size) = self.clamp_reader(0, size);
self.read_at = (self.read_at + size) % self.capacity();
self.length -= size;
&self.storage[read_at..read_at + size]
}
pub(crate) fn peek(&self, offset: usize, size: usize) -> &[T] {
let (read_at, size) = self.clamp_reader(offset, size);
&self.storage[read_at..read_at + size]
@ -187,60 +259,253 @@ impl<'a, T: 'a> From<ManagedSlice<'a, T>> for RingBuffer<'a, T> {
mod test {
use super::*;
const SIZE: usize = 5;
#[test]
pub fn test_buffer() {
let mut buf = RingBuffer::new(vec![0; SIZE]);
assert!(buf.empty());
assert!(!buf.full());
assert_eq!(buf.dequeue(), Err(Error::Exhausted));
pub fn test_buffer_length_changes() {
let mut ring = RingBuffer::new(vec![0; 2]);
assert!(ring.empty());
assert!(!ring.full());
assert_eq!(ring.len(), 0);
assert_eq!(ring.capacity(), 2);
assert_eq!(ring.window(), 2);
buf.enqueue().unwrap();
assert!(!buf.empty());
assert!(!buf.full());
ring.set_len(1);
assert!(!ring.empty());
assert!(!ring.full());
assert_eq!(ring.len(), 1);
assert_eq!(ring.capacity(), 2);
assert_eq!(ring.window(), 1);
for i in 1..SIZE {
*buf.enqueue().unwrap() = i;
assert!(!buf.empty());
}
assert!(buf.full());
assert_eq!(buf.enqueue(), Err(Error::Exhausted));
for i in 0..SIZE {
assert_eq!(*buf.dequeue().unwrap(), i);
assert!(!buf.full());
}
assert_eq!(buf.dequeue(), Err(Error::Exhausted));
assert!(buf.empty());
ring.set_len(2);
assert!(!ring.empty());
assert!(ring.full());
assert_eq!(ring.len(), 2);
assert_eq!(ring.capacity(), 2);
assert_eq!(ring.window(), 0);
}
#[test]
pub fn test_buffer_try() {
let mut buf = RingBuffer::new(vec![0; SIZE]);
assert!(buf.empty());
assert!(!buf.full());
assert_eq!(buf.try_dequeue(|_| unreachable!()) as Result<()>,
pub fn test_buffer_enqueue_dequeue_one_with() {
let mut ring = RingBuffer::new(vec![0; 5]);
assert_eq!(ring.dequeue_one_with(|_| unreachable!()) as Result<()>,
Err(Error::Exhausted));
buf.try_enqueue(|e| Ok(e)).unwrap();
assert!(!buf.empty());
assert!(!buf.full());
ring.enqueue_one_with(|e| Ok(e)).unwrap();
assert!(!ring.empty());
assert!(!ring.full());
for i in 1..SIZE {
buf.try_enqueue(|e| Ok(*e = i)).unwrap();
assert!(!buf.empty());
for i in 1..5 {
ring.enqueue_one_with(|e| Ok(*e = i)).unwrap();
assert!(!ring.empty());
}
assert!(buf.full());
assert_eq!(buf.try_enqueue(|_| unreachable!()) as Result<()>,
assert!(ring.full());
assert_eq!(ring.enqueue_one_with(|_| unreachable!()) as Result<()>,
Err(Error::Exhausted));
for i in 0..SIZE {
assert_eq!(buf.try_dequeue(|e| Ok(*e)).unwrap(), i);
assert!(!buf.full());
for i in 0..5 {
assert_eq!(ring.dequeue_one_with(|e| Ok(*e)).unwrap(), i);
assert!(!ring.full());
}
assert_eq!(buf.try_dequeue(|_| unreachable!()) as Result<()>,
assert_eq!(ring.dequeue_one_with(|_| unreachable!()) as Result<()>,
Err(Error::Exhausted));
assert!(buf.empty());
assert!(ring.empty());
}
#[test]
pub fn test_buffer_enqueue_dequeue_one() {
let mut ring = RingBuffer::new(vec![0; 5]);
assert_eq!(ring.dequeue_one(), Err(Error::Exhausted));
ring.enqueue_one().unwrap();
assert!(!ring.empty());
assert!(!ring.full());
for i in 1..5 {
*ring.enqueue_one().unwrap() = i;
assert!(!ring.empty());
}
assert!(ring.full());
assert_eq!(ring.enqueue_one(), Err(Error::Exhausted));
for i in 0..5 {
assert_eq!(*ring.dequeue_one().unwrap(), i);
assert!(!ring.full());
}
assert_eq!(ring.dequeue_one(), Err(Error::Exhausted));
assert!(ring.empty());
}
#[test]
pub fn test_buffer_enqueue_many_with() {
let mut ring = RingBuffer::new(vec![b'.'; 12]);
assert_eq!(ring.enqueue_many_with(|buf| {
assert_eq!(buf.len(), 12);
buf[0..2].copy_from_slice(b"ab");
(2, true)
}), (2, true));
assert_eq!(ring.len(), 2);
assert_eq!(&ring.storage[..], b"ab..........");
ring.enqueue_many_with(|buf| {
assert_eq!(buf.len(), 12 - 2);
buf[0..4].copy_from_slice(b"cdXX");
(2, ())
});
assert_eq!(ring.len(), 4);
assert_eq!(&ring.storage[..], b"abcdXX......");
ring.enqueue_many_with(|buf| {
assert_eq!(buf.len(), 12 - 4);
buf[0..4].copy_from_slice(b"efgh");
(4, ())
});
assert_eq!(ring.len(), 8);
assert_eq!(&ring.storage[..], b"abcdefgh....");
for i in 0..4 {
*ring.dequeue_one().unwrap() = b'.';
}
assert_eq!(ring.len(), 4);
assert_eq!(&ring.storage[..], b"....efgh....");
ring.enqueue_many_with(|buf| {
assert_eq!(buf.len(), 12 - 8);
buf[0..4].copy_from_slice(b"ijkl");
(4, ())
});
assert_eq!(ring.len(), 8);
assert_eq!(&ring.storage[..], b"....efghijkl");
ring.enqueue_many_with(|buf| {
assert_eq!(buf.len(), 4);
buf[0..4].copy_from_slice(b"abcd");
(4, ())
});
assert_eq!(ring.len(), 12);
assert_eq!(&ring.storage[..], b"abcdefghijkl");
for i in 0..4 {
*ring.dequeue_one().unwrap() = b'.';
}
assert_eq!(ring.len(), 8);
assert_eq!(&ring.storage[..], b"abcd....ijkl");
}
#[test]
pub fn test_buffer_enqueue_many() {
let mut ring = RingBuffer::new(vec![b'.'; 12]);
ring.enqueue_many(8).copy_from_slice(b"abcdefgh");
assert_eq!(ring.len(), 8);
assert_eq!(&ring.storage[..], b"abcdefgh....");
ring.enqueue_many(8).copy_from_slice(b"ijkl");
assert_eq!(ring.len(), 12);
assert_eq!(&ring.storage[..], b"abcdefghijkl");
}
#[test]
pub fn test_buffer_enqueue_slice() {
let mut ring = RingBuffer::new(vec![b'.'; 12]);
assert_eq!(ring.enqueue_slice(b"abcdefgh"), 8);
assert_eq!(ring.len(), 8);
assert_eq!(&ring.storage[..], b"abcdefgh....");
for i in 0..4 {
*ring.dequeue_one().unwrap() = b'.';
}
assert_eq!(ring.len(), 4);
assert_eq!(&ring.storage[..], b"....efgh....");
assert_eq!(ring.enqueue_slice(b"ijklabcd"), 8);
assert_eq!(ring.len(), 12);
assert_eq!(&ring.storage[..], b"abcdefghijkl");
}
#[test]
pub fn test_buffer_dequeue_many_with() {
let mut ring = RingBuffer::new(vec![b'.'; 12]);
assert_eq!(ring.enqueue_slice(b"abcdefghijkl"), 12);
assert_eq!(ring.dequeue_many_with(|buf| {
assert_eq!(buf.len(), 12);
assert_eq!(buf, b"abcdefghijkl");
buf[..4].copy_from_slice(b"....");
(4, true)
}), (4, true));
assert_eq!(ring.len(), 8);
assert_eq!(&ring.storage[..], b"....efghijkl");
ring.dequeue_many_with(|buf| {
assert_eq!(buf, b"efghijkl");
buf[..4].copy_from_slice(b"....");
(4, ())
});
assert_eq!(ring.len(), 4);
assert_eq!(&ring.storage[..], b"........ijkl");
assert_eq!(ring.enqueue_slice(b"abcd"), 4);
assert_eq!(ring.len(), 8);
ring.dequeue_many_with(|buf| {
assert_eq!(buf, b"ijkl");
buf[..4].copy_from_slice(b"....");
(4, ())
});
ring.dequeue_many_with(|buf| {
assert_eq!(buf, b"abcd");
buf[..4].copy_from_slice(b"....");
(4, ())
});
assert_eq!(ring.len(), 0);
assert_eq!(&ring.storage[..], b"............");
}
#[test]
pub fn test_buffer_dequeue_many() {
let mut ring = RingBuffer::new(vec![b'.'; 12]);
assert_eq!(ring.enqueue_slice(b"abcdefghijkl"), 12);
{
let mut buf = ring.dequeue_many(8);
assert_eq!(buf, b"abcdefgh");
buf.copy_from_slice(b"........");
}
assert_eq!(ring.len(), 4);
assert_eq!(&ring.storage[..], b"........ijkl");
{
let mut buf = ring.dequeue_many(8);
assert_eq!(buf, b"ijkl");
buf.copy_from_slice(b"....");
}
assert_eq!(ring.len(), 0);
assert_eq!(&ring.storage[..], b"............");
}
#[test]
pub fn test_buffer_dequeue_slice() {
let mut ring = RingBuffer::new(vec![b'.'; 12]);
assert_eq!(ring.enqueue_slice(b"abcdefghijkl"), 12);
{
let mut buf = [0; 8];
assert_eq!(ring.dequeue_slice(&mut buf[..]), 8);
assert_eq!(&buf[..], b"abcdefgh");
assert_eq!(ring.len(), 4);
}
assert_eq!(ring.enqueue_slice(b"abcd"), 4);
{
let mut buf = [0; 8];
assert_eq!(ring.dequeue_slice(&mut buf[..]), 8);
assert_eq!(&buf[..], b"ijklabcd");
assert_eq!(ring.len(), 0);
}
}
}