forked from M-Labs/nac3
524 lines
24 KiB
Rust
524 lines
24 KiB
Rust
use std::{convert::TryInto, iter::once};
|
|
|
|
use crate::{
|
|
top_level::DefinitionId,
|
|
typecheck::typedef::{Type, TypeEnum},
|
|
};
|
|
use crate::{
|
|
top_level::{CodeGenContext, TopLevelDef},
|
|
typecheck::typedef::FunSignature,
|
|
};
|
|
use inkwell::{
|
|
types::{BasicType, BasicTypeEnum},
|
|
values::BasicValueEnum,
|
|
AddressSpace,
|
|
};
|
|
use itertools::{chain, izip, zip, Itertools};
|
|
use rustpython_parser::ast::{self, Boolop, Constant, Expr, ExprKind, Operator};
|
|
|
|
impl<'ctx> CodeGenContext<'ctx> {
|
|
fn get_subst_key(&mut self, obj: Option<Type>, fun: &FunSignature) -> String {
|
|
let mut vars = obj
|
|
.map(|ty| {
|
|
if let TypeEnum::TObj { params, .. } = &*self.unifier.get_ty(ty) {
|
|
params.clone()
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
})
|
|
.unwrap_or_default();
|
|
vars.extend(fun.vars.iter());
|
|
let sorted = vars.keys().sorted();
|
|
sorted
|
|
.map(|id| {
|
|
self.unifier.stringify(vars[id], &mut |id| id.to_string(), &mut |id| id.to_string())
|
|
})
|
|
.join(", ")
|
|
}
|
|
|
|
fn get_attr_index(&mut self, ty: Type, attr: &str) -> usize {
|
|
let obj_id = match &*self.unifier.get_ty(ty) {
|
|
TypeEnum::TObj { obj_id, .. } => *obj_id,
|
|
// we cannot have other types, virtual type should be handled by function calls
|
|
_ => unreachable!(),
|
|
};
|
|
let def = &self.top_level.definitions.read()[obj_id.0];
|
|
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
|
|
fields.iter().find_position(|x| x.0 == attr).unwrap().0
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
index
|
|
}
|
|
|
|
fn get_llvm_type(&mut self, ty: Type) -> BasicTypeEnum<'ctx> {
|
|
use TypeEnum::*;
|
|
// we assume the type cache should already contain primitive types,
|
|
// and they should be passed by value instead of passing as pointer.
|
|
self.type_cache.get(&ty).cloned().unwrap_or_else(|| match &*self.unifier.get_ty(ty) {
|
|
TObj { obj_id, fields, .. } => {
|
|
// a struct with fields in the order of declaration
|
|
let defs = self.top_level.definitions.read();
|
|
let definition = defs.get(obj_id.0).unwrap();
|
|
let ty = if let TopLevelDef::Class { fields: fields_list, .. } = &*definition.read()
|
|
{
|
|
let fields = fields.borrow();
|
|
let fields =
|
|
fields_list.iter().map(|f| self.get_llvm_type(fields[&f.0])).collect_vec();
|
|
self.ctx
|
|
.struct_type(&fields, false)
|
|
.ptr_type(AddressSpace::Generic)
|
|
.into()
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
ty
|
|
}
|
|
TTuple { ty } => {
|
|
// a struct with fields in the order present in the tuple
|
|
let fields = ty.iter().map(|ty| self.get_llvm_type(*ty)).collect_vec();
|
|
self.ctx.struct_type(&fields, false).ptr_type(AddressSpace::Generic).into()
|
|
}
|
|
TList { ty } => {
|
|
// a struct with an integer and a pointer to an array
|
|
let element_type = self.get_llvm_type(*ty);
|
|
let fields = [
|
|
self.ctx.i32_type().into(),
|
|
element_type.ptr_type(AddressSpace::Generic).into(),
|
|
];
|
|
self.ctx.struct_type(&fields, false).ptr_type(AddressSpace::Generic).into()
|
|
}
|
|
TVirtual { .. } => unimplemented!(),
|
|
_ => unreachable!(),
|
|
})
|
|
}
|
|
|
|
fn gen_call(
|
|
&mut self,
|
|
obj: Option<(Type, BasicValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
params: &[BasicValueEnum<'ctx>],
|
|
ret: Type,
|
|
) -> Option<BasicValueEnum<'ctx>> {
|
|
let key = self.get_subst_key(obj.map(|(a, _)| a), fun.0);
|
|
let defs = self.top_level.definitions.read();
|
|
let definition = defs.get(fun.1.0).unwrap();
|
|
let val = if let TopLevelDef::Function { instance_to_symbol, .. } = &*definition.read() {
|
|
let symbol = instance_to_symbol.get(&key).unwrap_or_else(|| {
|
|
// TODO: codegen for function that are not yet generated
|
|
unimplemented!()
|
|
});
|
|
let fun_val = self.module.get_function(symbol).unwrap_or_else(|| {
|
|
let params = fun.0.args.iter().map(|arg| self.get_llvm_type(arg.ty)).collect_vec();
|
|
let fun_ty = if self.unifier.unioned(ret, self.primitives.none) {
|
|
self.ctx.void_type().fn_type(¶ms, false)
|
|
} else {
|
|
self.get_llvm_type(ret).fn_type(¶ms, false)
|
|
};
|
|
self.module.add_function(symbol, fun_ty, None)
|
|
});
|
|
// TODO: deal with default parameters and reordering based on keys
|
|
self.builder.build_call(fun_val, params, "call").try_as_basic_value().left()
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
val
|
|
}
|
|
|
|
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
|
|
match value {
|
|
Constant::Bool(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.bool));
|
|
let ty = self.ctx.bool_type();
|
|
ty.const_int(if *v { 1 } else { 0 }, false).into()
|
|
}
|
|
Constant::Int(v) => {
|
|
let ty = if self.unifier.unioned(ty, self.primitives.int32) {
|
|
self.ctx.i32_type()
|
|
} else if self.unifier.unioned(ty, self.primitives.int64) {
|
|
self.ctx.i64_type()
|
|
} else {
|
|
unreachable!();
|
|
};
|
|
ty.const_int(v.try_into().unwrap(), false).into()
|
|
}
|
|
Constant::Float(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.float));
|
|
let ty = self.ctx.f64_type();
|
|
ty.const_float(*v).into()
|
|
}
|
|
Constant::Tuple(v) => {
|
|
let ty = self.unifier.get_ty(ty);
|
|
let types =
|
|
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
|
|
let values = zip(types.into_iter(), v.iter())
|
|
.map(|(ty, v)| self.gen_const(v, ty))
|
|
.collect_vec();
|
|
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let ty = self.ctx.struct_type(&types, false);
|
|
ty.const_named_struct(&values).into()
|
|
}
|
|
_ => unreachable!()
|
|
}
|
|
}
|
|
|
|
fn gen_int_ops(
|
|
&mut self,
|
|
op: &Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (lhs, rhs) =
|
|
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
match op {
|
|
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
|
|
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
|
|
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
|
|
Operator::Div => {
|
|
let float = self.ctx.f64_type();
|
|
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
|
|
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
|
|
self.builder.build_float_div(left, right, "fdiv").into()
|
|
}
|
|
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
|
|
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
|
|
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
|
|
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
|
|
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
|
|
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
|
|
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
|
|
// special implementation?
|
|
Operator::Pow => unimplemented!(),
|
|
Operator::MatMult => unreachable!(),
|
|
}
|
|
}
|
|
|
|
fn gen_float_ops(
|
|
&mut self,
|
|
op: &Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
|
|
(lhs, rhs)
|
|
{
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
match op {
|
|
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
|
|
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
|
|
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
|
|
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
|
|
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
|
|
Operator::FloorDiv => {
|
|
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
|
|
let floor_intrinsic =
|
|
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
|
|
let float = self.ctx.f64_type();
|
|
let fn_type = float.fn_type(&[float.into()], false);
|
|
self.module.add_function("llvm.floor.f64", fn_type, None)
|
|
});
|
|
self.builder
|
|
.build_call(floor_intrinsic, &[div.into()], "floor")
|
|
.try_as_basic_value()
|
|
.left()
|
|
.unwrap()
|
|
}
|
|
// special implementation?
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
pub fn gen_expr(&mut self, expr: &Expr<Option<Type>>) -> BasicValueEnum<'ctx> {
|
|
let zero = self.ctx.i32_type().const_int(0, false);
|
|
match &expr.node {
|
|
ExprKind::Constant { value, .. } => {
|
|
let ty = expr.custom.unwrap();
|
|
self.gen_const(value, ty)
|
|
}
|
|
ExprKind::Name { id, .. } => {
|
|
let ptr = self.var_assignment.get(id).unwrap();
|
|
self.builder.build_load(*ptr, "load")
|
|
}
|
|
ExprKind::List { elts, .. } => {
|
|
// this shall be optimized later for constant primitive lists...
|
|
// we should use memcpy for that instead of generating thousands of stores
|
|
let elements = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
|
|
let ty = if elements.is_empty() {
|
|
self.ctx.i32_type().into()
|
|
} else {
|
|
elements[0].get_type()
|
|
};
|
|
let arr_ptr = self.builder.build_array_alloca(
|
|
ty,
|
|
self.ctx.i32_type().const_int(elements.len() as u64, false),
|
|
"tmparr",
|
|
);
|
|
let arr_ty = self.ctx.struct_type(
|
|
&[
|
|
self.ctx.i32_type().into(),
|
|
ty.ptr_type(AddressSpace::Generic).into(),
|
|
],
|
|
false,
|
|
);
|
|
let arr_str_ptr = self.builder.build_alloca(arr_ty, "tmparrstr");
|
|
unsafe {
|
|
self.builder.build_store(
|
|
arr_str_ptr.const_in_bounds_gep(&[zero, zero]),
|
|
self.ctx.i32_type().const_int(elements.len() as u64, false),
|
|
);
|
|
self.builder.build_store(
|
|
arr_str_ptr
|
|
.const_in_bounds_gep(&[zero, self.ctx.i32_type().const_int(1, false)]),
|
|
arr_ptr,
|
|
);
|
|
let arr_offset = self.ctx.i32_type().const_int(1, false);
|
|
for (i, v) in elements.iter().enumerate() {
|
|
let ptr = self.builder.build_in_bounds_gep(
|
|
arr_ptr,
|
|
&[zero, arr_offset, self.ctx.i32_type().const_int(i as u64, false)],
|
|
"arr_element",
|
|
);
|
|
self.builder.build_store(ptr, *v);
|
|
}
|
|
}
|
|
arr_str_ptr.into()
|
|
}
|
|
ExprKind::Tuple { elts, .. } => {
|
|
let element_val = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
|
|
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let tuple_ty = self.ctx.struct_type(&element_ty, false);
|
|
let tuple_ptr = self.builder.build_alloca(tuple_ty, "tuple");
|
|
for (i, v) in element_val.into_iter().enumerate() {
|
|
unsafe {
|
|
let ptr = tuple_ptr.const_in_bounds_gep(&[
|
|
zero,
|
|
self.ctx.i32_type().const_int(i as u64, false),
|
|
]);
|
|
self.builder.build_store(ptr, v);
|
|
}
|
|
}
|
|
tuple_ptr.into()
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
// note that we would handle class methods directly in calls
|
|
let index = self.get_attr_index(value.custom.unwrap(), attr);
|
|
let val = self.gen_expr(value);
|
|
let ptr = if let BasicValueEnum::PointerValue(v) = val {
|
|
v
|
|
} else {
|
|
unreachable!();
|
|
};
|
|
unsafe {
|
|
let ptr = ptr.const_in_bounds_gep(&[
|
|
zero,
|
|
self.ctx.i32_type().const_int(index as u64, false),
|
|
]);
|
|
self.builder.build_load(ptr, "field")
|
|
}
|
|
}
|
|
ExprKind::BoolOp { op, values } => {
|
|
// requires conditional branches for short-circuiting...
|
|
let left = if let BasicValueEnum::IntValue(left) = self.gen_expr(&values[0]) {
|
|
left
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let a_bb = self.ctx.append_basic_block(current, "a");
|
|
let b_bb = self.ctx.append_basic_block(current, "b");
|
|
let cont_bb = self.ctx.append_basic_block(current, "cont");
|
|
self.builder.build_conditional_branch(left, a_bb, b_bb);
|
|
let (a, b) = match op {
|
|
Boolop::Or => {
|
|
self.builder.position_at_end(a_bb);
|
|
let a = self.ctx.bool_type().const_int(1, false);
|
|
self.builder.build_unconditional_branch(cont_bb);
|
|
self.builder.position_at_end(b_bb);
|
|
let b = if let BasicValueEnum::IntValue(b) = self.gen_expr(&values[1]) {
|
|
b
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
self.builder.build_unconditional_branch(cont_bb);
|
|
(a, b)
|
|
}
|
|
Boolop::And => {
|
|
self.builder.position_at_end(a_bb);
|
|
let a = if let BasicValueEnum::IntValue(a) = self.gen_expr(&values[1]) {
|
|
a
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
self.builder.build_unconditional_branch(cont_bb);
|
|
self.builder.position_at_end(b_bb);
|
|
let b = self.ctx.bool_type().const_int(0, false);
|
|
self.builder.build_unconditional_branch(cont_bb);
|
|
(a, b)
|
|
}
|
|
};
|
|
self.builder.position_at_end(cont_bb);
|
|
let phi = self.builder.build_phi(self.ctx.bool_type(), "phi");
|
|
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
|
|
phi.as_basic_value()
|
|
}
|
|
ExprKind::BinOp { op, left, right } => {
|
|
let ty1 = self.unifier.get_representative(left.custom.unwrap());
|
|
let ty2 = self.unifier.get_representative(left.custom.unwrap());
|
|
let left = self.gen_expr(left);
|
|
let right = self.gen_expr(right);
|
|
|
|
// we can directly compare the types, because we've got their representatives
|
|
// which would be unchanged until further unification, which we would never do
|
|
// when doing code generation for function instances
|
|
if ty1 == ty2 && [self.primitives.int32, self.primitives.int64].contains(&ty1) {
|
|
self.gen_int_ops(op, left, right)
|
|
} else if ty1 == ty2 && self.primitives.float == ty1 {
|
|
self.gen_float_ops(op, left, right)
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
}
|
|
ExprKind::UnaryOp { op, operand } => {
|
|
let ty = self.unifier.get_representative(operand.custom.unwrap());
|
|
let val = self.gen_expr(operand);
|
|
if ty == self.primitives.bool {
|
|
let val =
|
|
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
|
|
match op {
|
|
ast::Unaryop::Invert | ast::Unaryop::Not => {
|
|
self.builder.build_not(val, "not").into()
|
|
}
|
|
_ => val.into(),
|
|
}
|
|
} else if [self.primitives.int32, self.primitives.int64].contains(&ty) {
|
|
let val =
|
|
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
|
|
match op {
|
|
ast::Unaryop::USub => self.builder.build_int_neg(val, "neg").into(),
|
|
ast::Unaryop::Invert => self.builder.build_not(val, "not").into(),
|
|
ast::Unaryop::Not => self
|
|
.builder
|
|
.build_int_compare(
|
|
inkwell::IntPredicate::EQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.into(),
|
|
_ => val.into(),
|
|
}
|
|
} else if ty == self.primitives.float {
|
|
let val = if let BasicValueEnum::FloatValue(val) = val {
|
|
val
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
match op {
|
|
ast::Unaryop::USub => self.builder.build_float_neg(val, "neg").into(),
|
|
ast::Unaryop::Not => self
|
|
.builder
|
|
.build_float_compare(
|
|
inkwell::FloatPredicate::OEQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.into(),
|
|
_ => val.into(),
|
|
}
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
}
|
|
ExprKind::Compare { left, ops, comparators } => {
|
|
izip!(
|
|
chain(once(left.as_ref()), comparators.iter()),
|
|
comparators.iter(),
|
|
ops.iter(),
|
|
)
|
|
.fold(None, |prev, (lhs, rhs, op)| {
|
|
let ty = lhs.custom.unwrap();
|
|
let current = if [self.primitives.int32, self.primitives.int64, self.primitives.bool]
|
|
.contains(&ty)
|
|
{
|
|
let (lhs, rhs) =
|
|
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) =
|
|
(self.gen_expr(lhs), self.gen_expr(rhs))
|
|
{
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
|
|
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
|
|
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
|
|
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
|
|
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
|
|
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
|
|
_ => unreachable!(),
|
|
};
|
|
self.builder.build_int_compare(op, lhs, rhs, "cmp")
|
|
} else if ty == self.primitives.float {
|
|
let (lhs, rhs) = if let (
|
|
BasicValueEnum::FloatValue(lhs),
|
|
BasicValueEnum::FloatValue(rhs),
|
|
) = (self.gen_expr(lhs), self.gen_expr(rhs))
|
|
{
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
|
|
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
|
|
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
|
|
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
|
|
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
|
|
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
|
|
_ => unreachable!(),
|
|
};
|
|
self.builder.build_float_compare(op, lhs, rhs, "cmp")
|
|
} else {
|
|
unimplemented!()
|
|
};
|
|
prev.map(|v| self.builder.build_and(v, current, "cmp")).or(Some(current))
|
|
})
|
|
.unwrap()
|
|
.into() // as there should be at least 1 element, it should never be none
|
|
}
|
|
ExprKind::IfExp { test, body, orelse } => {
|
|
let test = if let BasicValueEnum::IntValue(test) = self.gen_expr(test) {
|
|
test
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
|
|
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_bb = self.ctx.append_basic_block(current, "then");
|
|
let else_bb = self.ctx.append_basic_block(current, "else");
|
|
let cont_bb = self.ctx.append_basic_block(current, "cont");
|
|
self.builder.build_conditional_branch(test, then_bb, else_bb);
|
|
self.builder.position_at_end(then_bb);
|
|
let a = self.gen_expr(body);
|
|
self.builder.build_unconditional_branch(cont_bb);
|
|
self.builder.position_at_end(else_bb);
|
|
let b = self.gen_expr(orelse);
|
|
self.builder.build_unconditional_branch(cont_bb);
|
|
self.builder.position_at_end(cont_bb);
|
|
let phi = self.builder.build_phi(a.get_type(), "ifexpr");
|
|
phi.add_incoming(&[(&a, then_bb), (&b, else_bb)]);
|
|
phi.as_basic_value()
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
}
|