1
0
forked from M-Labs/nac3
nac3/nac3core/src/top_level.rs

723 lines
32 KiB
Rust

use std::borrow::BorrowMut;
use std::ops::{Deref, DerefMut};
use std::{collections::HashMap, collections::HashSet, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Mapping};
use crate::typecheck::typedef::{FunSignature, FuncArg};
use itertools::Itertools;
use parking_lot::{Mutex, RwLock};
use rustpython_parser::ast::{self, Stmt};
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct DefinitionId(pub usize);
pub enum TopLevelDef {
Class {
// object ID used for TypeEnum
object_id: DefinitionId,
// type variables bounded to the class.
type_vars: Vec<Type>,
// class fields
fields: Vec<(String, Type)>,
// class methods, pointing to the corresponding function definition.
methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself.
ancestors: Vec<DefinitionId>,
// symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Function {
// prefix for symbol, should be unique globally, and not ending with numbers
name: String,
// function signature.
signature: Type,
/// Function instance to symbol mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// Value: function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
// symbol resolver of the module defined the class
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Initializer {
class_id: DefinitionId,
},
}
impl TopLevelDef {
fn get_function_type(&self) -> Result<Type, String> {
if let Self::Function { signature, .. } = self {
Ok(*signature)
} else {
Err("only expect function def here".into())
}
}
}
pub struct TopLevelContext {
pub definitions: Arc<RwLock<Vec<Arc<RwLock<TopLevelDef>>>>>,
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
}
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_ast_list: Arc<RwLock<Vec<(Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>)>>>,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: Unifier,
// primitive store
pub primitives: PrimitiveStore,
// mangled class method name to def_id
pub class_method_to_def_id: HashMap<String, DefinitionId>,
// record the def id of the classes whoses fields and methods are to be analyzed
pub to_be_analyzed_class: Vec<DefinitionId>,
}
impl TopLevelComposer {
pub fn to_top_level_context(&self) -> TopLevelContext {
let def_list = self
.definition_ast_list
.read()
.iter()
.map(|(x, _)| x.clone())
.collect::<Vec<_>>();
TopLevelContext {
definitions: RwLock::new(def_list).into(),
// FIXME: all the big unifier or?
unifiers: Default::default(),
}
}
fn name_mangling(mut class_name: String, method_name: &str) -> String {
class_name.push_str(method_name);
class_name
}
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let primitives = PrimitiveStore { int32, int64, float, bool, none };
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier)
}
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
/// resolver can later figure out primitive type definitions when passed a primitive type name
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
let primitives = Self::make_primitives();
let top_level_def_list = vec![
Arc::new(RwLock::new(Self::make_top_level_class_def(0, None))),
Arc::new(RwLock::new(Self::make_top_level_class_def(1, None))),
Arc::new(RwLock::new(Self::make_top_level_class_def(2, None))),
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None))),
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None))),
];
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
let composer = TopLevelComposer {
definition_ast_list: RwLock::new(
top_level_def_list.into_iter().zip(ast_list).collect_vec()
).into(),
primitives: primitives.0,
unifier: primitives.1,
class_method_to_def_id: Default::default(),
to_be_analyzed_class: Default::default(),
};
(
vec![
("int32".into(), DefinitionId(0), composer.primitives.int32),
("int64".into(), DefinitionId(1), composer.primitives.int64),
("float".into(), DefinitionId(2), composer.primitives.float),
("bool".into(), DefinitionId(3), composer.primitives.bool),
("none".into(), DefinitionId(4), composer.primitives.none),
],
composer,
)
}
/// already include the definition_id of itself inside the ancestors vector
/// when first regitering, the type_vars, fields, methods, ancestors are invalid
pub fn make_top_level_class_def(
index: usize,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Class {
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: vec![DefinitionId(index)],
resolver,
}
}
/// when first registering, the type is a invalid value
pub fn make_top_level_function_def(
name: String,
ty: Type,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Function {
name,
signature: ty,
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver,
}
}
/// step 0, register, just remeber the names of top level classes/function
pub fn register_top_level(
&mut self,
ast: ast::Stmt<()>,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> Result<(String, DefinitionId), String> {
let mut def_list = self.definition_ast_list.write();
match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => {
let class_name = name.to_string();
let class_def_id = def_list.len();
// add the class to the definition lists
// since later when registering class method, ast will still be used,
// here push None temporarly, later will move the ast inside
let mut class_def_ast = (
Arc::new(RwLock::new(
Self::make_top_level_class_def(class_def_id, resolver.clone())
)),
None
);
// parse class def body and register class methods into the def list.
// module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id
let mut class_method_name_def_ids: Vec<(String, Arc<RwLock<TopLevelDef>>, DefinitionId)> = Vec::new();
let mut class_method_index_offset = 0;
for b in body {
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
let method_name = Self::name_mangling(class_name.clone(), method_name);
let method_def_id = def_list.len() + {
class_method_index_offset += 1;
class_method_index_offset
};
// dummy method define here
// the ast of class method is in the class, push None in to the list here
class_method_name_def_ids.push((
method_name.clone(),
RwLock::new(Self::make_top_level_function_def(
method_name.clone(),
self.primitives.none,
resolver.clone(),
)).into(),
DefinitionId(method_def_id)
));
}
}
// move the ast to the entry of the class in the ast_list
class_def_ast.1 = Some(ast);
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
def_list.push(class_def_ast);
for (name, def, id) in class_method_name_def_ids {
def_list.push((def, None));
self.class_method_to_def_id.insert(name, id);
}
// put the constructor into the def_list
def_list
.push((
RwLock::new(
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
).into(),
None
));
// class, put its def_id into the to be analyzed set
self.to_be_analyzed_class.push(DefinitionId(class_def_id));
Ok((class_name, DefinitionId(class_def_id)))
}
ast::StmtKind::FunctionDef { name, .. } => {
let fun_name = name.to_string();
// add to the definition list
def_list.push((
RwLock::new(Self::make_top_level_function_def(name.into(), self.primitives.none, resolver))
.into(),
Some(ast)
));
// return
Ok((fun_name, DefinitionId(def_list.len() - 1)))
}
_ => Err("only registrations of top level classes/functions are supprted".into()),
}
}
/// step 1, analyze the type vars associated with top level class
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
let mut def_list = self.definition_ast_list.write();
let converted_top_level = &self.to_top_level_context();
let primitives = &self.primitives;
let unifier = &mut self.unifier;
for (class_def, class_ast) in def_list.iter_mut()
{
// only deal with class def here
let mut class_def = class_def.write();
let (class_bases_ast, class_def_type_vars, class_resolver) = {
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, type_vars, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let class_resolver = class_resolver.as_ref().unwrap().lock();
let mut is_generic = false;
for b in class_bases_ast {
match &b.node {
// analyze typevars bounded to the class,
// only support things like `class A(Generic[T, V])`,
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript { value, slice, .. }
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "Generic") => {
if !is_generic {
is_generic = true;
} else {
return Err("Only single Generic[...] can be in bases".into());
}
// if `class A(Generic[T, V, G])`
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
// parse the type vars
let type_vars = elts
.iter()
.map(|e| {
class_resolver.parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
e,
)
})
.collect::<Result<Vec<_>, _>>()?;
// check if all are unique type vars
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
let all_unique_type_var = type_vars.iter().all(|x| {
let ty = unifier.get_ty(*x);
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
occured_type_var_id.insert(*id)
} else {
false
}
});
if !all_unique_type_var {
return Err("expect unique type variables".into());
}
// add to TopLevelDef
class_def_type_vars.extend(type_vars);
// `class A(Generic[T])`
} else {
let ty =
class_resolver.parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
&slice,
)?;
// check if it is type var
let is_type_var =
matches!(unifier.get_ty(ty).as_ref(), &TypeEnum::TVar { .. });
if !is_type_var {
return Err("expect type variable here".into());
}
// add to TopLevelDef
class_def_type_vars.push(ty);
}
}
// if others, do nothing in this function
_ => continue,
}
}
}
Ok(())
}
/// step 2, base classes. Need to separate step1 and step2 for this reason:
/// `class B(Generic[T, V]);
/// class A(B[int, bool])`
/// if the type var associated with class `B` has not been handled properly,
/// the parse of type annotation of `B[int, bool]` will fail
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
let mut def_list = self.definition_ast_list.write();
let converted_top_level = &self.to_top_level_context();
let primitives = &self.primitives;
let unifier = &mut self.unifier;
for (class_def, class_ast) in def_list.iter_mut()
{
let mut class_def = class_def.write();
let (class_bases, class_ancestors, class_resolver) = {
if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.deref_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, ancestors, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let class_resolver = class_resolver.as_ref().unwrap().lock();
for b in class_bases {
// type vars have already been handled, so skip on `Generic[...]`
if let ast::ExprKind::Subscript { value, .. } = &b.node {
if let ast::ExprKind::Name { id, .. } = &value.node {
if id == "Generic" {
continue;
}
}
}
// get the def id of the base class
let base_ty = class_resolver.parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
b,
)?;
let base_id =
if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(base_ty).as_ref() {
*obj_id
} else {
return Err("expect concrete class/type to be base class".into());
};
// write to the class ancestors, make sure the uniqueness
if !class_ancestors.contains(&base_id) {
class_ancestors.push(base_id);
} else {
return Err("cannot specify the same base class twice".into())
}
}
}
Ok(())
}
/// step 3, class fields and methods
// FIXME: need analyze base classes here
// FIXME: how to deal with self type
// FIXME: how to prevent cycles
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
let mut def_ast_list = self.definition_ast_list.write();
let converted_top_level = &self.to_top_level_context();
let primitives = &self.primitives;
let to_be_analyzed_class = &mut self.to_be_analyzed_class;
let unifier = &mut self.unifier;
'class: loop{
if to_be_analyzed_class.is_empty() { break; }
let class_ind = to_be_analyzed_class.remove(0).0;
let (class_name, class_body, class_resolver) = {
let (class_def, class_ast) = &mut def_ast_list[class_ind];
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { name, body, .. }, ..
}) = class_ast.as_ref()
{
if let TopLevelDef::Class { resolver, .. } = class_def.write().deref() {
(name, body, resolver.as_ref().unwrap().clone())
} else { unreachable!() }
} else {
unreachable!("should be class def ast")
}
};
// need these vectors to check re-defining methods, class fields
// and store the parsed result in case some method cannot be typed for now
let mut class_methods_parsing_result: Vec<(String, Type, DefinitionId)> = vec![];
let mut class_fields_parsing_result: Vec<(String, Type)> = vec![];
for b in class_body {
if let ast::StmtKind::FunctionDef {
args: method_args_ast,
body: method_body_ast,
name: method_name,
returns: method_returns_ast,
..
} = &b.node
{
let arg_name_tys: Vec<(String, Type)> = {
let mut result = vec![];
for a in &method_args_ast.args {
if a.node.arg != "self" {
let annotation = a
.node
.annotation
.as_ref()
.ok_or_else(|| {
"type annotation for function parameter is needed".to_string()
})?.as_ref();
let ty =
class_resolver.as_ref().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
annotation,
)?;
if !Self::check_ty_analyzed(ty, unifier, to_be_analyzed_class) {
to_be_analyzed_class.push(DefinitionId(class_ind));
continue 'class;
}
result.push((a.node.arg.to_string(), ty));
} else {
// TODO: handle self, how
unimplemented!()
}
}
result
};
let method_type_var =
arg_name_tys
.iter()
.filter_map(|(_, ty)| {
let ty_enum = unifier.get_ty(*ty);
if let TypeEnum::TVar { id, .. } = ty_enum.as_ref() {
Some((*id, *ty))
} else { None }
})
.collect::<Mapping<u32>>();
let ret_ty = {
if method_name != "__init__" {
let ty = method_returns_ast
.as_ref()
.map(|x|
class_resolver.as_ref().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
x.as_ref(),
)
)
.ok_or_else(|| "return type annotation error".to_string())??;
if !Self::check_ty_analyzed(ty, unifier, to_be_analyzed_class) {
to_be_analyzed_class.push(DefinitionId(class_ind));
continue 'class;
} else { ty }
} else {
// TODO: __init__ function, self type, how
unimplemented!()
}
};
// handle fields
let class_field_name_tys: Option<Vec<(String, Type)>> =
if method_name == "__init__" {
let mut result: Vec<(String, Type)> = vec![];
for body in method_body_ast {
match &body.node {
ast::StmtKind::AnnAssign {
target,
annotation,
..
} if {
if let ast::ExprKind::Attribute {
value, ..
} = &target.node {
matches!(
&value.node,
ast::ExprKind::Name { id, .. } if id == "self")
} else { false }
} => {
let field_ty = class_resolver.as_ref().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
annotation.as_ref())?;
if !Self::check_ty_analyzed(field_ty, unifier, to_be_analyzed_class) {
to_be_analyzed_class.push(DefinitionId(class_ind));
continue 'class;
} else {
result.push((
if let ast::ExprKind::Attribute {
attr, ..
} = &target.node {
attr.to_string()
} else { unreachable!() },
field_ty
)) }
},
// exclude those without type annotation
ast::StmtKind::Assign {
targets, ..
} if {
if let ast::ExprKind::Attribute {
value, ..
} = &targets[0].node {
matches!(
&value.node,
ast::ExprKind::Name {id, ..} if id == "self")
} else { false }
} => {
return Err("class fields type annotation needed".into())
},
// do nothing
_ => { }
}
};
Some(result)
} else { None };
// current method all type ok, put the current method into the list
if class_methods_parsing_result
.iter()
.any(|(name, _, _)| name == method_name) {
return Err("duplicate method definition".into())
} else {
class_methods_parsing_result.push((
method_name.clone(),
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
args: arg_name_tys.into_iter().map(|(name, ty)| {
FuncArg {
name,
ty,
default_value: None
}
}).collect_vec(),
vars: method_type_var
}.into())),
*self.class_method_to_def_id.get(&Self::name_mangling(class_name.clone(), method_name)).unwrap()
))
}
// put the fiedlds inside
if let Some(class_field_name_tys) = class_field_name_tys {
assert!(class_fields_parsing_result.is_empty());
class_fields_parsing_result.extend(class_field_name_tys);
}
} else {
// what should we do with `class A: a = 3`?
// do nothing, continue the for loop to iterate class ast
continue;
}
};
// now it should be confirmed that every
// methods and fields of the class can be correctly typed, put the results
// into the actual class def method and fields field
let (class_def, _) = &def_ast_list[class_ind];
let mut class_def = class_def.write();
if let TopLevelDef::Class { fields, methods, .. } = class_def.deref_mut() {
for (ref n, ref t) in class_fields_parsing_result {
fields.push((n.clone(), *t));
}
for (n, t, id) in &class_methods_parsing_result {
methods.push((n.clone(), *t, *id));
}
} else { unreachable!() }
// change the signature field of the class methods
for (_, ty, id) in &class_methods_parsing_result {
let (method_def, _) = &def_ast_list[id.0];
let mut method_def = method_def.write();
if let TopLevelDef::Function { signature, .. } = method_def.deref_mut() {
*signature = *ty;
}
}
};
Ok(())
}
fn analyze_top_level_function(&mut self) -> Result<(), String> {
unimplemented!()
}
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
unimplemented!()
}
fn check_ty_analyzed(ty: Type,
unifier: &mut Unifier,
to_be_analyzed: &[DefinitionId]) -> bool
{
let type_enum = unifier.get_ty(ty);
match type_enum.as_ref() {
TypeEnum::TObj { obj_id, .. } => {
!to_be_analyzed.contains(obj_id)
}
TypeEnum::TVirtual { ty } => {
if let TypeEnum::TObj { obj_id, .. } =
unifier.get_ty(*ty).as_ref()
{
!to_be_analyzed.contains(obj_id)
} else {
unreachable!()
}
}
TypeEnum::TVar { .. } => true,
_ => unreachable!(),
}
}
}