forked from M-Labs/nac3
723 lines
32 KiB
Rust
723 lines
32 KiB
Rust
use std::borrow::BorrowMut;
|
|
use std::ops::{Deref, DerefMut};
|
|
use std::{collections::HashMap, collections::HashSet, sync::Arc};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
|
|
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Mapping};
|
|
use crate::typecheck::typedef::{FunSignature, FuncArg};
|
|
use itertools::Itertools;
|
|
use parking_lot::{Mutex, RwLock};
|
|
use rustpython_parser::ast::{self, Stmt};
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
// type variables bounded to the class.
|
|
type_vars: Vec<Type>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<DefinitionId>,
|
|
// symbol resolver of the module defined the class, none if it is built-in type
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// Value: AST annotated with types together with a unification table index. Could contain
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
|
|
// symbol resolver of the module defined the class
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Initializer {
|
|
class_id: DefinitionId,
|
|
},
|
|
}
|
|
|
|
impl TopLevelDef {
|
|
fn get_function_type(&self) -> Result<Type, String> {
|
|
if let Self::Function { signature, .. } = self {
|
|
Ok(*signature)
|
|
} else {
|
|
Err("only expect function def here".into())
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<Arc<RwLock<TopLevelDef>>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
|
|
}
|
|
|
|
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions, same as top level context
|
|
pub definition_ast_list: Arc<RwLock<Vec<(Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>)>>>,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: Unifier,
|
|
// primitive store
|
|
pub primitives: PrimitiveStore,
|
|
// mangled class method name to def_id
|
|
pub class_method_to_def_id: HashMap<String, DefinitionId>,
|
|
// record the def id of the classes whoses fields and methods are to be analyzed
|
|
pub to_be_analyzed_class: Vec<DefinitionId>,
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
pub fn to_top_level_context(&self) -> TopLevelContext {
|
|
let def_list = self
|
|
.definition_ast_list
|
|
.read()
|
|
.iter()
|
|
.map(|(x, _)| x.clone())
|
|
.collect::<Vec<_>>();
|
|
TopLevelContext {
|
|
definitions: RwLock::new(def_list).into(),
|
|
// FIXME: all the big unifier or?
|
|
unifiers: Default::default(),
|
|
}
|
|
}
|
|
|
|
fn name_mangling(mut class_name: String, method_name: &str) -> String {
|
|
class_name.push_str(method_name);
|
|
class_name
|
|
}
|
|
|
|
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
|
let mut unifier = Unifier::new();
|
|
let int32 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(0),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let int64 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(1),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let float = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(2),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let bool = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(3),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let none = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(4),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let primitives = PrimitiveStore { int32, int64, float, bool, none };
|
|
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
|
|
(primitives, unifier)
|
|
}
|
|
|
|
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
|
|
let primitives = Self::make_primitives();
|
|
|
|
let top_level_def_list = vec![
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(0, None))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(1, None))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(2, None))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None))),
|
|
];
|
|
|
|
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
|
|
|
let composer = TopLevelComposer {
|
|
definition_ast_list: RwLock::new(
|
|
top_level_def_list.into_iter().zip(ast_list).collect_vec()
|
|
).into(),
|
|
primitives: primitives.0,
|
|
unifier: primitives.1,
|
|
class_method_to_def_id: Default::default(),
|
|
to_be_analyzed_class: Default::default(),
|
|
};
|
|
(
|
|
vec![
|
|
("int32".into(), DefinitionId(0), composer.primitives.int32),
|
|
("int64".into(), DefinitionId(1), composer.primitives.int64),
|
|
("float".into(), DefinitionId(2), composer.primitives.float),
|
|
("bool".into(), DefinitionId(3), composer.primitives.bool),
|
|
("none".into(), DefinitionId(4), composer.primitives.none),
|
|
],
|
|
composer,
|
|
)
|
|
}
|
|
|
|
/// already include the definition_id of itself inside the ancestors vector
|
|
/// when first regitering, the type_vars, fields, methods, ancestors are invalid
|
|
pub fn make_top_level_class_def(
|
|
index: usize,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Class {
|
|
object_id: DefinitionId(index),
|
|
type_vars: Default::default(),
|
|
fields: Default::default(),
|
|
methods: Default::default(),
|
|
ancestors: vec![DefinitionId(index)],
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
/// when first registering, the type is a invalid value
|
|
pub fn make_top_level_function_def(
|
|
name: String,
|
|
ty: Type,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name,
|
|
signature: ty,
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
/// step 0, register, just remeber the names of top level classes/function
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> Result<(String, DefinitionId), String> {
|
|
let mut def_list = self.definition_ast_list.write();
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name, body, .. } => {
|
|
let class_name = name.to_string();
|
|
let class_def_id = def_list.len();
|
|
|
|
// add the class to the definition lists
|
|
// since later when registering class method, ast will still be used,
|
|
// here push None temporarly, later will move the ast inside
|
|
let mut class_def_ast = (
|
|
Arc::new(RwLock::new(
|
|
Self::make_top_level_class_def(class_def_id, resolver.clone())
|
|
)),
|
|
None
|
|
);
|
|
|
|
// parse class def body and register class methods into the def list.
|
|
// module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id
|
|
let mut class_method_name_def_ids: Vec<(String, Arc<RwLock<TopLevelDef>>, DefinitionId)> = Vec::new();
|
|
let mut class_method_index_offset = 0;
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
|
|
let method_name = Self::name_mangling(class_name.clone(), method_name);
|
|
let method_def_id = def_list.len() + {
|
|
class_method_index_offset += 1;
|
|
class_method_index_offset
|
|
};
|
|
|
|
// dummy method define here
|
|
// the ast of class method is in the class, push None in to the list here
|
|
class_method_name_def_ids.push((
|
|
method_name.clone(),
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
method_name.clone(),
|
|
self.primitives.none,
|
|
resolver.clone(),
|
|
)).into(),
|
|
DefinitionId(method_def_id)
|
|
));
|
|
}
|
|
}
|
|
// move the ast to the entry of the class in the ast_list
|
|
class_def_ast.1 = Some(ast);
|
|
|
|
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
|
|
def_list.push(class_def_ast);
|
|
for (name, def, id) in class_method_name_def_ids {
|
|
def_list.push((def, None));
|
|
self.class_method_to_def_id.insert(name, id);
|
|
}
|
|
|
|
// put the constructor into the def_list
|
|
def_list
|
|
.push((
|
|
RwLock::new(
|
|
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
|
).into(),
|
|
None
|
|
));
|
|
|
|
// class, put its def_id into the to be analyzed set
|
|
self.to_be_analyzed_class.push(DefinitionId(class_def_id));
|
|
|
|
Ok((class_name, DefinitionId(class_def_id)))
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
let fun_name = name.to_string();
|
|
|
|
// add to the definition list
|
|
def_list.push((
|
|
RwLock::new(Self::make_top_level_function_def(name.into(), self.primitives.none, resolver))
|
|
.into(),
|
|
Some(ast)
|
|
));
|
|
|
|
// return
|
|
Ok((fun_name, DefinitionId(def_list.len() - 1)))
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
|
}
|
|
}
|
|
|
|
/// step 1, analyze the type vars associated with top level class
|
|
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_ast_list.write();
|
|
let converted_top_level = &self.to_top_level_context();
|
|
let primitives = &self.primitives;
|
|
let unifier = &mut self.unifier;
|
|
|
|
for (class_def, class_ast) in def_list.iter_mut()
|
|
{
|
|
// only deal with class def here
|
|
let mut class_def = class_def.write();
|
|
let (class_bases_ast, class_def_type_vars, class_resolver) = {
|
|
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, type_vars, resolver)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap().lock();
|
|
|
|
let mut is_generic = false;
|
|
for b in class_bases_ast {
|
|
match &b.node {
|
|
// analyze typevars bounded to the class,
|
|
// only support things like `class A(Generic[T, V])`,
|
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
|
// i.e. only simple names are allowed in the subscript
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript { value, slice, .. }
|
|
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "Generic") => {
|
|
if !is_generic {
|
|
is_generic = true;
|
|
} else {
|
|
return Err("Only single Generic[...] can be in bases".into());
|
|
}
|
|
|
|
// if `class A(Generic[T, V, G])`
|
|
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
|
// parse the type vars
|
|
let type_vars = elts
|
|
.iter()
|
|
.map(|e| {
|
|
class_resolver.parse_type_annotation(
|
|
converted_top_level,
|
|
unifier.borrow_mut(),
|
|
primitives,
|
|
e,
|
|
)
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// check if all are unique type vars
|
|
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
|
let all_unique_type_var = type_vars.iter().all(|x| {
|
|
let ty = unifier.get_ty(*x);
|
|
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
|
|
occured_type_var_id.insert(*id)
|
|
} else {
|
|
false
|
|
}
|
|
});
|
|
|
|
if !all_unique_type_var {
|
|
return Err("expect unique type variables".into());
|
|
}
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.extend(type_vars);
|
|
|
|
// `class A(Generic[T])`
|
|
} else {
|
|
let ty =
|
|
class_resolver.parse_type_annotation(
|
|
converted_top_level,
|
|
unifier.borrow_mut(),
|
|
primitives,
|
|
&slice,
|
|
)?;
|
|
// check if it is type var
|
|
let is_type_var =
|
|
matches!(unifier.get_ty(ty).as_ref(), &TypeEnum::TVar { .. });
|
|
if !is_type_var {
|
|
return Err("expect type variable here".into());
|
|
}
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.push(ty);
|
|
}
|
|
}
|
|
|
|
// if others, do nothing in this function
|
|
_ => continue,
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 2, base classes. Need to separate step1 and step2 for this reason:
|
|
/// `class B(Generic[T, V]);
|
|
/// class A(B[int, bool])`
|
|
/// if the type var associated with class `B` has not been handled properly,
|
|
/// the parse of type annotation of `B[int, bool]` will fail
|
|
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_ast_list.write();
|
|
let converted_top_level = &self.to_top_level_context();
|
|
let primitives = &self.primitives;
|
|
let unifier = &mut self.unifier;
|
|
|
|
for (class_def, class_ast) in def_list.iter_mut()
|
|
{
|
|
let mut class_def = class_def.write();
|
|
let (class_bases, class_ancestors, class_resolver) = {
|
|
if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, ancestors, resolver)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap().lock();
|
|
for b in class_bases {
|
|
// type vars have already been handled, so skip on `Generic[...]`
|
|
if let ast::ExprKind::Subscript { value, .. } = &b.node {
|
|
if let ast::ExprKind::Name { id, .. } = &value.node {
|
|
if id == "Generic" {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
// get the def id of the base class
|
|
let base_ty = class_resolver.parse_type_annotation(
|
|
converted_top_level,
|
|
unifier.borrow_mut(),
|
|
primitives,
|
|
b,
|
|
)?;
|
|
let base_id =
|
|
if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(base_ty).as_ref() {
|
|
*obj_id
|
|
} else {
|
|
return Err("expect concrete class/type to be base class".into());
|
|
};
|
|
|
|
// write to the class ancestors, make sure the uniqueness
|
|
if !class_ancestors.contains(&base_id) {
|
|
class_ancestors.push(base_id);
|
|
} else {
|
|
return Err("cannot specify the same base class twice".into())
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 3, class fields and methods
|
|
// FIXME: need analyze base classes here
|
|
// FIXME: how to deal with self type
|
|
// FIXME: how to prevent cycles
|
|
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
|
let mut def_ast_list = self.definition_ast_list.write();
|
|
let converted_top_level = &self.to_top_level_context();
|
|
let primitives = &self.primitives;
|
|
let to_be_analyzed_class = &mut self.to_be_analyzed_class;
|
|
let unifier = &mut self.unifier;
|
|
|
|
'class: loop{
|
|
if to_be_analyzed_class.is_empty() { break; }
|
|
|
|
let class_ind = to_be_analyzed_class.remove(0).0;
|
|
let (class_name, class_body, class_resolver) = {
|
|
let (class_def, class_ast) = &mut def_ast_list[class_ind];
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { name, body, .. }, ..
|
|
}) = class_ast.as_ref()
|
|
{
|
|
if let TopLevelDef::Class { resolver, .. } = class_def.write().deref() {
|
|
(name, body, resolver.as_ref().unwrap().clone())
|
|
} else { unreachable!() }
|
|
} else {
|
|
unreachable!("should be class def ast")
|
|
}
|
|
};
|
|
|
|
// need these vectors to check re-defining methods, class fields
|
|
// and store the parsed result in case some method cannot be typed for now
|
|
let mut class_methods_parsing_result: Vec<(String, Type, DefinitionId)> = vec![];
|
|
let mut class_fields_parsing_result: Vec<(String, Type)> = vec![];
|
|
for b in class_body {
|
|
if let ast::StmtKind::FunctionDef {
|
|
args: method_args_ast,
|
|
body: method_body_ast,
|
|
name: method_name,
|
|
returns: method_returns_ast,
|
|
..
|
|
} = &b.node
|
|
{
|
|
let arg_name_tys: Vec<(String, Type)> = {
|
|
let mut result = vec![];
|
|
for a in &method_args_ast.args {
|
|
if a.node.arg != "self" {
|
|
let annotation = a
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| {
|
|
"type annotation for function parameter is needed".to_string()
|
|
})?.as_ref();
|
|
|
|
let ty =
|
|
class_resolver.as_ref().lock().parse_type_annotation(
|
|
converted_top_level,
|
|
unifier.borrow_mut(),
|
|
primitives,
|
|
annotation,
|
|
)?;
|
|
if !Self::check_ty_analyzed(ty, unifier, to_be_analyzed_class) {
|
|
to_be_analyzed_class.push(DefinitionId(class_ind));
|
|
continue 'class;
|
|
}
|
|
result.push((a.node.arg.to_string(), ty));
|
|
} else {
|
|
// TODO: handle self, how
|
|
unimplemented!()
|
|
}
|
|
}
|
|
result
|
|
};
|
|
|
|
let method_type_var =
|
|
arg_name_tys
|
|
.iter()
|
|
.filter_map(|(_, ty)| {
|
|
let ty_enum = unifier.get_ty(*ty);
|
|
if let TypeEnum::TVar { id, .. } = ty_enum.as_ref() {
|
|
Some((*id, *ty))
|
|
} else { None }
|
|
})
|
|
.collect::<Mapping<u32>>();
|
|
|
|
let ret_ty = {
|
|
if method_name != "__init__" {
|
|
let ty = method_returns_ast
|
|
.as_ref()
|
|
.map(|x|
|
|
class_resolver.as_ref().lock().parse_type_annotation(
|
|
converted_top_level,
|
|
unifier.borrow_mut(),
|
|
primitives,
|
|
x.as_ref(),
|
|
)
|
|
)
|
|
.ok_or_else(|| "return type annotation error".to_string())??;
|
|
if !Self::check_ty_analyzed(ty, unifier, to_be_analyzed_class) {
|
|
to_be_analyzed_class.push(DefinitionId(class_ind));
|
|
continue 'class;
|
|
} else { ty }
|
|
} else {
|
|
// TODO: __init__ function, self type, how
|
|
unimplemented!()
|
|
}
|
|
};
|
|
|
|
// handle fields
|
|
let class_field_name_tys: Option<Vec<(String, Type)>> =
|
|
if method_name == "__init__" {
|
|
let mut result: Vec<(String, Type)> = vec![];
|
|
for body in method_body_ast {
|
|
match &body.node {
|
|
ast::StmtKind::AnnAssign {
|
|
target,
|
|
annotation,
|
|
..
|
|
} if {
|
|
if let ast::ExprKind::Attribute {
|
|
value, ..
|
|
} = &target.node {
|
|
matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == "self")
|
|
} else { false }
|
|
} => {
|
|
let field_ty = class_resolver.as_ref().lock().parse_type_annotation(
|
|
converted_top_level,
|
|
unifier.borrow_mut(),
|
|
primitives,
|
|
annotation.as_ref())?;
|
|
if !Self::check_ty_analyzed(field_ty, unifier, to_be_analyzed_class) {
|
|
to_be_analyzed_class.push(DefinitionId(class_ind));
|
|
continue 'class;
|
|
} else {
|
|
result.push((
|
|
if let ast::ExprKind::Attribute {
|
|
attr, ..
|
|
} = &target.node {
|
|
attr.to_string()
|
|
} else { unreachable!() },
|
|
field_ty
|
|
)) }
|
|
},
|
|
|
|
// exclude those without type annotation
|
|
ast::StmtKind::Assign {
|
|
targets, ..
|
|
} if {
|
|
if let ast::ExprKind::Attribute {
|
|
value, ..
|
|
} = &targets[0].node {
|
|
matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name {id, ..} if id == "self")
|
|
} else { false }
|
|
} => {
|
|
return Err("class fields type annotation needed".into())
|
|
},
|
|
|
|
// do nothing
|
|
_ => { }
|
|
}
|
|
};
|
|
Some(result)
|
|
} else { None };
|
|
|
|
// current method all type ok, put the current method into the list
|
|
if class_methods_parsing_result
|
|
.iter()
|
|
.any(|(name, _, _)| name == method_name) {
|
|
return Err("duplicate method definition".into())
|
|
} else {
|
|
class_methods_parsing_result.push((
|
|
method_name.clone(),
|
|
unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
ret: ret_ty,
|
|
args: arg_name_tys.into_iter().map(|(name, ty)| {
|
|
FuncArg {
|
|
name,
|
|
ty,
|
|
default_value: None
|
|
}
|
|
}).collect_vec(),
|
|
vars: method_type_var
|
|
}.into())),
|
|
*self.class_method_to_def_id.get(&Self::name_mangling(class_name.clone(), method_name)).unwrap()
|
|
))
|
|
}
|
|
|
|
// put the fiedlds inside
|
|
if let Some(class_field_name_tys) = class_field_name_tys {
|
|
assert!(class_fields_parsing_result.is_empty());
|
|
class_fields_parsing_result.extend(class_field_name_tys);
|
|
}
|
|
} else {
|
|
// what should we do with `class A: a = 3`?
|
|
// do nothing, continue the for loop to iterate class ast
|
|
continue;
|
|
}
|
|
};
|
|
|
|
// now it should be confirmed that every
|
|
// methods and fields of the class can be correctly typed, put the results
|
|
// into the actual class def method and fields field
|
|
let (class_def, _) = &def_ast_list[class_ind];
|
|
let mut class_def = class_def.write();
|
|
if let TopLevelDef::Class { fields, methods, .. } = class_def.deref_mut() {
|
|
for (ref n, ref t) in class_fields_parsing_result {
|
|
fields.push((n.clone(), *t));
|
|
}
|
|
for (n, t, id) in &class_methods_parsing_result {
|
|
methods.push((n.clone(), *t, *id));
|
|
}
|
|
} else { unreachable!() }
|
|
|
|
// change the signature field of the class methods
|
|
for (_, ty, id) in &class_methods_parsing_result {
|
|
let (method_def, _) = &def_ast_list[id.0];
|
|
let mut method_def = method_def.write();
|
|
if let TopLevelDef::Function { signature, .. } = method_def.deref_mut() {
|
|
*signature = *ty;
|
|
}
|
|
}
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
fn analyze_top_level_function(&mut self) -> Result<(), String> {
|
|
unimplemented!()
|
|
}
|
|
|
|
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
|
|
unimplemented!()
|
|
}
|
|
|
|
fn check_ty_analyzed(ty: Type,
|
|
unifier: &mut Unifier,
|
|
to_be_analyzed: &[DefinitionId]) -> bool
|
|
{
|
|
let type_enum = unifier.get_ty(ty);
|
|
match type_enum.as_ref() {
|
|
TypeEnum::TObj { obj_id, .. } => {
|
|
!to_be_analyzed.contains(obj_id)
|
|
}
|
|
TypeEnum::TVirtual { ty } => {
|
|
if let TypeEnum::TObj { obj_id, .. } =
|
|
unifier.get_ty(*ty).as_ref()
|
|
{
|
|
!to_be_analyzed.contains(obj_id)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
TypeEnum::TVar { .. } => true,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|