1
0
forked from M-Labs/nac3

Compare commits

...

56 Commits

Author SHA1 Message Date
ram
c3bcf101d4 Merge remote-tracking branch 'upstream/master' 2025-01-10 04:00:40 +00:00
8baf111734 [meta] Apply clippy suggestions 2025-01-06 17:11:31 +08:00
eaaa194a87 [artiq] symbol_resolver: Cast ndarray.{shape,strides} globals to usize*
This is needed as ndarray.{shapes,strides} are ArrayValues, and so a GEP
operation is required to convert them into pointers to their first
elements.
2025-01-06 16:53:33 +08:00
352c7c880b [artiq] symbol_resolver: Fix incorrect global type for ndarray.strides 2025-01-06 16:53:33 +08:00
3c5e247195 [artiq] symbol_resolver: Use TargetData to get size of dtype
dtype.size_of() may not return a constant value.
2025-01-06 16:53:33 +08:00
4e21def1a0 [artiq] symbol_resolver: Add missing promotion for host compilation
Shape tuple is always in i32, so a zero-extension to i64 is
necessary when assigning the shape tuple into the shape field of the
ndarray.
2025-01-06 16:53:33 +08:00
2271b46b96 [core] codegen/values/ndarray: Fix Vec allocation 2025-01-06 16:53:33 +08:00
d9c180ed13 [artiq] symbol_resolver: Fix support for np.bool_ -> bool decay 2025-01-06 16:53:33 +08:00
8322d457c6 standalone/demo: numpy2 compatibility 2025-01-04 15:30:24 +08:00
e480081e4b update dependencies 2025-01-04 10:28:41 +08:00
12fddc3533 [core] codegen/ndarray: Make ndims non-optional
Now that everything is ported to use strided impl, dynamic-ndim ndarray
instances do not exist anymore.
2025-01-03 15:43:08 +08:00
3ac1083734 [core] codegen: Reimplement np_dot() for scalars and 1D
Based on 693b7f37: core/ndstrides: implement np_dot() for scalars and 1D
2025-01-03 15:43:08 +08:00
66b8a5e01d [core] codegen/ndarray: Reimplement matmul
Based on 73c2203b: core/ndstrides: implement general matmul
2025-01-03 15:43:06 +08:00
ebbadc2d74 [core] codegen: Reimplement ndarray cmpop
Based on 56cccce1: core/ndstrides: implement cmpop
2025-01-03 15:15:13 +08:00
a2f1b25fd8 [core] codegen: Reimplement ndarray unary op
Based on bb992704: core/ndstrides: implement unary op
2025-01-03 15:15:12 +08:00
59f19e29df [core] codegen: Reimplement ndarray binop
Based on 9e40c834: core/ndstrides: implement binop
2025-01-03 15:15:12 +08:00
6cbba8fdde [core] codegen: Reimplement builtin funcs to support strided ndarrays
Based on 7f3c4530: core/ndstrides: update builtin_fns to use ndarray
with strides
2025-01-03 15:15:12 +08:00
e6dab25a57 [core] codegen/ndarray: Add NDArrayOut, broadcast_map, map
Based on fbfc0b29: core/ndstrides: add NDArrayOut, broadcast_map and map
2025-01-03 15:15:11 +08:00
2dc5e79a23 [core] codegen/ndarray: Implement subscript assignment
Based on 5bed394e: core/ndstrides: implement subscript assignment

Overlapping is not handled. Currently it has undefined behavior.
2025-01-03 15:15:11 +08:00
dcde1d9c87 [core] codegen/values/ndarray: Add more ScalarOrNDArray utils
Based on f731e604: core/ndstrides: add more ScalarOrNDArray and
NDArrayObject utils
2025-01-03 15:15:10 +08:00
7375983e0c [core] codegen/ndarray: Implement np_transpose without axes argument
Based on 052b67c8: core/ndstrides: implement np_transpose() (no axes
argument)

The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2025-01-03 15:15:08 +08:00
43e440d2fd [core] codegen/ndarray: Reimplement broadcasting
Based on 9359ed96: core/ndstrides: implement broadcasting &
np_broadcast_to()
2025-01-03 15:14:59 +08:00
8d975b5ff3 [core] codegen/ndarray: Implement np_reshape
Based on 926e7e93: core/ndstrides: implement np_reshape()
2025-01-03 14:56:16 +08:00
aae41eef6a [core] toplevel: Add view functions category
Based on 9e0f636d: core: categorize np_{transpose,reshape} as 'view
functions'
2025-01-03 14:47:59 +08:00
132ba1942f [core] toplevel: Implement np_size
Based on 2c1030d1: core/ndstrides: implement np_size()
2025-01-03 14:16:29 +08:00
12358c57b1 [core] codegen/ndarray: Implement np_{shape,strides}
Based on 40c24486: core/ndstrides: implement np_shape() and np_strides()

These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is
used.
2025-01-03 13:58:47 +08:00
9ffa2d6552 [core] codegen/ndarray: Reimplement np_{copy,fill}
Based on 18db85fa: core/ndstrides: implement ndarray.fill() and .copy()
2025-01-03 13:58:47 +08:00
acb437919d [core] codegen/ndarray: Reimplement np_{eye,identity}
Based on fa047d50: core/ndstrides: implement np_identity() and np_eye()
2025-01-03 13:58:47 +08:00
fadadd7505 [core] codegen/ndarray: Reimplement np_array()
Based on 8f0084ac: core/ndstrides: implement np_array()

It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.

However, currently only `np_array(<input>, copy=False)` and `np_array
(<input>, copy=True)` are supported. In NumPy, copy could be false,
true, or None. Right now, NAC3's `np_array(<input>, copy=False)` behaves
like NumPy's `np.array(<input>, copy=None)`.
2025-01-03 13:58:47 +08:00
26f1428739 [core] codegen: Refactor len()
Based on 54a842a9: core/ndstrides: implement len(ndarray) & refactor
len()
2025-01-03 13:58:47 +08:00
5880f964bb [core] codegen/ndarray: Reimplement np_{zeros,ones,full,empty}
Based on 792374fa: core/ndstrides: implement np_{zeros,ones,full,empty}.
2025-01-03 13:58:47 +08:00
7d02f5833d [core] codegen: Implement Tuple{Type,Value} 2025-01-03 13:58:47 +08:00
822f9d33f8 [core] codegen: Refactor ListType to use derive(StructFields) 2025-01-03 13:58:47 +08:00
805a9d23b3 [core] codegen: Add derive(Copy, Clone) to TypedArrayLikeAdapter 2025-01-03 13:58:46 +08:00
1ffe2fcc7f [core] irrt: Minor reformat 2025-01-03 13:26:51 +08:00
2f0847d77b [core] codegen/types: Refactor ProxyType
- Add alloca_type() function to obtain the type that should be passed
into a `build_alloca` call
- Provide default implementations for raw_alloca and array_alloca
- Add raw_alloca_var and array_alloca_var to distinguish alloca
instructions placed at the front of the function vs at the current
builder location
2024-12-30 17:00:17 +08:00
dc9efa9e8c [core] codegen/ndarray: Use IRRT for size() and indexing operations
Also refactor some usages of call_ndarray_calc_size with ndarray.size().
2024-12-30 16:58:33 +08:00
3c0ce3031f [core] codegen: Update raw_alloca to return PointerValue
Better match the expected behavior of alloca.
2024-12-30 16:51:34 +08:00
d5e8df070a [core] Minor improvements to IRRT and add missing documentation 2024-12-30 16:51:17 +08:00
dc413dfa43 [core] codegen: Refactor TypedArrayLikeAdapter to use fn
Allows for greater flexibility when TypedArrayLikeAdapter is used with
custom value types.
2024-12-30 16:50:22 +08:00
19122e2905 [core] codegen: Rename classes/functions for consistency
- ContiguousNDArrayFields -> ContiguousNDArrayStructFields
- ndarray/nditer: Add _field suffix to field accessors
2024-12-30 16:50:18 +08:00
318371a509 [core] irrt: Minor cleanup 2024-12-30 14:13:48 +08:00
35e3042435 [core] Refactor/Remove redundant and unused constructs
- Use ProxyValue.name where necessary
- Remove NDArrayValue::ptr_to_{shape,strides}
- Remove functions made obsolete by ndstrides
- Remove use statement for ndarray::views as it only contain an impl
block.
- Remove class_names field in Resolvers of test sources
2024-12-30 14:13:48 +08:00
0e5940c49d [meta] Refactor itertools::{chain,enumerate,repeat_n} with std equiv 2024-12-30 14:13:48 +08:00
fbf0053c24 [core] irrt/string: Minor cleanup
- Refactor __nac3_str_eq to always return bool
- Use `get_usize_dependent_function_name` to get IRRT func name
2024-12-30 14:04:42 +08:00
456aefa6ee clean up duplicate include 2024-12-30 13:03:31 +08:00
ram
49a7469b4a use memcmp for string comparison
Co-authored-by: ram <RAMTEJ001@e.ntu.edu.sg>
Co-committed-by: ram <RAMTEJ001@e.ntu.edu.sg>
2024-12-30 13:02:09 +08:00
ram
0d5be81ef4 Merge branch 2024-12-30 04:11:31 +00:00
ram
dd8bf1a35e Resolve merge conflicts 2024-12-30 04:09:18 +00:00
ram
cc18586363 Use llvm_usize for first GEP index, llvm_i32 for second GEP index 2024-12-16 14:35:09 +00:00
ram
e1a2f1239d Implement 64 bit function call 2024-12-16 09:48:51 +00:00
ram
0b6a9bd89b Updated to use memcmp instead of strncmp 2024-12-13 15:43:50 +00:00
ram
9b0d37b1f0 Amend to follow formatting of other C++ files 2024-12-12 10:35:47 +00:00
ram
543a648af8 Edit function call to support 32-bit and 64-bit str 2024-12-12 10:10:39 +00:00
ram
780d33c8a7 Edit function call to support 32-bit and 64-bit str 2024-12-12 10:05:11 +00:00
ram
e13d753329 Implement string equality operator using IRRT and optimise LLVM implementation 2024-12-11 17:14:11 +00:00
89 changed files with 5637 additions and 5265 deletions

103
Cargo.lock generated
View File

@ -126,9 +126,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]]
name = "cc"
version = "1.2.4"
version = "1.2.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9157bbaa6b165880c27a4293a474c91cdcf265cc68cc829bf10be0964a391caf"
checksum = "a012a0df96dd6d06ba9a1b29d6402d1a5d77c6befd2566afdc26e10603dc93d7"
dependencies = [
"shlex",
]
@ -170,7 +170,7 @@ dependencies = [
"heck 0.5.0",
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
@ -187,14 +187,14 @@ checksum = "5b63caa9aa9397e2d9480a9b13673856c78d8ac123288526c37d7839f2a86990"
[[package]]
name = "console"
version = "0.15.8"
version = "0.15.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e1f83fc076bd6dd27517eacdf25fef6c4dfe5f1d7448bafaaf3a26f13b5e4eb"
checksum = "ea3c6ecd8059b57859df5c69830340ed3c41d30e3da0c1cbed90a96ac853041b"
dependencies = [
"encode_unicode",
"lazy_static",
"libc",
"windows-sys 0.52.0",
"once_cell",
"windows-sys 0.59.0",
]
[[package]]
@ -221,18 +221,18 @@ dependencies = [
[[package]]
name = "crossbeam-channel"
version = "0.5.13"
version = "0.5.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "33480d6946193aa8033910124896ca395333cae7e2d1113d1fef6c3272217df2"
checksum = "06ba6d68e24814cb8de6bb986db8222d3a027d15872cabc0d18817bc3c0e4471"
dependencies = [
"crossbeam-utils",
]
[[package]]
name = "crossbeam-deque"
version = "0.8.5"
version = "0.8.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d"
checksum = "9dd111b7b7f7d55b72c0a6ae361660ee5853c9af73f70c3c2ef6858b950e2e51"
dependencies = [
"crossbeam-epoch",
"crossbeam-utils",
@ -249,18 +249,18 @@ dependencies = [
[[package]]
name = "crossbeam-queue"
version = "0.3.11"
version = "0.3.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df0346b5d5e76ac2fe4e327c5fd1118d6be7c51dfb18f9b7922923f287471e35"
checksum = "0f58bbc28f91df819d0aa2a2c00cd19754769c2fad90579b3592b1c9ba7a3115"
dependencies = [
"crossbeam-utils",
]
[[package]]
name = "crossbeam-utils"
version = "0.8.20"
version = "0.8.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80"
checksum = "d0a5c400df2834b80a4c3327b3aad3a4c4cd4de0629063962b03235697506a28"
[[package]]
name = "crypto-common"
@ -305,9 +305,9 @@ dependencies = [
[[package]]
name = "encode_unicode"
version = "0.3.6"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a357d28ed41a50f9c765dbfe56cbc04a64e53e5fc58ba79fbc34c10ef3df831f"
checksum = "34aa73646ffb006b8f5147f3dc182bd4bcb190227ce861fc4a4844bf8e3cb2c0"
[[package]]
name = "equivalent"
@ -378,9 +378,9 @@ dependencies = [
[[package]]
name = "glob"
version = "0.3.1"
version = "0.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2fabcfbdc87f4758337ca535fb41a6d701b65693ce38287d856d1674551ec9b"
checksum = "a8d1add55171497b4705a648c6b583acafb01d58050a51727785f0b2c8e0a2b2"
[[package]]
name = "hashbrown"
@ -417,11 +417,11 @@ checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]]
name = "home"
version = "0.5.9"
version = "0.5.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3d1354bf6b7235cb4a0576c2619fd4ed18183f689b12b006a0ee7329eeff9a5"
checksum = "589533453244b0995c858700322199b2becb13b627df2851f64a2775d024abcf"
dependencies = [
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -472,7 +472,7 @@ checksum = "9dd28cfd4cfba665d47d31c08a6ba637eed16770abca2eccbbc3ca831fef1e44"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
@ -559,9 +559,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]]
name = "libc"
version = "0.2.168"
version = "0.2.169"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5aaeb2981e0606ca11d79718f8bb01164f1d6ed75080182d3abf017e6d244b6d"
checksum = "b5aba8db14291edd000dfcc4d620c7ebfb122c613afb886ca8803fa4e128a20a"
[[package]]
name = "libloading"
@ -678,7 +678,7 @@ dependencies = [
"proc-macro-error",
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
"trybuild",
]
@ -799,7 +799,7 @@ dependencies = [
"phf_shared 0.11.2",
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
@ -927,7 +927,7 @@ dependencies = [
"proc-macro2",
"pyo3-macros-backend",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
@ -940,14 +940,14 @@ dependencies = [
"proc-macro2",
"pyo3-build-config",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
name = "quote"
version = "1.0.37"
version = "1.0.38"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5b9d34b8991d19d98081b46eacdd8eb58c6f2b201139f7c5f643cc155a633af"
checksum = "0e4dccaaaf89514f546c693ddc140f729f958c247918a13380cccc6078391acc"
dependencies = [
"proc-macro2",
]
@ -1062,9 +1062,9 @@ dependencies = [
[[package]]
name = "rustversion"
version = "1.0.18"
version = "1.0.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e819f2bc632f285be6d7cd36e25940d45b2391dd6d9b939e79de557f7014248"
checksum = "f7c45b9784283f1b2e7fb61b42047c2fd678ef0960d4f6f1eba131594cc369d4"
[[package]]
name = "ryu"
@ -1095,29 +1095,29 @@ checksum = "3cb6eb87a131f756572d7fb904f6e7b68633f09cca868c5df1c4b8d1a694bbba"
[[package]]
name = "serde"
version = "1.0.216"
version = "1.0.217"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b9781016e935a97e8beecf0c933758c97a5520d32930e460142b4cd80c6338e"
checksum = "02fc4265df13d6fa1d00ecff087228cc0a2b5f3c0e87e258d8b94a156e984c70"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.216"
version = "1.0.217"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46f859dbbf73865c6627ed570e78961cd3ac92407a2d117204c49232485da55e"
checksum = "5a9bf7cf98d04a2b28aead066b7496853d4779c9cc183c440dbac457641e19a0"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
name = "serde_json"
version = "1.0.133"
version = "1.0.134"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c7fceb2473b9166b2294ef05efcb65a3db80803f0b03ef86a5fc88a2b85ee377"
checksum = "d00f4175c42ee48b15416f6193a959ba3a0d67fc699a0db9ad12df9f83991c7d"
dependencies = [
"itoa",
"memchr",
@ -1226,7 +1226,7 @@ dependencies = [
"proc-macro2",
"quote",
"rustversion",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
@ -1242,9 +1242,9 @@ dependencies = [
[[package]]
name = "syn"
version = "2.0.90"
version = "2.0.94"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "919d3b74a5dd0ccd15aeb8f93e7006bd9e14c295087c9896a110f490752bcf31"
checksum = "987bc0be1cdea8b10216bd06e2ca407d40b9543468fafd3ddfb02f36e77f71f3"
dependencies = [
"proc-macro2",
"quote",
@ -1265,12 +1265,13 @@ checksum = "42a4d50cdb458045afc8131fd91b64904da29548bcb63c7236e0844936c13078"
[[package]]
name = "tempfile"
version = "3.14.0"
version = "3.15.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "28cce251fcbc87fac86a866eeb0d6c2d536fc16d06f184bb61aeae11aa4cee0c"
checksum = "9a8a559c81686f576e8cd0290cd2a24a2a9ad80c98b3478856500fcbd7acd704"
dependencies = [
"cfg-if",
"fastrand",
"getrandom",
"once_cell",
"rustix",
"windows-sys 0.59.0",
@ -1278,9 +1279,9 @@ dependencies = [
[[package]]
name = "term"
version = "1.0.0"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4df4175de05129f31b80458c6df371a15e7fc3fd367272e6bf938e5c351c7ea0"
checksum = "a3bb6001afcea98122260987f8b7b5da969ecad46dbf0b5453702f776b491a41"
dependencies = [
"home",
"windows-sys 0.52.0",
@ -1325,7 +1326,7 @@ checksum = "4fee6c4efc90059e10f81e6d42c60a18f76588c3d74cb83a0b242a2b6c7504c1"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]
[[package]]
@ -1603,9 +1604,9 @@ checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec"
[[package]]
name = "winnow"
version = "0.6.20"
version = "0.6.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "36c1fec1a2bb5866f07c25f68c26e565c4c200aebb96d7e55710c19d3e8ac49b"
checksum = "39281189af81c07ec09db316b302a3e67bf9bd7cbf6c820b50e35fee9c2fa980"
dependencies = [
"memchr",
]
@ -1637,5 +1638,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.90",
"syn 2.0.94",
]

6
flake.lock generated
View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1733940404,
"narHash": "sha256-Pj39hSoUA86ZePPF/UXiYHHM7hMIkios8TYG29kQT4g=",
"lastModified": 1735834308,
"narHash": "sha256-dklw3AXr3OGO4/XT1Tu3Xz9n/we8GctZZ75ZWVqAVhk=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "5d67ea6b4b63378b9c13be21e2ec9d1afc921713",
"rev": "6df24922a1400241dae323af55f30e4318a6ca65",
"type": "github"
},
"original": {

View File

@ -0,0 +1,29 @@
from min_artiq import *
import numpy
from numpy import int32
@nac3
class NumpyBoolDecay:
core: KernelInvariant[Core]
np_true: KernelInvariant[bool]
np_false: KernelInvariant[bool]
np_int: KernelInvariant[int32]
np_float: KernelInvariant[float]
np_str: KernelInvariant[str]
def __init__(self):
self.core = Core()
self.np_true = numpy.True_
self.np_false = numpy.False_
self.np_int = numpy.int32(0)
self.np_float = numpy.float64(0.0)
self.np_str = numpy.str_("")
@kernel
def run(self):
pass
if __name__ == "__main__":
NumpyBoolDecay().run()

View File

@ -162,7 +162,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
}
}
impl<'b> CodeGenerator for ArtiqCodeGenerator<'b> {
impl CodeGenerator for ArtiqCodeGenerator<'_> {
fn get_name(&self) -> &str {
&self.name
}
@ -464,7 +464,7 @@ fn format_rpc_arg<'ctx>(
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
let dtype = ctx.get_llvm_type(generator, elem_ty);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, Some(ndims))
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, ndims)
.map_value(arg.into_pointer_value(), None);
let ndims = llvm_usize.const_int(ndims, false);
@ -597,7 +597,7 @@ fn format_rpc_ret<'ctx>(
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&ctx.unifier, ndims);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, Some(ndims))
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, ndims)
.construct_uninitialized(generator, ctx, None);
// NOTE: Current content of `ndarray`:
@ -1505,7 +1505,7 @@ pub fn call_rtio_log_impl<'ctx>(
/// Generates a call to `core_log`.
pub fn gen_core_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
obj: Option<&(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
@ -1522,7 +1522,7 @@ pub fn gen_core_log<'ctx>(
/// Generates a call to `rtio_log`.
pub fn gen_rtio_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
obj: Option<&(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,

View File

@ -330,7 +330,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?;
gen_core_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None)
}))),
@ -360,7 +360,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
gen_rtio_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None)
}))),

View File

@ -931,10 +931,13 @@ impl InnerResolver {
|_| Ok(Ok(extracted_ty)),
)
} else if unifier.unioned(extracted_ty, primitives.bool) {
obj.extract::<bool>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of bool"))),
|_| Ok(Ok(extracted_ty)),
)
if obj.extract::<bool>().is_ok()
|| obj.call_method("__bool__", (), None)?.extract::<bool>().is_ok()
{
Ok(Ok(extracted_ty))
} else {
Ok(Err(format!("{obj} is not in the range of bool")))
}
} else if unifier.unioned(extracted_ty, primitives.float) {
obj.extract::<f64>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of float64"))),
@ -974,10 +977,14 @@ impl InnerResolver {
let val: u64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
@ -1107,7 +1114,7 @@ impl InnerResolver {
self.global_value_ids.write().insert(id, obj.into());
}
let ndims = llvm_ndarray.ndims().unwrap();
let ndims = llvm_ndarray.ndims();
// Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
@ -1124,7 +1131,10 @@ impl InnerResolver {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})?
.unwrap();
let value = value.into_int_value();
let value = ctx
.builder
.build_int_z_extend(value.into_int_value(), llvm_usize, "")
.unwrap();
Ok(value)
})
.collect::<Result<Vec<_>, PyErr>>()?;
@ -1203,8 +1213,16 @@ impl InnerResolver {
data_global.set_initializer(&data);
// Get the constant itemsize.
let itemsize = dtype.size_of().unwrap();
let itemsize = itemsize.get_zero_extended_constant().unwrap();
//
// NOTE: dtype.size_of() may return a non-constant, where `TargetData::get_store_size`
// will always return a constant size.
let itemsize = ctx
.registry
.llvm_options
.create_target_machine()
.map(|tm| tm.get_target_data().get_store_size(&dtype))
.unwrap();
assert_ne!(itemsize, 0);
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
@ -1214,7 +1232,7 @@ impl InnerResolver {
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
llvm_i8.array_type(ndims as u32),
llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()),
&format!("${id_str}.strides"),
);
@ -1230,9 +1248,30 @@ impl InnerResolver {
let ndarray_ndims = llvm_usize.const_int(ndims, false);
// calling as_pointer_value on shape and strides returns [i64 x ndims]*
// convert into i64* to conform with expected layout of ndarray
let ndarray_shape = shape_global.as_pointer_value();
let ndarray_shape = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_shape,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray_strides = strides_global.as_pointer_value();
let ndarray_strides = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_strides,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray = llvm_ndarray
.as_base_type()
@ -1413,9 +1452,12 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.uint64 {
let val: u64 = obj.extract()?;
Ok(SymbolValue::U64(val))
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
} else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract()?;
Ok(SymbolValue::Str(val))

View File

@ -1,10 +1,15 @@
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include "irrt/string.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -21,7 +21,5 @@ using uint64_t = unsigned _ExtInt(64);
#endif
// NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -2,6 +2,21 @@
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when

View File

@ -1,5 +1,7 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function

View File

@ -1,151 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
// TODO: To be deleted since NDArray with strides is done.
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndexInt* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims,
SizeT num_dims,
const NDIndexInt* indices,
SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndexInt* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims,
uint64_t num_dims,
const NDIndexInt* indices,
uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // namespace

View File

@ -0,0 +1,132 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace ndarray::array
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -6,8 +6,7 @@
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray {
namespace basic {
namespace ndarray::basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
@ -247,8 +246,7 @@ void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace ndarray::basic
} // namespace
extern "C" {

View File

@ -0,0 +1,165 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray::broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace ndarray::broadcast
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -65,8 +65,7 @@ struct NDIndex {
} // namespace
namespace {
namespace ndarray {
namespace indexing {
namespace ndarray::indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
@ -162,7 +161,8 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->data =
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
@ -197,8 +197,7 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace indexing
} // namespace ndarray
} // namespace ndarray::indexing
} // namespace
extern "C" {

View File

@ -0,0 +1,98 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray::matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace ndarray::matmul
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -0,0 +1,97 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
can_reshape = (new_size == size);
}
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace ndarray::reshape
} // namespace
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -0,0 +1,143 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray::transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace ndarray::transpose
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -0,0 +1,23 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,7 @@ use inkwell::{
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::{chain, izip, Either, Itertools};
use itertools::{izip, Either, Itertools};
use nac3parser::ast::{
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
@ -24,26 +24,26 @@ use super::{
irrt::*,
llvm_intrinsics::{
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
call_int_umin, call_memcpy_generic,
call_memcpy_generic,
},
macros::codegen_unreachable,
need_sret, numpy,
need_sret,
stmt::{
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
gen_var,
},
types::{ndarray::NDArrayType, ListType},
values::{
ndarray::{NDArrayValue, RustNDIndex},
ndarray::{NDArrayOut, RustNDIndex, ScalarOrNDArray},
ArrayLikeIndexer, ArrayLikeValue, ListValue, ProxyValue, RangeValue,
TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenTask, CodeGenerator,
};
use crate::{
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{
helper::{extract_ndims, PrimDef},
helper::{arraylike_flatten_element_type, PrimDef},
numpy::unpack_ndarray_var_tys,
DefinitionId, TopLevelDef,
},
@ -79,7 +79,7 @@ pub fn get_subst_key(
.join(", ")
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
impl<'ctx> CodeGenContext<'ctx, '_> {
/// Builds a sequence of `getelementptr` and `load` instructions which stores the value of a
/// struct field into an LLVM value.
pub fn build_gep_and_load(
@ -1095,33 +1095,6 @@ pub fn destructure_range<'ctx>(
(start, end, step)
}
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
///
/// Setting `ty` to [`None`] implies that the list is empty **and** does not have a known element
/// type, and will therefore set the `list.data` type as `size_t*`. It is undefined behavior to
/// generate a sized list with an unknown element type.
pub fn allocate_list<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Option<BasicTypeEnum<'ctx>>,
length: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ListValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_ty = ty.unwrap_or(llvm_usize.into());
// List structure; type { ty*, size_t }
let arr_ty = ListType::new(generator, ctx.ctx, llvm_elem_ty);
let list = arr_ty.alloca(generator, ctx, name);
let length = ctx.builder.build_int_z_extend(length, llvm_usize, "").unwrap();
list.store_size(ctx, generator, length);
list.create_data(ctx, llvm_elem_ty, None);
list
}
/// Generates LLVM IR for a [list comprehension expression][expr].
pub fn gen_comprehension<'ctx, G: CodeGenerator>(
generator: &mut G,
@ -1194,12 +1167,11 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
"listcomp.alloc_size",
)
.unwrap();
list = allocate_list(
list = ListType::new(generator, ctx.ctx, elem_ty).construct(
generator,
ctx,
Some(elem_ty),
list_alloc_size.into_int_value(),
Some("listcomp.addr"),
Some("listcomp"),
);
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
@ -1246,7 +1218,12 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
Some("length"),
)
.into_int_value();
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp"));
list = ListType::new(generator, ctx.ctx, elem_ty).construct(
generator,
ctx,
length,
Some("listcomp"),
);
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
// counter = -1
@ -1411,7 +1388,8 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
.build_int_add(lhs.load_size(ctx, None), rhs.load_size(ctx, None), "")
.unwrap();
let new_list = allocate_list(generator, ctx, Some(llvm_elem_ty), size, None);
let new_list = ListType::new(generator, ctx.ctx, llvm_elem_ty)
.construct(generator, ctx, size, None);
let lhs_size = ctx
.builder
@ -1498,10 +1476,9 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
let elem_llvm_ty = ctx.get_llvm_type(generator, elem_ty);
let sizeof_elem = elem_llvm_ty.size_of().unwrap();
let new_list = allocate_list(
let new_list = ListType::new(generator, ctx.ctx, elem_llvm_ty).construct(
generator,
ctx,
Some(elem_llvm_ty),
ctx.builder.build_int_mul(list_val.load_size(ctx, None), int_val, "").unwrap(),
None,
);
@ -1554,98 +1531,77 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let left = ScalarOrNDArray::from_value(generator, ctx, (ty1, left_val));
let right = ScalarOrNDArray::from_value(generator, ctx, (ty2, right_val));
if is_ndarray1 && is_ndarray2 {
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
let ty1_dtype = arraylike_flatten_element_type(&mut ctx.unifier, ty1);
let ty2_dtype = arraylike_flatten_element_type(&mut ctx.unifier, ty2);
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
// Inhomogeneous binary operations are not supported.
assert!(ctx.unifier.unioned(ty1_dtype, ty2_dtype));
let left_val = NDArrayType::from_unifier_type(generator, ctx, ty1)
.map_value(left_val.into_pointer_value(), None);
let right_val = NDArrayType::from_unifier_type(generator, ctx, ty2)
.map_value(right_val.into_pointer_value(), None);
let common_dtype = ty1_dtype;
let llvm_common_dtype = left.get_dtype();
let res = if op.base == Operator::MatMult {
// MatMult is the only binop which is not an elementwise op
numpy::ndarray_matmul_2d(
generator,
ctx,
ndarray_dtype1,
match op.variant {
BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(left_val),
},
left_val,
right_val,
)?
} else {
numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ndarray_dtype1,
match op.variant {
BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(left_val),
},
(ty1, left_val.as_base_value().into(), false),
(ty2, right_val.as_base_value().into(), false),
|generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values(
generator,
ctx,
(&Some(ndarray_dtype1), lhs),
op,
(&Some(ndarray_dtype2), rhs),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ndarray_dtype1,
)
},
)?
};
let out = match op.variant {
BinopVariant::Normal => NDArrayOut::NewNDArray { dtype: llvm_common_dtype },
BinopVariant::AugAssign => {
// Augmented assignment - `left` has to be an ndarray. If it were a scalar then NAC3
// simply doesn't support it.
if let ScalarOrNDArray::NDArray(out_ndarray) = left {
NDArrayOut::WriteToNDArray { ndarray: out_ndarray }
} else {
panic!("left must be an ndarray")
}
}
};
Ok(Some(res.as_base_value().into()))
if op.base == Operator::MatMult {
let left = left.to_ndarray(generator, ctx);
let right = right.to_ndarray(generator, ctx);
let result = left
.matmul(generator, ctx, ty1, (ty2, right), (common_dtype, out))
.split_unsized(generator, ctx);
Ok(Some(result.to_basic_value_enum().into()))
} else {
let (ndarray_dtype, _) =
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
let ndarray_val =
NDArrayType::from_unifier_type(generator, ctx, if is_ndarray1 { ty1 } else { ty2 })
.map_value(
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
None,
);
let res = numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ndarray_dtype,
match op.variant {
BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(ndarray_val),
},
(ty1, left_val, !is_ndarray1),
(ty2, right_val, !is_ndarray2),
|generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values(
generator,
ctx,
(&Some(ndarray_dtype), lhs),
op,
(&Some(ndarray_dtype), rhs),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, ndarray_dtype)
},
)?;
// For other operations, they are all elementwise operations.
Ok(Some(res.as_base_value().into()))
// There are only three cases:
// - LHS is a scalar, RHS is an ndarray.
// - LHS is an ndarray, RHS is a scalar.
// - LHS is an ndarray, RHS is an ndarray.
//
// For all cases, the scalar operand is promoted to an ndarray,
// the two are then broadcasted, and starmapped through.
let left = left.to_ndarray(generator, ctx);
let right = right.to_ndarray(generator, ctx);
let result = NDArrayType::new_broadcast(
generator,
ctx.ctx,
llvm_common_dtype,
&[left.get_type(), right.get_type()],
)
.broadcast_starmap(generator, ctx, &[left, right], out, |generator, ctx, scalars| {
let left_value = scalars[0];
let right_value = scalars[1];
let result = gen_binop_expr_with_values(
generator,
ctx,
(&Some(ty1_dtype), left_value),
op,
(&Some(ty2_dtype), right_value),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, common_dtype)?;
Ok(result)
})
.unwrap();
Ok(Some(result.as_base_value().into()))
}
} else {
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
@ -1808,10 +1764,10 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
_ => val.into(),
}
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
let llvm_ndarray_ty = NDArrayType::from_unifier_type(generator, ctx, ty);
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let val = llvm_ndarray_ty.map_value(val.into_pointer_value(), None);
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ty)
.map_value(val.into_pointer_value(), None);
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
// passing it to the elementwise codegen function
@ -1829,20 +1785,18 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
op
};
let res = numpy::ndarray_elementwise_unaryop_impl(
let mapped_ndarray = ndarray.map(
generator,
ctx,
ndarray_dtype,
None,
val,
|generator, ctx, val| {
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
NDArrayOut::NewNDArray { dtype: ndarray.get_type().element_type() },
|generator, ctx, scalar| {
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), scalar))?
.map(|val| val.to_basic_value_enum(ctx, generator, ndarray_dtype))
.unwrap()
.to_basic_value_enum(ctx, generator, ndarray_dtype)
},
)?;
res.as_base_value().into()
mapped_ndarray.as_base_value().into()
} else {
unimplemented!()
}))
@ -1885,87 +1839,56 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let (Some(left_ty), lhs) = left else { codegen_unreachable!(ctx) };
let (Some(right_ty), rhs) = comparators[0] else { codegen_unreachable!(ctx) };
let (Some(left_ty), left) = left else { codegen_unreachable!(ctx) };
let (Some(right_ty), right) = comparators[0] else { codegen_unreachable!(ctx) };
let op = ops[0];
let is_ndarray1 =
left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_ndarray2 =
right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let left_ty_dtype = arraylike_flatten_element_type(&mut ctx.unifier, left_ty);
let right_ty_dtype = arraylike_flatten_element_type(&mut ctx.unifier, right_ty);
return if is_ndarray1 && is_ndarray2 {
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, left_ty);
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, right_ty);
let left = ScalarOrNDArray::from_value(generator, ctx, (left_ty, left))
.to_ndarray(generator, ctx);
let right = ScalarOrNDArray::from_value(generator, ctx, (right_ty, right))
.to_ndarray(generator, ctx);
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
let result_ndarray = NDArrayType::new_broadcast(
generator,
ctx.ctx,
ctx.ctx.i8_type().into(),
&[left.get_type(), right.get_type()],
)
.broadcast_starmap(
generator,
ctx,
&[left, right],
NDArrayOut::NewNDArray { dtype: ctx.ctx.i8_type().into() },
|generator, ctx, scalars| {
let left_scalar = scalars[0];
let right_scalar = scalars[1];
let left_val = NDArrayType::from_unifier_type(generator, ctx, left_ty)
.map_value(lhs.into_pointer_value(), None);
let res = numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ctx.primitives.bool,
None,
(left_ty, left_val.as_base_value().into(), false),
(right_ty, rhs, false),
|generator, ctx, (lhs, rhs)| {
let val = gen_cmpop_expr_with_values(
generator,
ctx,
(Some(ndarray_dtype1), lhs),
&[op],
&[(Some(ndarray_dtype2), rhs)],
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ctx.primitives.bool,
)?;
let val = gen_cmpop_expr_with_values(
generator,
ctx,
(Some(left_ty_dtype), left_scalar),
&[op],
&[(Some(right_ty_dtype), right_scalar)],
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ctx.primitives.bool,
)?;
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
},
)?;
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
},
)?;
Ok(Some(res.as_base_value().into()))
} else {
let (ndarray_dtype, _) = unpack_ndarray_var_tys(
&mut ctx.unifier,
if is_ndarray1 { left_ty } else { right_ty },
);
let res = numpy::ndarray_elementwise_binop_impl(
generator,
ctx,
ctx.primitives.bool,
None,
(left_ty, lhs, !is_ndarray1),
(right_ty, rhs, !is_ndarray2),
|generator, ctx, (lhs, rhs)| {
let val = gen_cmpop_expr_with_values(
generator,
ctx,
(Some(ndarray_dtype), lhs),
&[op],
&[(Some(ndarray_dtype), rhs)],
)?
.unwrap()
.to_basic_value_enum(
ctx,
generator,
ctx.primitives.bool,
)?;
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
},
)?;
Ok(Some(res.as_base_value().into()))
};
return Ok(Some(result_ndarray.as_base_value().into()));
}
}
let cmp_val = izip!(chain(once(&left), comparators.iter()), comparators.iter(), ops.iter(),)
let cmp_val = izip!(once(&left).chain(comparators.iter()), comparators.iter(), ops.iter(),)
.fold(Ok(None), |prev: Result<Option<_>, String>, (lhs, rhs, op)| {
let (left_ty, lhs) = lhs;
let (right_ty, rhs) = rhs;
@ -2045,111 +1968,43 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
} else if left_ty == ctx.primitives.str {
assert!(ctx.unifier.unioned(left_ty, right_ty));
let llvm_i1 = ctx.ctx.bool_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let lhs = lhs.into_struct_value();
let rhs = rhs.into_struct_value();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let plhs = generator.gen_var_alloc(ctx, lhs.get_type().into(), None).unwrap();
ctx.builder.build_store(plhs, lhs).unwrap();
let prhs = generator.gen_var_alloc(ctx, lhs.get_type().into(), None).unwrap();
ctx.builder.build_store(prhs, rhs).unwrap();
let lhs_ptr = ctx.build_in_bounds_gep_and_load(
plhs,
&[llvm_usize.const_zero(), llvm_i32.const_zero()],
None,
).into_pointer_value();
let lhs_len = ctx.build_in_bounds_gep_and_load(
plhs,
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
&[llvm_usize.const_zero(), llvm_i32.const_int(1, false)],
None,
).into_int_value();
let rhs_ptr = ctx.build_in_bounds_gep_and_load(
prhs,
&[llvm_usize.const_zero(), llvm_i32.const_zero()],
None,
).into_pointer_value();
let rhs_len = ctx.build_in_bounds_gep_and_load(
prhs,
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
&[llvm_usize.const_zero(), llvm_i32.const_int(1, false)],
None,
).into_int_value();
let len = call_int_umin(ctx, lhs_len, rhs_len, None);
let current_bb = ctx.builder.get_insert_block().unwrap();
let post_foreach_cmp = ctx.ctx.insert_basic_block_after(current_bb, "foreach.cmp.end");
ctx.builder.position_at_end(post_foreach_cmp);
let cmp_phi = ctx.builder.build_phi(llvm_i1, "").unwrap();
ctx.builder.position_at_end(current_bb);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let lhs_char = {
let plhs_data = ctx.build_in_bounds_gep_and_load(
plhs,
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
None,
).into_pointer_value();
ctx.build_in_bounds_gep_and_load(
plhs_data,
&[i],
None
).into_int_value()
};
let rhs_char = {
let prhs_data = ctx.build_in_bounds_gep_and_load(
prhs,
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
None,
).into_pointer_value();
ctx.build_in_bounds_gep_and_load(
prhs_data,
&[i],
None
).into_int_value()
};
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx.builder.build_int_compare(IntPredicate::NE, lhs_char, rhs_char, "").unwrap())
},
|_, ctx| {
let bb = ctx.builder.get_insert_block().unwrap();
cmp_phi.add_incoming(&[(&llvm_i1.const_zero(), bb)]);
ctx.builder.build_unconditional_branch(post_foreach_cmp).unwrap();
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let bb = ctx.builder.get_insert_block().unwrap();
let is_len_eq = ctx.builder.build_int_compare(
IntPredicate::EQ,
lhs_len,
rhs_len,
"",
).unwrap();
cmp_phi.add_incoming(&[(&is_len_eq, bb)]);
ctx.builder.build_unconditional_branch(post_foreach_cmp).unwrap();
ctx.builder.position_at_end(post_foreach_cmp);
let cmp_phi = cmp_phi.as_basic_value().into_int_value();
// Invert the final value if __ne__
let result = call_string_eq(generator, ctx, lhs_ptr, lhs_len, rhs_ptr, rhs_len);
if *op == Cmpop::NotEq {
ctx.builder.build_not(cmp_phi, "").unwrap()
ctx.builder.build_not(result, "").unwrap()
} else {
cmp_phi
result
}
} else if [left_ty, right_ty]
.iter()
@ -2512,319 +2367,6 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
)
}
/// Generates code for a subscript expression on an `ndarray`.
///
/// * `ty` - The `Type` of the `NDArray` elements.
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
/// * `v` - The `NDArray` value.
/// * `slice` - The slice expression used to subscript into the `ndarray`.
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
ndims_ty: Type,
v: NDArrayValue<'ctx>,
slice: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims_ty) else {
codegen_unreachable!(ctx)
};
let ndims = values
.iter()
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
.collect::<Result<Vec<_>, _>>()
.map_err(|val| {
format!(
"Expected non-negative literal for ndarray.ndims, got {}",
i128::try_from(val).unwrap()
)
})?;
assert!(!ndims.is_empty());
// The number of dimensions subscripted by the index expression.
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
// dimension will remove a dimension.
let subscripted_dims = match &slice.node {
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
if let ExprKind::Slice { .. } = &value_subexpr.node {
acc
} else {
acc + 1
}
}),
ExprKind::Slice { .. } => 0,
_ => 1,
};
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
// Check that len is non-zero
let len = v.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
"0:IndexError",
"too many indices for array: array is {0}-dimensional but 1 were indexed",
[Some(len), None, None],
slice.location,
);
// Normalizes a possibly-negative index to its corresponding positive index
let normalize_index = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
dim: u64| {
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
.unwrap())
},
|_, _| Ok(Some(index)),
|generator, ctx| {
let llvm_i32 = ctx.ctx.i32_type();
let len = unsafe {
v.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(dim, true),
None,
)
};
let index = ctx
.builder
.build_int_add(
len,
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
"",
)
.unwrap();
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
},
)
.map(|v| v.map(BasicValueEnum::into_int_value))
};
// Converts a slice expression into a slice-range tuple
let expr_to_slice = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
node: &ExprKind<Option<Type>>,
dim: u64| {
match node {
ExprKind::Constant { value: Constant::Int(v), .. } => {
let Some(index) =
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
else {
return Ok(None);
};
Ok(Some((index, index, llvm_i32.const_int(1, true))))
}
ExprKind::Slice { lower, upper, step } => {
let dim_sz = unsafe {
v.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(dim, false),
None,
)
};
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
}
_ => {
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
let index = index
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
return Ok(None);
};
Ok(Some((index, index, llvm_i32.const_int(1, true))))
}
}
};
let make_indices_arr = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>|
-> Result<_, String> {
Ok(if let ExprKind::Tuple { elts, .. } = &slice.node {
let llvm_int_ty = ctx.get_llvm_type(generator, elts[0].custom.unwrap());
let index_addr = generator.gen_array_var_alloc(
ctx,
llvm_int_ty,
llvm_usize.const_int(elts.len() as u64, false),
None,
)?;
for (i, elt) in elts.iter().enumerate() {
let Some(index) = generator.gen_expr(ctx, elt)? else {
return Ok(None);
};
let index = index
.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?
.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
return Ok(None);
};
let store_ptr = unsafe {
index_addr.ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
None,
)
};
ctx.builder.build_store(store_ptr, index).unwrap();
}
Some(index_addr)
} else if let Some(index) = generator.gen_expr(ctx, slice)? {
let llvm_int_ty = ctx.get_llvm_type(generator, slice.custom.unwrap());
let index_addr = generator.gen_array_var_alloc(
ctx,
llvm_int_ty,
llvm_usize.const_int(1u64, false),
None,
)?;
let index =
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
let store_ptr = unsafe {
index_addr.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder.build_store(store_ptr, index).unwrap();
Some(index_addr)
} else {
None
})
};
Ok(Some(if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
v.data().get(ctx, generator, &index_addr, None).into()
} else {
match &slice.node {
ExprKind::Tuple { elts, .. } => {
let slices = elts
.iter()
.enumerate()
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
.collect::<Result<Vec<_>, _>>()?;
if slices.len() < elts.len() {
return Ok(None);
}
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
}
ExprKind::Slice { .. } => {
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
return Ok(None);
};
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
}
_ => {
// Accessing an element from a multi-dimensional `ndarray`
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
let num_dims = extract_ndims(&ctx.unifier, ndims_ty) - 1;
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
// elements over
let ndarray =
NDArrayType::new(generator, ctx.ctx, llvm_ndarray_data_t, Some(num_dims))
.construct_uninitialized(generator, ctx, None);
let ndarray_num_dims = ctx
.builder
.build_int_z_extend_or_bit_cast(
ndarray.load_ndims(ctx),
llvm_usize.size_of().get_type(),
"",
)
.unwrap();
let v_dims_src_ptr = unsafe {
v.shape().ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
call_memcpy_generic(
ctx,
ndarray.shape().base_ptr(ctx, generator),
v_dims_src_ptr,
ctx.builder
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
.map(Into::into)
.unwrap(),
llvm_i1.const_zero(),
);
let ndarray_num_elems = ndarray::call_ndarray_calc_size(
generator,
ctx,
&ndarray.shape().as_slice_value(ctx, generator),
(None, None),
);
let ndarray_num_elems = ctx
.builder
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
.unwrap();
unsafe { ndarray.create_data(generator, ctx) };
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
call_memcpy_generic(
ctx,
ndarray.data().base_ptr(ctx, generator),
v_data_src_ptr,
ctx.builder
.build_int_mul(
ndarray_num_elems,
llvm_ndarray_data_t.size_of().unwrap(),
"",
)
.map(Into::into)
.unwrap(),
llvm_i1.const_zero(),
);
ndarray.as_base_value().into()
}
}
}))
}
/// See [`CodeGenerator::gen_expr`].
pub fn gen_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
@ -2939,7 +2481,20 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
Some(elements[0].get_type())
};
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
let arr_str_ptr = allocate_list(generator, ctx, ty, length, Some("list"));
let arr_str_ptr = if let Some(ty) = ty {
ListType::new(generator, ctx.ctx, ty).construct(
generator,
ctx,
length,
Some("list"),
)
} else {
ListType::new_untyped(generator, ctx.ctx).construct_empty(
generator,
ctx,
Some("list"),
)
};
let arr_ptr = arr_str_ptr.data();
for (i, v) in elements.iter().enumerate() {
let elem_ptr = arr_ptr.ptr_offset(
@ -3417,8 +2972,12 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
.unwrap(),
step,
);
let res_array_ret =
allocate_list(generator, ctx, Some(ty), length, Some("ret"));
let res_array_ret = ListType::new(generator, ctx.ctx, ty).construct(
generator,
ctx,
length,
Some("ret"),
);
let Some(res_ind) = handle_slice_indices(
&None,
&None,

View File

@ -17,6 +17,7 @@ pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value.

View File

@ -24,42 +24,52 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
llvm_i32.into(), // dest start idx
llvm_i32.into(), // dest end idx
llvm_i32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
llvm_i32.into(), // dest arr len
llvm_i32.into(), // src start idx
llvm_i32.into(), // src end idx
llvm_i32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
llvm_i32.into(), // src arr len
llvm_i32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
@ -136,7 +146,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
}
.into(),
];
@ -147,6 +157,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
@ -155,7 +166,8 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);

View File

@ -62,8 +62,13 @@ pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
@ -84,8 +89,13 @@ pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
@ -104,6 +114,8 @@ pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
@ -121,6 +133,8 @@ pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) ->
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
@ -138,6 +152,8 @@ pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)

View File

@ -15,12 +15,14 @@ pub use list::*;
pub use math::*;
pub use range::*;
pub use slice::*;
pub use string::*;
mod list;
mod math;
pub mod ndarray;
mod range;
mod slice;
mod string;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
@ -130,10 +132,11 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap();
let llvm_i32 = ctx.ctx.i32_type();
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
Ok(Some(match (start, end, step) {
(s, e, None) => (
if let Some(s) = s.as_ref() {
@ -142,7 +145,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
None => return Ok(None),
}
} else {
int32.const_zero()
llvm_i32.const_zero()
},
{
let e = if let Some(s) = e.as_ref() {

View File

@ -0,0 +1,80 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -1,4 +1,5 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
@ -7,19 +8,26 @@ use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{ndarray::NDArrayValue, ProxyValue},
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
shape: PointerValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
@ -30,23 +38,37 @@ pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator +
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_usize.into(), ndims.into()), (llvm_pusize.into(), shape.into())],
&[
(llvm_usize.into(), shape.size(ctx, generator).into()),
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
///
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
/// an `ndarray`.
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_ndims: IntValue<'ctx>,
ndarray_shape: PointerValue<'ctx>,
output_ndims: IntValue<'ctx>,
output_shape: IntValue<'ctx>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
@ -58,16 +80,20 @@ pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator +
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_ndims.into()),
(llvm_pusize.into(), ndarray_shape.into()),
(llvm_usize.into(), output_ndims.into()),
(llvm_pusize.into(), output_shape.into()),
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -90,6 +116,10 @@ pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
.unwrap()
}
/// Generates a call to `__nac3_ndarray_nbytes`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -112,6 +142,10 @@ pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
.unwrap()
}
/// Generates a call to `__nac3_ndarray_len`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -134,6 +168,9 @@ pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -156,6 +193,9 @@ pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -167,6 +207,8 @@ pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
@ -181,11 +223,16 @@ pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: PointerValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
@ -193,6 +240,11 @@ pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
@ -202,7 +254,7 @@ pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
Some("pelement"),
None,
@ -211,6 +263,9 @@ pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -231,6 +286,11 @@ pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
);
}
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,

View File

@ -0,0 +1,82 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
types::{ndarray::ShapeEntryType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_broadcast_to`.
///
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
///
/// `dst_ndarray` must meet the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_type(
generator,
ctx.ctx,
shape_entries.base_ptr(ctx, generator).get_type()
)
.is_ok());
assert_eq!(dst_ndims.get_type(), llvm_usize);
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
num_shape_entries.into(),
shape_entries.base_ptr(ctx, generator).into(),
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -5,6 +5,11 @@ use crate::codegen::{
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_index`.
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
/// operation `dst_ndarray = src_ndarray[indices]`.
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,

View File

@ -1,4 +1,5 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
@ -9,21 +10,29 @@ use crate::codegen::{
types::ProxyType,
values::{
ndarray::{NDArrayValue, NDIterValue},
ArrayLikeValue, ArraySliceValue, ProxyValue,
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
create_and_call_function(
@ -40,6 +49,10 @@ pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -59,6 +72,9 @@ pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,

View File

@ -0,0 +1,66 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -1,391 +1,17 @@
use inkwell::{
types::IntType,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use crate::codegen::{
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
values::{
ndarray::NDArrayValue, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
pub use array::*;
pub use basic::*;
pub use broadcast::*;
pub use indexing::*;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.shape().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
mod matmul;
mod reshape;
mod transpose;

View File

@ -0,0 +1,40 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ArrayLikeValue, ArraySliceValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
///
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
/// assertion if multiple dimensions are unknown (`-1`).
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(size.get_type(), llvm_usize);
assert_eq!(new_ndims.get_type(), llvm_usize);
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
None,
None,
);
}

View File

@ -0,0 +1,48 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -6,6 +6,13 @@ use itertools::Either;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -14,9 +21,15 @@ pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
@ -33,6 +46,7 @@ pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)

View File

@ -0,0 +1,46 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
use itertools::Either;
use super::get_usize_dependent_function_name;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
str1_ptr: PointerValue<'ctx>,
str1_len: IntValue<'ctx>,
str2_ptr: PointerValue<'ctx>,
str2_len: IntValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(generator, ctx, "nac3_str_eq");
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
ctx.module.add_function(
&func_name,
llvm_i1.fn_type(
&[
str1_ptr.get_type().into(),
str1_len.get_type().into(),
str2_ptr.get_type().into(),
str2_len.get_type().into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
func,
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
"str_eq_call",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,7 +1,6 @@
use inkwell::{
context::Context,
intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType},
types::AnyTypeEnum::IntType,
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
@ -9,34 +8,6 @@ use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
// Non-standard floating-point types
if ft == ctx.x86_f80_type() {
return "f80";
}
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
@ -54,7 +25,7 @@ pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";

View File

@ -42,7 +42,7 @@ use crate::{
};
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ndarray::NDArrayType, ListType, ProxyType, RangeType};
use types::{ndarray::NDArrayType, ListType, ProxyType, RangeType, TupleType};
pub mod builtin_fns;
pub mod concrete_type;
@ -228,7 +228,7 @@ pub struct CodeGenContext<'ctx, 'a> {
pub current_loc: Location,
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
impl CodeGenContext<'_, '_> {
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
/// contains a [terminator statement][BasicBlock::get_terminator].
pub fn is_terminated(&self) -> bool {
@ -520,7 +520,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type, Some(ndims)).as_base_type().into()
NDArrayType::new(generator, ctx, element_type, ndims).as_base_type().into()
}
_ => unreachable!(
@ -574,7 +574,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
})
.collect_vec();
ctx.struct_type(&fields, false).into()
TupleType::new(generator, ctx, &fields).as_base_type().into()
}
TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()),

File diff suppressed because it is too large Load Diff

View File

@ -16,7 +16,11 @@ use super::{
gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable,
values::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
types::ndarray::NDArrayType,
values::{
ndarray::{RustNDIndex, ScalarOrNDArray},
ArrayLikeIndexer, ArraySliceValue, ListValue, ProxyValue, RangeValue,
},
CodeGenContext, CodeGenerator,
};
use crate::{
@ -411,7 +415,52 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// Handle NDArray item assignment
todo!("ndarray subscript assignment is not yet implemented");
// Process target
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?;
// Process key
let key = RustNDIndex::from_subscript_expr(generator, ctx, key)?;
// Process value
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
// Reference code:
// ```python
// target = target[key]
// value = np.asarray(value)
//
// shape = np.broadcast_shape((target, value))
//
// target = np.broadcast_to(target, shape)
// value = np.broadcast_to(value, shape)
//
// # ...and finally copy 1-1 from value to target.
// ```
let target = NDArrayType::from_unifier_type(generator, ctx, target_ty)
.map_value(target.into_pointer_value(), None);
let target = target.index(generator, ctx, &key);
let value = ScalarOrNDArray::from_value(generator, ctx, (value_ty, value))
.to_ndarray(generator, ctx);
let broadcast_ndims =
[target.get_type().ndims(), value.get_type().ndims()].into_iter().max().unwrap();
let broadcast_result = NDArrayType::new(
generator,
ctx.ctx,
value.get_type().element_type(),
broadcast_ndims,
)
.broadcast(generator, ctx, &[target, value]);
let target = broadcast_result.ndarrays[0];
let value = broadcast_result.ndarrays[1];
target.copy_data_from(generator, ctx, value);
}
_ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));

View File

@ -36,7 +36,6 @@ use crate::{
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
class_names: HashMap<StrRef, Type>,
}
impl Resolver {
@ -104,11 +103,9 @@ fn test_primitives() {
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let resolver = Arc::new(Resolver {
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>;
let resolver =
Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
@ -298,11 +295,7 @@ fn test_simple_call() {
loc: None,
})));
let resolver = Resolver {
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
};
let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
@ -471,6 +464,6 @@ fn test_classes_ndarray_type_new() {
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), None);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), 2);
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -1,69 +1,113 @@
use inkwell::{
context::Context,
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
values::{IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
use crate::{
codegen::{
types::structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
values::{ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
item: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ListStructFields<'ctx> {
/// Array pointer to content.
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub items: StructField<'ctx, PointerValue<'ctx>>,
/// Number of items in the array.
#[value_type(usize)]
pub len: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> ListStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ListStructFields {
items: StructField::create(
&mut counter,
"items",
item.ptr_type(AddressSpace::default()),
),
len: StructField::create(&mut counter, "len", llvm_usize),
}
}
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_list_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_list_ty) = llvm_list_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_list_ty}"));
};
if llvm_list_ty.count_fields() != 2 {
return Err(format!(
"Expected 2 fields in `list`, got {}",
llvm_list_ty.count_fields()
));
}
let ctx = llvm_ty.get_context();
let list_size_ty = llvm_list_ty.get_field_type_at_index(0).unwrap();
let Ok(_) = PointerType::try_from(list_size_ty) else {
return Err(format!("Expected pointer type for `list.0`, got {list_size_ty}"));
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
};
let list_data_ty = llvm_list_ty.get_field_type_at_index(1).unwrap();
let Ok(list_data_ty) = IntType::try_from(list_data_ty) else {
return Err(format!("Expected int type for `list.1`, got {list_data_ty}"));
};
if list_data_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `list.1`, got {}-bit int",
llvm_usize.get_bit_width(),
list_data_ty.get_bit_width()
));
}
let fields = ListStructFields::new(ctx, llvm_usize);
Ok(())
check_struct_type_matches_fields(
fields,
llvm_ty,
"list",
&[(fields.items.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `list.items`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
ListStructFields::new_typed(item, llvm_usize)
}
/// See [`ListType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
// struct List { data: T*, size: size_t }
let field_tys = [element_type.ptr_type(AddressSpace::default()).into(), llvm_usize.into()];
let element_type = element_type.unwrap_or(llvm_usize.into());
let field_tys =
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
@ -76,9 +120,50 @@ impl<'ctx> ListType<'ctx> {
element_type: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
let llvm_list = Self::llvm_type(ctx, Some(element_type), llvm_usize);
ListType::from_type(llvm_list, llvm_usize)
Self { ty: llvm_list, item: Some(element_type), llvm_usize }
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, None, llvm_usize);
Self { ty: llvm_list, item: None, llvm_usize }
}
/// Creates an [`ListType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
// Check unifier type and extract `item_type`
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty
}
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
};
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
None
} else {
Some(ctx.get_llvm_type(generator, elem_type))
};
Self {
ty: Self::llvm_type(ctx.ctx, llvm_elem_type, llvm_usize),
item: llvm_elem_type,
llvm_usize,
}
}
/// Creates an [`ListType`] from a [`PointerType`].
@ -86,47 +171,141 @@ impl<'ctx> ListType<'ctx> {
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
ListType { ty: ptr_ty, llvm_usize }
let ctx = ptr_ty.get_context();
// We are just searching for the index off a field - Slot an arbitrary element type in.
let item_field_idx =
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
let item = unsafe {
ptr_ty
.get_element_type()
.into_struct_type()
.get_field_type_at_index_unchecked(item_field_idx)
.into_pointer_type()
.get_element_type()
};
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
panic!(
"Expected BasicTypeEnum for list element type, got {}",
ptr_ty.get_element_type().print_to_string()
)
});
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
self.llvm_usize
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> AnyTypeEnum<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
self.item
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
///
/// The returned list will contain:
///
/// - `data`: Allocated with `len` number of elements.
/// - `len`: Initialized to the value of `len` passed to this function.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
// Generate a runtime assertion if allocating a non-empty list with unknown element type
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
let len_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
len_eqz,
"0:AssertionError",
"Cannot allocate a non-empty list with unknown element type",
[None, None, None],
ctx.current_loc,
);
}
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, len);
let item = self.item.unwrap_or(self.llvm_usize.into());
plist.create_data(ctx, item, None);
plist
}
/// Convenience function for creating a list with zero elements.
///
/// This function is preferred over [`ListType::construct`] if the length is known to always be
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
/// list is being allocated.
///
/// The returned list will contain:
///
/// - `data`: Initialized to `(T*) 0`.
/// - `len`: Initialized to `0`.
#[must_use]
pub fn construct_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, self.llvm_usize.const_zero());
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
plist
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
@ -162,36 +341,8 @@ impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -16,7 +16,11 @@
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated
//! on the stack.
use inkwell::{context::Context, types::BasicType, values::IntValue};
use inkwell::{
context::Context,
types::BasicType,
values::{IntValue, PointerValue},
};
use super::{
values::{ArraySliceValue, ProxyValue},
@ -24,11 +28,13 @@ use super::{
};
pub use list::*;
pub use range::*;
pub use tuple::*;
mod list;
pub mod ndarray;
mod range;
pub mod structure;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a corresponding type in NAC3.
@ -53,23 +59,66 @@ pub trait ProxyType<'ctx>: Into<Self::Base> {
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Creates a new value of this type, returning the LLVM instance of this value.
fn raw_alloca<G: CodeGenerator + ?Sized>(
/// Returns the type that should be used in `alloca` IR statements.
fn alloca_type(&self) -> impl BasicType<'ctx>;
/// Creates a new value of this type by invoking `alloca` at the current builder location,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
.unwrap()
}
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base;
) -> PointerValue<'ctx> {
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
}
/// Creates a new array value of this type, returning an [`ArraySliceValue`] encapsulating the
/// resulting array.
fn array_alloca<G: CodeGenerator + ?Sized>(
/// Creates a new array value of this type by invoking `alloca` at the current builder location,
/// returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
ctx.builder
.build_array_alloca(
self.alloca_type().as_basic_type_enum(),
size,
name.unwrap_or_default(),
)
.unwrap(),
size,
name,
)
}
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx>;
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
.unwrap()
}
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;

View File

@ -0,0 +1,243 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::{
codegen::{
irrt,
stmt::gen_if_else_expr_callback,
types::{ndarray::NDArrayType, ListType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
list_ty: Type,
) -> (BasicTypeEnum<'ctx>, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
(ctx.get_llvm_type(generator, dtype), ndims)
}
impl<'ctx> NDArrayType<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
assert!(self.ndims >= ndims_int);
assert_eq!(dtype, self.dtype);
let list_value = list.as_i8_list(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = self.llvm_usize.const_int(ndims_int, false);
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
let shape = TypedArrayLikeAdapter::from(
shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, &shape,
);
let ndarray = Self::new(generator, ctx.ctx, dtype, ndims_int)
.construct_uninitialized(generator, ctx, name);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
// Copy all contents from the list.
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(
generator, ctx, list_value, ndarray,
);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
if ndims == 1 {
// `list` is not nested
assert_eq!(ndims, 1);
assert!(self.ndims >= ndims);
assert_eq!(dtype, self.dtype);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let ndarray = Self::new(generator, ctx.ctx, dtype, 1)
.construct_uninitialized(generator, ctx, name);
// Set data
let data = ctx
.builder
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
.unwrap();
ndarray.store_data(ctx, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.shape();
let list_len = list.load_size(ctx, None);
unsafe {
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
}
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
NDArrayType::new(generator, ctx.ctx, dtype, ndims).map_value(ndarray, None)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(ndarray.get_type().dtype, self.dtype);
assert!(self.ndims >= ndarray.get_type().ndims);
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.as_base_value()))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ndarray.get_type().map_value(ndarray_val, name)
}
/// Create a new ndarray like
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
///
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
/// with the exact number of dimensions is needed.
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
match &*ctx.unifier.get_ty_immutable(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
}
}
}

View File

@ -0,0 +1,176 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{ndarray::ShapeEntryValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ShapeEntryType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ShapeEntryStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ShapeEntryType<'ctx> {
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!(
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ShapeEntryStructFields<'ctx> {
ShapeEntryStructFields::new(ctx, llvm_usize)
}
/// See [`ShapeEntryStructFields::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ShapeEntryType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ty, llvm_usize }
}
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ShapeEntryValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ShapeEntryValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
fn from(value: ShapeEntryType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -16,7 +16,7 @@ use crate::{
},
ProxyType,
},
values::{ndarray::ContiguousNDArrayValue, ArraySliceValue, ProxyValue},
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
toplevel::numpy::unpack_ndarray_var_tys,
@ -31,7 +31,7 @@ pub struct ContiguousNDArrayType<'ctx> {
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ContiguousNDArrayFields<'ctx> {
pub struct ContiguousNDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
@ -40,12 +40,12 @@ pub struct ContiguousNDArrayFields<'ctx> {
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ContiguousNDArrayFields<'ctx> {
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ContiguousNDArrayFields {
ContiguousNDArrayStructFields {
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
shape: StructField::create(
&mut counter,
@ -72,7 +72,7 @@ impl<'ctx> ContiguousNDArrayType<'ctx> {
));
};
let fields = ContiguousNDArrayFields::new(ctx, llvm_usize);
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
@ -93,14 +93,14 @@ impl<'ctx> ContiguousNDArrayType<'ctx> {
fn fields(
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ContiguousNDArrayFields<'ctx> {
ContiguousNDArrayFields::new_typed(item, llvm_usize)
) -> ContiguousNDArrayStructFields<'ctx> {
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> ContiguousNDArrayFields<'ctx> {
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
Self::fields(self.item, self.llvm_usize)
}
@ -157,16 +157,37 @@ impl<'ctx> ContiguousNDArrayType<'ctx> {
Self { ty: ptr_ty, item, llvm_usize }
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base type.
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
self.item,
self.llvm_usize,
name,
@ -213,36 +234,8 @@ impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -0,0 +1,236 @@
use inkwell::{
values::{BasicValueEnum, IntValue},
IntPredicate,
};
use super::NDArrayType;
use crate::{
codegen::{
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayType<'ctx> {
/// Create an ndarray like
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, name);
// Validate `shape`
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
ndarray
}
/// Create an ndarray like
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
fill_value: BasicValueEnum<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_zero_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_one_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
#[allow(clippy::too_many_arguments)]
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
assert_eq!(nrows.get_type(), self.llvm_usize);
assert_eq!(ncols.get_type(), self.llvm_usize);
assert_eq!(offset.get_type(), self.llvm_usize);
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
// Create data and make the matrix like look np.eye()
unsafe {
ndarray.create_data(generator, ctx);
}
ndarray
.foreach(generator, ctx, |generator, ctx, _, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
let indices = nditer.get_indices();
let row_i = unsafe {
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
};
let col_i = unsafe {
indices.get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(1, false),
None,
)
};
let be_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
col_i,
"",
)
.unwrap();
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let offset = self.llvm_usize.const_zero();
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
}
}

View File

@ -90,15 +90,33 @@ impl<'ctx> NDIndexType<'ctx> {
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
@ -114,7 +132,7 @@ impl<'ctx> NDIndexType<'ctx> {
) -> ArraySliceValue<'ctx> {
// Allocate the LLVM ndindices.
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
let ndindices = self.array_alloca(generator, ctx, num_ndindices, None);
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
@ -171,36 +189,8 @@ impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -0,0 +1,187 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use itertools::Itertools;
use crate::codegen::{
stmt::gen_for_callback,
types::{
ndarray::{NDArrayType, NDIterType},
ProxyType,
},
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ArrayLikeValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayType<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
/// elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
/// result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing
/// ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[NDArrayValue<'ctx>],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayType::new(generator, ctx.ctx, dtype, broadcast_result.ndims)
.construct_uninitialized(generator, ctx, None);
result_ndarray.copy_shape_from_array(
generator,
ctx,
broadcast_result.shape.base_ptr(ctx, generator),
);
unsafe {
result_ndarray.create_data(generator, ctx);
}
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| {
NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *ndarray)
})
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(generator, ctx))
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars =
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
/// scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
/// or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following
/// behaviors:
///
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
/// converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
/// ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: BasicTypeEnum<'ctx>,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> =
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().copied().collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(value))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayType::new_broadcast(
generator,
ctx.ctx,
ret_dtype,
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
)
.broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
}

View File

@ -14,18 +14,23 @@ use super::{
};
use crate::{
codegen::{
values::{ndarray::NDArrayValue, ArraySliceValue, ProxyValue, TypedArrayLikeMutator},
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
{CodeGenContext, CodeGenerator},
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
mod array;
mod broadcast;
mod contiguous;
pub mod factory;
mod indexing;
mod map;
mod nditer;
/// Proxy type for a `ndarray` type in LLVM.
@ -33,7 +38,7 @@ mod nditer;
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
ndims: u64,
llvm_usize: IntType<'ctx>,
}
@ -108,7 +113,7 @@ impl<'ctx> NDArrayType<'ctx> {
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
ndims: u64,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
@ -116,6 +121,20 @@ impl<'ctx> NDArrayType<'ctx> {
NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
}
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
/// `ndarray` operands.
#[must_use]
pub fn new_broadcast<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
inputs: &[NDArrayType<'ctx>],
) -> Self {
assert!(!inputs.is_empty());
Self::new(generator, ctx, dtype, inputs.iter().map(NDArrayType::ndims).max().unwrap())
}
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
#[must_use]
pub fn new_unsized<G: CodeGenerator + ?Sized>(
@ -126,7 +145,7 @@ impl<'ctx> NDArrayType<'ctx> {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims: Some(0), llvm_usize }
NDArrayType { ty: llvm_ndarray, dtype, ndims: 0, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [unifier type][Type].
@ -145,7 +164,7 @@ impl<'ctx> NDArrayType<'ctx> {
NDArrayType {
ty: Self::llvm_type(ctx.ctx, llvm_usize),
dtype: llvm_dtype,
ndims: Some(ndims),
ndims,
llvm_usize,
}
}
@ -155,7 +174,7 @@ impl<'ctx> NDArrayType<'ctx> {
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
ndims: u64,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
@ -177,20 +196,40 @@ impl<'ctx> NDArrayType<'ctx> {
/// Returns the number of dimensions of this `ndarray` type.
#[must_use]
pub fn ndims(&self) -> Option<u64> {
pub fn ndims(&self) -> u64 {
self.ndims
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
@ -214,7 +253,7 @@ impl<'ctx> NDArrayType<'ctx> {
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.alloca(generator, ctx, name);
let ndarray = self.alloca_var(generator, ctx, name);
let itemsize = ctx
.builder
@ -247,35 +286,7 @@ impl<'ctx> NDArrayType<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert!(self.ndims.is_some(), "NDArrayType::construct can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
let Some(ndims) = self.ndims.map(|ndims| self.llvm_usize.const_int(ndims, false)) else {
unreachable!()
};
self.construct_impl(generator, ctx, ndims, name)
}
/// Allocate an [`NDArrayValue`] on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated onto the stack.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
#[deprecated = "Prefer construct_uninitialized or construct_*_shape."]
#[must_use]
pub fn construct_dyn_ndims<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert!(self.ndims.is_none(), "NDArrayType::construct_dyn_ndims can only be called on an instance with compile-time unknown ndims (self.ndims = None)");
let ndims = self.llvm_usize.const_int(self.ndims, false);
self.construct_impl(generator, ctx, ndims, name)
}
@ -291,9 +302,9 @@ impl<'ctx> NDArrayType<'ctx> {
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert!(self.ndims.is_none_or(|ndims| shape.len() as u64 == ndims));
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, Some(shape.len() as u64))
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
@ -326,9 +337,9 @@ impl<'ctx> NDArrayType<'ctx> {
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert!(self.ndims.is_none_or(|ndims| shape.len() as u64 == ndims));
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, Some(shape.len() as u64))
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
@ -368,7 +379,7 @@ impl<'ctx> NDArrayType<'ctx> {
let value = value.as_basic_value_enum();
assert_eq!(value.get_type(), self.dtype);
assert!(self.ndims.is_none_or(|ndims| ndims == 0));
assert_eq!(self.ndims, 0);
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
@ -425,36 +436,8 @@ impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -14,7 +14,7 @@ use crate::codegen::{
types::structure::{check_struct_type_matches_fields, StructField, StructFields},
values::{
ndarray::{NDArrayValue, NDIterValue},
ArraySliceValue, ProxyValue,
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAdapter,
},
CodeGenContext, CodeGenerator,
};
@ -109,8 +109,31 @@ impl<'ctx> NDIterType<'ctx> {
self.llvm_usize
}
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
parent,
indices,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -119,7 +142,7 @@ impl<'ctx> NDIterType<'ctx> {
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
parent,
indices,
self.llvm_usize,
@ -128,6 +151,11 @@ impl<'ctx> NDIterType<'ctx> {
}
/// Allocate an [`NDIter`] that iterates through the given `ndarray`.
///
/// Note: This function allocates an array on the stack at the current builder location, which
/// may lead to stack explosion if called in a hot loop. Therefore, callers are recommended to
/// call `llvm.stacksave` before calling this function and call `llvm.stackrestore` after the
/// [`NDIter`] is no longer needed.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
@ -135,22 +163,18 @@ impl<'ctx> NDIterType<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> <Self as ProxyType<'ctx>>::Value {
let nditer = self.raw_alloca(generator, ctx, None);
let ndims = ndarray.load_ndims(ctx);
let nditer = self.raw_alloca_var(generator, ctx, None);
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims(), false);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices =
generator.gen_array_var_alloc(ctx, self.llvm_usize.into(), ndims, None).unwrap();
let indices =
TypedArrayLikeAdapter::from(indices, |_, _, v| v.into_int_value(), |_, _, v| v.into());
let nditer = <Self as ProxyType<'ctx>>::Value::from_pointer_value(
nditer,
ndarray,
indices,
self.llvm_usize,
None,
);
let nditer = self.map_value(nditer, ndarray, indices.as_slice_value(ctx, generator), None);
irrt::ndarray::call_nac3_nditer_initialize(generator, ctx, nditer, ndarray, indices);
irrt::ndarray::call_nac3_nditer_initialize(generator, ctx, nditer, ndarray, &indices);
nditer
}
@ -197,36 +221,8 @@ impl<'ctx> ProxyType<'ctx> for NDIterType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -1,13 +1,12 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ProxyValue, RangeValue},
values::{ProxyValue, RangeValue},
{CodeGenContext, CodeGenerator},
};
@ -78,15 +77,29 @@ impl<'ctx> RangeType<'ctx> {
}
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(self.raw_alloca(ctx, name), name)
}
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
name,
)
}
@ -126,36 +139,8 @@ impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
Self::is_representable(llvm_ty)
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -5,6 +5,7 @@ use inkwell::{
types::{BasicTypeEnum, IntType, StructType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
};
use itertools::Itertools;
use crate::codegen::CodeGenContext;
@ -55,6 +56,20 @@ pub trait StructFields<'ctx>: Eq + Copy {
{
self.into_vec().into_iter()
}
/// Returns the field index of a field in this structure.
fn index_of_field<V>(&self, name: impl FnOnce(&Self) -> StructField<'ctx, V>) -> u32
where
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
let field_name = name(self).name;
self.index_of_field_name(field_name).unwrap()
}
/// Returns the field index of a field with the given name in this structure.
fn index_of_field_name(&self, field_name: &str) -> Option<u32> {
self.iter().find_position(|(name, _)| *name == field_name).map(|(idx, _)| idx as u32)
}
}
/// A single field of an LLVM structure.

View File

@ -0,0 +1,184 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, IntType, StructType},
values::BasicValueEnum,
};
use itertools::Itertools;
use super::ProxyType;
use crate::{
codegen::{
values::{ProxyValue, TupleValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct TupleType<'ctx> {
ty: StructType<'ctx>,
llvm_usize: IntType<'ctx>,
}
impl<'ctx> TupleType<'ctx> {
/// Checks whether `llvm_ty` represents any tuple type, returning [Err] if it does not.
pub fn is_representable(_value: StructType<'ctx>) -> Result<(), String> {
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a tuple.
#[must_use]
fn llvm_type(ctx: &'ctx Context, tys: &[BasicTypeEnum<'ctx>]) -> StructType<'ctx> {
ctx.struct_type(tys, false)
}
/// Creates an instance of [`TupleType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
tys: &[BasicTypeEnum<'ctx>],
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_tuple = Self::llvm_type(ctx, tys);
Self { ty: llvm_tuple, llvm_usize }
}
/// Creates an [`TupleType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let llvm_usize = generator.get_size_type(ctx.ctx);
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty_immutable(ty) else {
panic!("Expected type to be a TypeEnum::TTuple, got {}", ctx.unifier.stringify(ty));
};
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
Self { ty: Self::llvm_type(ctx.ctx, &llvm_tys), llvm_usize }
}
/// Creates an [`TupleType`] from a [`StructType`].
#[must_use]
pub fn from_type(struct_ty: StructType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(struct_ty).is_ok());
TupleType { ty: struct_ty, llvm_usize }
}
/// Returns the number of elements present in this [`TupleType`].
#[must_use]
pub fn num_elements(&self) -> u32 {
self.ty.count_fields()
}
/// Returns the type of the tuple element at the given `index`, or [`None`] if `index` is out of
/// range.
#[must_use]
pub fn type_at_index(&self, index: u32) -> Option<BasicTypeEnum<'ctx>> {
if index < self.num_elements() {
Some(unsafe { self.type_at_index_unchecked(index) })
} else {
None
}
}
/// Returns the type of the tuple element at the given `index`.
///
/// # Safety
///
/// The caller must ensure that the index is valid.
#[must_use]
pub unsafe fn type_at_index_unchecked(&self, index: u32) -> BasicTypeEnum<'ctx> {
self.ty.get_field_type_at_index_unchecked(index)
}
/// Constructs a [`TupleValue`] from this type by zero-initializing the tuple value.
#[must_use]
pub fn construct(
&self,
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
self.map_value(Self::llvm_type(ctx.ctx, &self.ty.get_field_types()).const_zero(), name)
}
/// Constructs a [`TupleValue`] from `objects`. The resulting tuple preserves the order of
/// objects.
#[must_use]
pub fn construct_from_objects<I: IntoIterator<Item = BasicValueEnum<'ctx>>>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
objects: I,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let values = objects.into_iter().collect_vec();
assert_eq!(values.len(), self.num_elements() as usize);
assert!(values
.iter()
.enumerate()
.all(|(i, v)| { v.get_type() == unsafe { self.type_at_index_unchecked(i as u32) } }));
let mut value = self.construct(ctx, name);
for (i, val) in values.into_iter().enumerate() {
value.store_element(ctx, i as u32, val);
}
value
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_struct_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for TupleType<'ctx> {
type Base = StructType<'ctx>;
type Value = TupleValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::StructType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected struct type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_generator: &G,
_ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<TupleType<'ctx>> for StructType<'ctx> {
fn from(value: TupleType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -15,7 +15,7 @@ use crate::codegen::{
},
ProxyType,
},
values::{utils::SliceValue, ArraySliceValue, ProxyValue},
values::{utils::SliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
@ -154,16 +154,35 @@ impl<'ctx> SliceType<'ctx> {
self.int_ty
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base type.
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.int_ty,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name),
self.raw_alloca_var(generator, ctx, name),
self.int_ty,
self.llvm_usize,
name,
@ -210,36 +229,8 @@ impl<'ctx> ProxyType<'ctx> for SliceType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn raw_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {

View File

@ -51,8 +51,8 @@ pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
/// This function should be called with a valid index.
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
@ -76,8 +76,8 @@ pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
/// This function should be called with a valid index.
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
@ -107,8 +107,8 @@ pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
/// This function should be called with a valid index.
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
@ -130,32 +130,33 @@ pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
}
/// An array-like value that can have its array elements accessed as an arbitrary type `T`.
pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>:
pub trait TypedArrayLikeAccessor<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
UntypedArrayLikeAccessor<'ctx, Index>
{
/// Casts an element from [`BasicValueEnum`] into `T`.
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: BasicValueEnum<'ctx>,
) -> T;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_typed_unchecked<G: CodeGenerator + ?Sized>(
unsafe fn get_typed_unchecked(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
self.downcast_to_type(ctx, value)
self.downcast_to_type(ctx, generator, value)
}
/// Returns the data at the `idx`-th index.
fn get_typed<G: CodeGenerator + ?Sized>(
fn get_typed(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
@ -163,62 +164,63 @@ pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>:
name: Option<&str>,
) -> T {
let value = self.get(ctx, generator, idx, name);
self.downcast_to_type(ctx, value)
self.downcast_to_type(ctx, generator, value)
}
}
/// An array-like value that can have its array elements mutated as an arbitrary type `T`.
pub trait TypedArrayLikeMutator<'ctx, T, Index = IntValue<'ctx>>:
pub trait TypedArrayLikeMutator<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
UntypedArrayLikeMutator<'ctx, Index>
{
/// Casts an element from T into [`BasicValueEnum`].
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: T,
) -> BasicValueEnum<'ctx>;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_typed_unchecked<G: CodeGenerator + ?Sized>(
unsafe fn set_typed_unchecked(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
let value = self.upcast_from_type(ctx, generator, value);
unsafe { self.set_unchecked(ctx, generator, idx, value) }
}
/// Sets the data at the `idx`-th index.
fn set_typed<G: CodeGenerator + ?Sized>(
fn set_typed(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
let value = self.upcast_from_type(ctx, generator, value);
self.set(ctx, generator, idx, value);
}
}
/// Type alias for a function that casts a [`BasicValueEnum`] into a `T`.
type ValueDowncastFn<'ctx, T> =
Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, BasicValueEnum<'ctx>) -> T + 'ctx>;
/// Type alias for a function that casts a `T` into a [`BasicValueEnum`].
type ValueUpcastFn<'ctx, T> = Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, T) -> BasicValueEnum<'ctx>>;
/// An adapter for constraining untyped array values as typed values.
pub struct TypedArrayLikeAdapter<'ctx, T, Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>> {
#[derive(Copy, Clone)]
pub struct TypedArrayLikeAdapter<
'ctx,
G: CodeGenerator + ?Sized,
T,
Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>,
> {
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
}
impl<'ctx, T, Adapted> TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
@ -229,61 +231,70 @@ where
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
pub fn from(
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
) -> Self {
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
}
}
impl<'ctx, T, Adapted> ArrayLikeValue<'ctx> for TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> ArrayLikeValue<'ctx>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
fn element_type<G: CodeGenerator + ?Sized>(
fn element_type<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
generator: &CG,
) -> AnyTypeEnum<'ctx> {
self.adapted.element_type(ctx, generator)
}
fn base_ptr<G: CodeGenerator + ?Sized>(
fn base_ptr<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
generator: &CG,
) -> PointerValue<'ctx> {
self.adapted.base_ptr(ctx, generator)
}
fn size<G: CodeGenerator + ?Sized>(
fn size<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
generator: &CG,
) -> IntValue<'ctx> {
self.adapted.size(ctx, generator)
}
fn as_slice_value<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
) -> ArraySliceValue<'ctx> {
self.adapted.as_slice_value(ctx, generator)
}
}
impl<'ctx, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: ArrayLikeIndexer<'ctx, Index>,
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
unsafe fn ptr_offset_unchecked<CG: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
fn ptr_offset<CG: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
generator: &mut CG,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
@ -291,44 +302,46 @@ where
}
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, G, T, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: BasicValueEnum<'ctx>,
) -> T {
(self.downcast_fn)(ctx, value)
(self.downcast_fn)(ctx, generator, value)
}
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeMutator<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeMutator<'ctx, G, T, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: T,
) -> BasicValueEnum<'ctx> {
(self.upcast_fn)(ctx, value)
(self.upcast_fn)(ctx, generator, value)
}
}
@ -384,12 +397,12 @@ impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
let var_name = name.or(self.2).map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder

View File

@ -8,7 +8,7 @@ use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
types::ListType,
types::{structure::StructField, ListType, ProxyType},
{CodeGenContext, CodeGenerator},
};
@ -42,48 +42,26 @@ impl<'ctx> ListValue<'ctx> {
ListValue { value: ptr, llvm_usize, name }
}
fn items_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).items
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
var_name.as_str(),
)
.unwrap()
}
}
/// Returns the pointer to the field storing the size of this `list`.
fn ptr_to_size(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.size.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
var_name.as_str(),
)
.unwrap()
}
self.items_field(ctx).ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
ctx.builder.build_store(self.pptr_to_data(ctx), data).unwrap();
self.items_field(ctx).set(ctx, self.value, data, self.name);
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
///
/// If `size` is [None], the size stored in the field of this instance is used instead.
/// If `size` is [None], the size stored in the field of this instance is used instead. If
/// `size` is resolved to `0` at runtime, `(T*) 0` will be assigned to `data`.
pub fn create_data(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -114,6 +92,10 @@ impl<'ctx> ListValue<'ctx> {
ListDataProxy(self)
}
fn len_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).len
}
/// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>(
&self,
@ -123,22 +105,33 @@ impl<'ctx> ListValue<'ctx> {
) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
let psize = self.ptr_to_size(ctx);
ctx.builder.build_store(psize, size).unwrap();
self.len_field(ctx).set(ctx, self.value, size, self.name);
}
/// Returns the size of this `list` as a value.
pub fn load_size(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let psize = self.ptr_to_size(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.size")))
.unwrap_or_default();
pub fn load_size(
&self,
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> IntValue<'ctx> {
self.len_field(ctx).get(ctx, self.value, name)
}
ctx.builder
.build_load(psize, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
/// Returns an instance of [`ListValue`] with the `items` pointer cast to `i8*`.
#[must_use]
pub fn as_i8_list<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> ListValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_list_i8 = <Self as ProxyValue>::Type::new(generator, ctx.ctx, llvm_i8.into());
Self::from_pointer_value(
ctx.builder.build_pointer_cast(self.value, llvm_list_i8.as_base_type(), "").unwrap(),
self.llvm_usize,
self.name,
)
}
}
@ -199,8 +192,8 @@ impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {

View File

@ -5,11 +5,13 @@ use crate::codegen::CodeGenerator;
pub use array::*;
pub use list::*;
pub use range::*;
pub use tuple::*;
mod array;
mod list;
pub mod ndarray;
mod range;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a non-primitive value in NAC3.

View File

@ -0,0 +1,243 @@
use inkwell::{
types::IntType,
values::{IntValue, PointerValue},
};
use itertools::Itertools;
use crate::codegen::{
irrt,
types::{
ndarray::{NDArrayType, ShapeEntryType},
structure::StructField,
ProxyType,
},
values::{
ndarray::NDArrayValue, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ProxyValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct ShapeEntryValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ShapeEntryValue<'ctx> {
/// Checks whether `value` is an instance of `ShapeEntry`, returning [Err] if `value` is
/// not an instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ShapeEntryValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, llvm_usize, name }
}
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(self.value.get_type().get_context()).ndims
}
/// Stores the number of dimensions into this value.
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.ndims_field().set(ctx, self.value, value, self.name);
}
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(self.value.get_type().get_context()).shape
}
/// Stores the shape into this value.
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.shape_field().set(ctx, self.value, value, self.name);
}
}
impl<'ctx> ProxyValue<'ctx> for ShapeEntryValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ShapeEntryType<'ctx>;
fn get_type(&self) -> Self::Type {
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ShapeEntryValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ShapeEntryValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> Self {
assert!(self.ndims <= target_ndims);
assert_eq!(target_shape.element_type(ctx, generator), self.llvm_usize.into());
let broadcast_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, target_ndims)
.construct_uninitialized(generator, ctx, None);
broadcast_ndarray.copy_shape_from_array(
generator,
ctx,
target_shape.base_ptr(ctx, generator),
);
irrt::ndarray::call_nac3_ndarray_broadcast_to(generator, ctx, *self, broadcast_ndarray);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Clone)]
pub struct BroadcastAllResult<'ctx, G: CodeGenerator + ?Sized> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayValue<'ctx>>,
}
/// Helper function to call [`irrt::ndarray::call_nac3_ndarray_broadcast_shapes`].
fn broadcast_shapes<'ctx, G, Shape>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_shape_entries: &[(ArraySliceValue<'ctx>, u64)], // (shape, shape's length/ndims)
broadcast_ndims: u64,
broadcast_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_shape_ty = ShapeEntryType::new(generator, ctx.ctx);
assert!(in_shape_entries
.iter()
.all(|entry| entry.0.element_type(ctx, generator) == llvm_usize.into()));
assert_eq!(broadcast_shape.element_type(ctx, generator), llvm_usize.into());
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
llvm_usize.const_int(u64::try_from(in_shape_entries.len()).unwrap(), false);
let shape_entries = llvm_shape_ty.array_alloca(ctx, num_shape_entries, None);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = unsafe {
shape_entries.ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
None,
)
};
let shape_entry = llvm_shape_ty.map_value(pshape_entry, None);
let in_ndims = llvm_usize.const_int(*in_ndims, false);
shape_entry.store_ndims(ctx, in_ndims);
shape_entry.store_shape(ctx, in_shape.base_ptr(ctx, generator));
}
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims, false);
irrt::ndarray::call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayType<'ctx> {
/// Broadcast all ndarrays according to
/// [`np.broadcast()`](https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html)
/// and return a [`BroadcastAllResult`] containing all the information of the result of the
/// broadcast operation.
pub fn broadcast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[NDArrayValue<'ctx>],
) -> BroadcastAllResult<'ctx, G> {
assert!(!ndarrays.is_empty());
let llvm_usize = generator.get_size_type(ctx.ctx);
// Infer the broadcast output ndims.
let broadcast_ndims_int =
ndarrays.iter().map(|ndarray| ndarray.get_type().ndims()).max().unwrap();
assert!(self.ndims() >= broadcast_ndims_int);
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims_int, false);
let broadcast_shape = ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, broadcast_ndims, "").unwrap(),
broadcast_ndims,
None,
);
let broadcast_shape = TypedArrayLikeAdapter::from(
broadcast_shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let shape_entries = ndarrays
.iter()
.map(|ndarray| {
(ndarray.shape().as_slice_value(ctx, generator), ndarray.get_type().ndims())
})
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, &broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, &broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -118,12 +118,10 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ContiguousNDArrayValue<'ctx> {
let result = ContiguousNDArrayType::new(generator, ctx.ctx, self.dtype)
.alloca(generator, ctx, self.name);
.alloca_var(generator, ctx, self.name);
// Set ndims and shape.
let ndims = self
.ndims
.map_or_else(|| self.load_ndims(ctx), |ndims| self.llvm_usize.const_int(ndims, false));
let ndims = self.llvm_usize.const_int(self.ndims, false);
result.store_ndims(ctx, ndims);
let shape = self.shape();
@ -180,7 +178,7 @@ impl<'ctx> NDArrayValue<'ctx> {
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
// Allocate the resulting ndarray.
let ndarray = NDArrayType::new(generator, ctx.ctx, carray.item, Some(ndims))
let ndarray = NDArrayType::new(generator, ctx.ctx, carray.item, ndims)
.construct_uninitialized(generator, ctx, carray.name);
// Copy shape and update strides

View File

@ -98,8 +98,8 @@ impl<'ctx> From<NDIndexValue<'ctx>> for PointerValue<'ctx> {
impl<'ctx> NDArrayValue<'ctx> {
/// Get the expected `ndims` after indexing with `indices`.
#[must_use]
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> Option<u64> {
let mut ndims = self.ndims?;
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
@ -113,7 +113,7 @@ impl<'ctx> NDArrayValue<'ctx> {
}
}
Some(ndims)
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
@ -127,8 +127,6 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
assert!(self.ndims.is_some(), "NDArrayValue::index is only supported for instances with compile-time known ndims (self.ndims = Some(...))");
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, dst_ndims)
.construct_uninitialized(generator, ctx, None);
@ -248,7 +246,7 @@ impl<'ctx> RustNDIndex<'ctx> {
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr =
SliceType::new(ctx.ctx, ctx.ctx.i32_type(), generator.get_size_type(ctx.ctx))
.alloca(generator, ctx, None);
.alloca_var(generator, ctx, None);
in_rust_slice.write_to_slice(ctx, user_slice_ptr);
dst_ndindex.store_data(

View File

@ -0,0 +1,69 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use crate::codegen::{
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayValue<'ctx> {
/// Map through this ndarray with an elementwise function.
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
self.get_type().broadcast_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
///
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a
/// [`ScalarOrNDArray::Scalar`] of that result.
///
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new
/// ndarray of the results will be created and returned as a [`ScalarOrNDArray::NDArray`].
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: BasicTypeEnum<'ctx>,
mapping: Mapping,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -0,0 +1,323 @@
use std::cmp::max;
use nac3parser::ast::Operator;
use super::{NDArrayOut, NDArrayValue, RustNDIndex};
use crate::{
codegen::{
expr::gen_binop_expr_with_values,
irrt,
stmt::gen_for_callback_incrementing,
types::ndarray::NDArrayType,
values::{
ArrayLikeValue, ArraySliceValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::arraylike_flatten_element_type,
typecheck::{magic_methods::Binop, typedef::Type},
};
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_dtype: Type,
(in_a_ty, in_a): (Type, NDArrayValue<'ctx>),
(in_b_ty, in_b): (Type, NDArrayValue<'ctx>),
) -> NDArrayValue<'ctx> {
assert!(in_a.ndims >= 2, "in_a (which is {}) must be >= 2", in_a.ndims);
assert!(in_b.ndims >= 2, "in_b (which is {}) must be >= 2", in_b.ndims);
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_a_ty);
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_b_ty);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_dst_dtype = ctx.get_llvm_type(generator, dst_dtype);
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = llvm_usize.const_int(ndims_int, false);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
let (lhs, rhs, dst) = {
let in_lhs_ndims = llvm_usize.const_int(in_a.ndims, false);
let in_lhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
in_a.shape().base_ptr(ctx, generator),
in_lhs_ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let in_rhs_ndims = llvm_usize.const_int(in_b.ndims, false);
let in_rhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
in_b.shape().base_ptr(ctx, generator),
in_rhs_ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let lhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let rhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let dst_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
// Matmul dimension compatibility is checked here.
irrt::ndarray::call_nac3_ndarray_matmul_calculate_shapes(
generator,
ctx,
&in_lhs_shape,
&in_rhs_shape,
ndims,
&lhs_shape,
&rhs_shape,
&dst_shape,
);
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, &lhs_shape);
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, &rhs_shape);
let dst = NDArrayType::new(generator, ctx.ctx, llvm_dst_dtype, ndims_int)
.construct_uninitialized(generator, ctx, None);
dst.copy_shape_from_array(generator, ctx, dst_shape.base_ptr(ctx, generator));
unsafe {
dst.create_data(generator, ctx);
}
(lhs, rhs, dst)
};
let len = unsafe {
lhs.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(ndims_int - 1, false),
None,
)
};
let at_row = i64::try_from(ndims_int - 2).unwrap();
let at_col = i64::try_from(ndims_int - 1).unwrap();
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
let pdst_ij = hdl.get_pointer(ctx);
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
let indices = hdl.get_indices::<G>();
let i = unsafe {
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_row as u64, true), None)
};
let j = unsafe {
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_col as u64, true), None)
};
let num_0 = llvm_usize.const_int(0, false);
let num_1 = llvm_usize.const_int(1, false);
gen_for_callback_incrementing(
generator,
ctx,
None,
num_0,
(len, false),
|generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
i,
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
k.into(),
);
}
let a_ik = unsafe { lhs.data().get_unchecked(ctx, generator, &indices, None) };
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
k.into(),
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
j,
);
}
let b_kj = unsafe { rhs.data().get_unchecked(ctx, generator, &indices, None) };
// Restore `indices`.
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
i,
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
j,
);
}
// x = a_[...]ik * b_[...]kj
let x = gen_binop_expr_with_values(
generator,
ctx,
(&Some(lhs_dtype), a_ik),
Binop::normal(Operator::Mult),
(&Some(rhs_dtype), b_kj),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
// dst_[...]ij += x
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
let dst_ij = gen_binop_expr_with_values(
generator,
ctx,
(&Some(dst_dtype), dst_ij),
Binop::normal(Operator::Add),
(&Some(dst_dtype), x),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
Ok(())
},
num_1,
)
})
.unwrap();
dst
}
impl<'ctx> NDArrayValue<'ctx> {
/// Perform [`np.matmul`](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
///
/// This function always return an [`NDArrayValue`]. You may want to use
/// [`NDArrayValue::split_unsized`] to handle when the output could be a scalar.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
#[must_use]
pub fn matmul<G: CodeGenerator>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
self_ty: Type,
(other_ty, other): (Type, Self),
(out_dtype, out): (Type, NDArrayOut<'ctx>),
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(self.ndims > 0 && other.ndims > 0, "np.matmul disallows scalar input");
// If both arguments are 2-D they are multiplied like conventional matrices.
//
// If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the
// last two indices and broadcast accordingly.
//
// If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its
// dimensions. After matrix multiplication the prepended 1 is removed.
//
// If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its
// dimensions. After matrix multiplication the appended 1 is removed.
let new_a = if self.ndims == 1 {
// Prepend 1 to its dimensions
self.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
} else {
*self
};
let new_b = if other.ndims == 1 {
// Append 1 to its dimensions
other.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
} else {
other
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result =
matmul_at_least_2d(generator, ctx, out_dtype, (self_ty, new_a), (other_ty, new_b));
// Postprocessing on the result to remove prepended/appended axes.
let mut postindices = vec![];
let zero = ctx.ctx.i32_type().const_zero();
if self.ndims == 1 {
// Remove the prepended 1
postindices.push(RustNDIndex::SingleElement(zero));
}
if other.ndims == 1 {
// Remove the appended 1
postindices.push(RustNDIndex::Ellipsis);
postindices.push(RustNDIndex::SingleElement(zero));
}
if !postindices.is_empty() {
result = result.index(generator, ctx, &postindices);
}
match out {
NDArrayOut::NewNDArray { .. } => result,
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
let result_shape = result.shape();
out_ndarray.assert_can_be_written_by_out(generator, ctx, result_shape);
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

View File

@ -1,29 +1,40 @@
use std::iter::repeat_n;
use inkwell::{
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use itertools::Itertools;
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeMutator,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TupleValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, TypedArrayLikeMutator, UntypedArrayLikeAccessor,
UntypedArrayLikeMutator,
};
use crate::codegen::{
irrt,
llvm_intrinsics::{call_int_umin, call_memcpy_generic_array},
stmt::gen_for_callback_incrementing,
type_aligned_alloca,
types::{ndarray::NDArrayType, structure::StructField},
CodeGenContext, CodeGenerator,
use crate::{
codegen::{
irrt,
llvm_intrinsics::{call_int_umin, call_memcpy_generic_array},
stmt::gen_for_callback_incrementing,
type_aligned_alloca,
types::{ndarray::NDArrayType, structure::StructField, TupleType},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
pub use view::*;
mod broadcast;
mod contiguous;
mod indexing;
mod map;
mod matmul;
mod nditer;
pub mod shape;
mod view;
/// Proxy type for accessing an `NDArray` value in LLVM.
@ -31,7 +42,7 @@ mod view;
pub struct NDArrayValue<'ctx> {
value: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
ndims: u64,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
@ -51,7 +62,7 @@ impl<'ctx> NDArrayValue<'ctx> {
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: Option<u64>,
ndims: u64,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
@ -113,12 +124,6 @@ impl<'ctx> NDArrayValue<'ctx> {
self.get_type().get_fields(ctx.ctx).shape
}
/// Returns the double-indirection pointer to the `shape` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.shape_field(ctx).ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of dimension sizes `dims` into this instance.
fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
self.shape_field(ctx).set(ctx, self.as_base_value(), dims, self.name);
@ -147,12 +152,6 @@ impl<'ctx> NDArrayValue<'ctx> {
self.get_type().get_fields(ctx.ctx).strides
}
/// Returns the double-indirection pointer to the `strides` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_strides(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.strides_field(ctx).ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of stride sizes `strides` into this instance.
fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, strides: PointerValue<'ctx>) {
self.strides_field(ctx).set(ctx, self.as_base_value(), strides, self.name);
@ -185,7 +184,7 @@ impl<'ctx> NDArrayValue<'ctx> {
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
let data = ctx
.builder
.build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
@ -246,26 +245,7 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
if self.ndims.is_some() && src_ndarray.ndims.is_some() {
assert_eq!(self.ndims, src_ndarray.ndims);
} else {
let self_ndims = self.load_ndims(ctx);
let src_ndims = src_ndarray.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
self_ndims,
src_ndims,
""
).unwrap(),
"0:AssertionError",
"NDArrayValue::copy_shape_from_ndarray: Expected self.ndims ({0}) == src_ndarray.ndims ({1})",
[Some(self_ndims), Some(src_ndims), None],
ctx.current_loc
);
}
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.shape().base_ptr(ctx, generator);
self.copy_shape_from_array(generator, ctx, src_shape);
@ -297,26 +277,7 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
if self.ndims.is_some() && src_ndarray.ndims.is_some() {
assert_eq!(self.ndims, src_ndarray.ndims);
} else {
let self_ndims = self.load_ndims(ctx);
let src_ndims = src_ndarray.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
self_ndims,
src_ndims,
""
).unwrap(),
"0:AssertionError",
"NDArrayValue::copy_shape_from_ndarray: Expected self.ndims ({0}) == src_ndarray.ndims ({1})",
[Some(self_ndims), Some(src_ndims), None],
ctx.current_loc
);
}
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.strides().base_ptr(ctx, generator);
self.copy_strides_from_array(generator, ctx, src_strides);
@ -371,17 +332,17 @@ impl<'ctx> NDArrayValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_set_strides_by_shape(generator, ctx, *self);
}
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and
/// copy the contents over.
///
/// The new ndarray will own its data and will be C-contiguous.
#[must_use]
pub fn make_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
let clone = if self.ndims.is_some() {
self.get_type().construct_uninitialized(generator, ctx, None)
} else {
self.get_type().construct_dyn_ndims(generator, ctx, self.load_ndims(ctx), None)
};
let clone = self.get_type().construct_uninitialized(generator, ctx, None);
let shape = self.shape();
clone.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
@ -406,32 +367,149 @@ impl<'ctx> NDArrayValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_copy_data(generator, ctx, src, *self);
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> Option<bool> {
self.ndims.map(|ndims| ndims == 0)
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
// TODO: It is possible to optimize this by exploiting contiguous strides with memset.
// Probably best to implement in IRRT.
self.foreach(generator, ctx, |_, ctx, _, nditer| {
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
/// Create the shape tuple of this ndarray like
/// [`np.shape(<ndarray>)`](https://numpy.org/doc/stable/reference/generated/numpy.shape.html).
///
/// All elements in the tuple are `i32`.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let objects = (0..self.ndims)
.map(|i| {
let dim = unsafe {
self.shape().get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i, false),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(dim, llvm_i32, "").unwrap()
})
.map(|obj| obj.as_basic_value_enum())
.collect_vec();
TupleType::new(
generator,
ctx.ctx,
&repeat_n(llvm_i32.into(), self.ndims as usize).collect_vec(),
)
.construct_from_objects(ctx, objects, None)
}
/// Create the strides tuple of this ndarray like
/// [`<ndarray>.strides`](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html).
///
/// All elements in the tuple are `i32`.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let objects = (0..self.ndims)
.map(|i| {
let dim = unsafe {
self.strides().get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i, false),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(dim, llvm_i32, "").unwrap()
})
.map(|obj| obj.as_basic_value_enum())
.collect_vec();
TupleType::new(
generator,
ctx.ctx,
&repeat_n(llvm_i32.into(), self.ndims as usize).collect_vec(),
)
.construct_from_objects(ctx, objects, None)
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// Returns the element present in this `ndarray` if this is unsized.
pub fn get_unsized_element<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Option<BasicValueEnum<'ctx>> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = generator.get_size_type(ctx.ctx).const_zero();
let value = unsafe { self.data().get_unchecked(ctx, generator, &zero, None) };
Some(value)
} else {
None
}
}
/// If this ndarray is unsized, return its sole value as an [`BasicValueEnum`].
/// Otherwise, do nothing and return the ndarray itself.
// TODO: Rename to get_unsized_element
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
let Some(is_unsized) = self.is_unsized() else { todo!() };
if is_unsized {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = generator.get_size_type(ctx.ctx).const_zero();
let value = unsafe { self.data().get_unchecked(ctx, generator, &zero, None) };
ScalarOrNDArray::Scalar(value)
if let Some(unsized_elem) = self.get_unsized_element(generator, ctx) {
ScalarOrNDArray::Scalar(unsized_elem)
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
///
/// Raise an exception if the shapes do not match.
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
out_shape: impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let ndarray_shape = self.shape();
let output_shape = out_shape;
irrt::ndarray::call_nac3_ndarray_util_assert_output_shape_same(
generator,
ctx,
&ndarray_shape,
&output_shape,
);
}
}
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
@ -491,8 +569,8 @@ impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
@ -530,20 +608,26 @@ impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
for NDArrayShapeProxy<'ctx, '_>
{
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
_: &CodeGenContext<'ctx, '_>,
_: &G,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>
for NDArrayShapeProxy<'ctx, '_>
{
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
_: &CodeGenContext<'ctx, '_>,
_: &G,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
@ -583,8 +667,8 @@ impl<'ctx> ArrayLikeValue<'ctx> for NDArrayStridesProxy<'ctx, '_> {
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
@ -622,20 +706,26 @@ impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx,
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
for NDArrayStridesProxy<'ctx, '_>
{
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
_: &CodeGenContext<'ctx, '_>,
_: &G,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>
for NDArrayStridesProxy<'ctx, '_>
{
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
_: &CodeGenContext<'ctx, '_>,
_: &G,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
@ -668,41 +758,19 @@ impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
irrt::ndarray::call_ndarray_calc_size(
generator,
ctx,
&self.as_slice_value(ctx, generator),
(None, None),
)
irrt::ndarray::call_nac3_ndarray_len(generator, ctx, *self.0)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
idx.get_type(),
"",
)
.unwrap();
let idx = ctx.builder.build_int_mul(*idx, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[idx],
name.unwrap_or_default(),
)
.unwrap()
};
let ptr = irrt::ndarray::call_nac3_ndarray_get_nth_pelement(generator, ctx, *self.0, *idx);
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
@ -713,7 +781,7 @@ impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
name.unwrap_or_default(),
)
.unwrap()
}
@ -761,55 +829,33 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(indices.element_type(ctx, generator), generator.get_size_type(ctx.ctx).into());
let indices_elem_ty = indices
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
.get_type()
.get_element_type();
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
panic!("Expected list[int32] but got {indices_elem_ty}")
};
assert_eq!(
indices_elem_ty.get_bit_width(),
32,
"Expected list[int32] but got list[int{}]",
indices_elem_ty.get_bit_width()
let indices = TypedArrayLikeAdapter::from(
indices.as_slice_value(ctx, generator),
|_, _, v| v.into_int_value(),
|_, _, v| v.into(),
);
let index = irrt::ndarray::call_ndarray_flatten_index(generator, ctx, *self.0, indices);
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
index.get_type(),
"",
)
.unwrap();
let index = ctx.builder.build_int_mul(index, sizeof_elem, "").unwrap();
let ptr = irrt::ndarray::call_nac3_ndarray_get_pelement_by_indices(
generator, ctx, *self.0, &indices,
);
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[index],
name.unwrap_or_default(),
)
.unwrap()
};
// TODO: Current implementation is transparent
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
name.unwrap_or_default(),
)
.unwrap()
}
@ -904,10 +950,9 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx,
/// This function is used generating strides for globally defined contiguous ndarrays.
#[must_use]
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
let mut strides = Vec::with_capacity(ndims as usize);
let mut strides = vec![0u64; ndims as usize];
let mut stride_product = 1u64;
for i in 0..ndims {
let axis = ndims - i - 1;
for axis in (0..ndims).rev() {
strides[axis as usize] = stride_product * itemsize;
stride_product *= shape[axis as usize];
}
@ -921,7 +966,52 @@ pub enum ScalarOrNDArray<'ctx> {
NDArray(NDArrayValue<'ctx>),
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for BasicValueEnum<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
ScalarOrNDArray::NDArray(_) => Err(()),
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayValue<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(_) => Err(()),
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
}
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Split on `object` either into a scalar or an ndarray.
///
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
///
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
pub fn from_value<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
) -> ScalarOrNDArray<'ctx> {
match &*ctx.unifier.get_ty(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
ScalarOrNDArray::NDArray(ndarray)
}
_ => ScalarOrNDArray::Scalar(object),
}
}
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
@ -930,4 +1020,57 @@ impl<'ctx> ScalarOrNDArray<'ctx> {
ScalarOrNDArray::NDArray(ndarray) => ndarray.as_base_value().into(),
}
}
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
///
/// - If this is an ndarray, the ndarray is returned.
/// - If this is a scalar, this function returns new ndarray created with
/// [`NDArrayType::construct_unsized`].
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayValue<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(scalar) => {
NDArrayType::new_unsized(generator, ctx.ctx, scalar.get_type())
.construct_unsized(generator, ctx, scalar, None)
}
}
}
/// Get the dtype of the ndarray created if this were called with
/// [`ScalarOrNDArray::to_ndarray`].
#[must_use]
pub fn get_dtype(&self) -> BasicTypeEnum<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
ScalarOrNDArray::Scalar(scalar) => scalar.get_type(),
}
}
}
/// An helper enum specifying how a function should produce its output.
///
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a
/// function will create a new ndarray and store the result in it.
#[derive(Clone, Copy)]
pub enum NDArrayOut<'ctx> {
/// Tell a function should create a new ndarray with the expected element type `dtype`.
NewNDArray { dtype: BasicTypeEnum<'ctx> },
/// Tell a function to write the result to `ndarray`.
WriteToNDArray { ndarray: NDArrayValue<'ctx> },
}
impl<'ctx> NDArrayOut<'ctx> {
/// Get the dtype of this output.
#[must_use]
pub fn get_dtype(&self) -> BasicTypeEnum<'ctx> {
match self {
NDArrayOut::NewNDArray { dtype } => *dtype,
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
}
}
}

View File

@ -4,7 +4,7 @@ use inkwell::{
AddressSpace,
};
use super::{NDArrayValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeMutator};
use super::{NDArrayValue, ProxyValue};
use crate::codegen::{
irrt,
stmt::{gen_for_callback, BreakContinueHooks},
@ -69,7 +69,10 @@ impl<'ctx> NDIterValue<'ctx> {
irrt::ndarray::call_nac3_nditer_next(generator, ctx, *self);
}
fn element(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
fn element_field(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).element
}
@ -78,7 +81,7 @@ impl<'ctx> NDIterValue<'ctx> {
pub fn get_pointer(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let elem_ty = self.parent.dtype;
let p = self.element(ctx).get(ctx, self.as_base_value(), None);
let p = self.element_field(ctx).get(ctx, self.as_base_value(), self.name);
ctx.builder
.build_pointer_cast(p, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
@ -91,30 +94,25 @@ impl<'ctx> NDIterValue<'ctx> {
ctx.builder.build_load(p, "value").unwrap()
}
fn nth(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
fn nth_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).nth
}
/// Get the index of the current element if this ndarray were a flat ndarray.
#[must_use]
pub fn get_index(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.nth(ctx).get(ctx, self.as_base_value(), None)
self.nth_field(ctx).get(ctx, self.as_base_value(), self.name)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices(
&'ctx self,
) -> impl TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> + TypedArrayLikeMutator<'ctx, IntValue<'ctx>>
{
pub fn get_indices<G: CodeGenerator + ?Sized>(
&self,
) -> TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>> {
TypedArrayLikeAdapter::from(
self.indices,
Box::new(|ctx, val| {
ctx.builder
.build_int_z_extend_or_bit_cast(val.into_int_value(), self.llvm_usize, "")
.unwrap()
}),
Box::new(|_, val| val.into()),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
)
}
}
@ -143,6 +141,10 @@ impl<'ctx> NDArrayValue<'ctx> {
///
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterValue`] to
/// get properties of the current iteration (e.g., the current element, indices, etc.)
///
/// Note: The caller is recommended to call `llvm.stacksave` and `llvm.stackrestore` before and
/// after invoking this function respectively. See [`NDIterType::construct`] for an explanation
/// on why this is suggested.
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,

View File

@ -0,0 +1,152 @@
use inkwell::values::{BasicValueEnum, IntValue};
use crate::{
codegen::{
stmt::gen_for_callback_incrementing,
types::{ListType, TupleType},
values::{
ArraySliceValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
TypedArrayLikeMutator, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to
/// `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(input_seq_ty, input_seq): (Type, BasicValueEnum<'ctx>),
) -> impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let zero = llvm_usize.const_zero();
let one = llvm_usize.const_int(1, false);
// The result `list` to return.
match &*ctx.unifier.get_ty_immutable(input_seq_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
let input_seq = ListType::from_unifier_type(generator, ctx, input_seq_ty)
.map_value(input_seq.into_pointer_value(), None);
let len = input_seq.load_size(ctx, None);
// TODO: Find a way to remove this mid-BB allocation
let result = ctx.builder.build_array_alloca(llvm_usize, len, "").unwrap();
let result = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(result, len, None),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_callback_incrementing(
generator,
ctx,
None,
zero,
(len, false),
|generator, ctx, _, i| {
// Load the i-th int32 in the input sequence
let int = unsafe {
input_seq.data().get_unchecked(ctx, generator, &i, None).into_int_value()
};
// Cast to SizeT
let int =
ctx.builder.build_int_s_extend_or_bit_cast(int, llvm_usize, "").unwrap();
// Store
unsafe { result.set_typed_unchecked(ctx, generator, &i, int) };
Ok(())
},
one,
)
.unwrap();
result
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_seq = TupleType::from_unifier_type(generator, ctx, input_seq_ty)
.map_value(input_seq.into_struct_value(), None);
let len = input_seq.get_type().num_elements();
let result = generator
.gen_array_var_alloc(
ctx,
llvm_usize.into(),
llvm_usize.const_int(u64::from(len), false),
None,
)
.unwrap();
let result = TypedArrayLikeAdapter::from(
result,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
for i in 0..input_seq.get_type().num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_seq.load_element(ctx, i).into_int_value();
let int = ctx.builder.build_int_s_extend_or_bit_cast(int, llvm_usize, "").unwrap();
unsafe {
result.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(u64::from(i), false),
int,
);
}
}
result
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_seq.into_int_value();
let len = one;
let result = generator.gen_array_var_alloc(ctx, llvm_usize.into(), len, None).unwrap();
let result = TypedArrayLikeAdapter::from(
result,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let int =
ctx.builder.build_int_s_extend_or_bit_cast(input_int, llvm_usize, "").unwrap();
// Storing into result[0]
unsafe {
result.set_typed_unchecked(ctx, generator, &zero, int);
}
result
}
_ => panic!("encountered unknown sequence type: {}", ctx.unifier.stringify(input_seq_ty)),
}
}

View File

@ -1,9 +1,16 @@
use std::iter::{once, repeat_n};
use inkwell::values::{IntValue, PointerValue};
use itertools::Itertools;
use crate::codegen::{
values::ndarray::{NDArrayValue, RustNDIndex},
irrt,
stmt::gen_if_callback,
types::ndarray::NDArrayType,
values::{
ndarray::{NDArrayValue, RustNDIndex},
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
},
CodeGenContext, CodeGenerator,
};
@ -19,9 +26,7 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
ndmin: u64,
) -> Self {
assert!(self.ndims.is_some(), "NDArrayValue::atleast_nd is only supported for instances with compile-time known ndims (self.ndims = Some(...))");
let ndims = self.ndims.unwrap();
let ndims = self.ndims;
if ndims < ndmin {
// Extend the dimensions with np.newaxis.
@ -33,4 +38,117 @@ impl<'ctx> NDArrayValue<'ctx> {
*self
}
}
/// Create a reshaped view on this ndarray like
/// [`np.reshape()`](https://numpy.org/doc/stable/reference/generated/numpy.reshape.html).
///
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be
/// modified as a result.
///
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy
/// contents.
///
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
/// * `new_shape` - The target shape to do `np.reshape()`.
#[must_use]
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
new_ndims: u64,
new_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> Self {
assert_eq!(new_shape.element_type(ctx, generator), self.llvm_usize.into());
// TODO: The current criterion for whether to do a full copy or not is by checking
// `is_c_contiguous`, but this is not optimal - there are cases when the ndarray is
// not contiguous but could be reshaped without copying data. Look into how numpy does
// it.
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, new_ndims)
.construct_uninitialized(generator, ctx, None);
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape.base_ptr(ctx, generator));
// Resolve negative indices
let size = self.size(generator, ctx);
let dst_ndims = self.llvm_usize.const_int(dst_ndarray.get_type().ndims(), false);
let dst_shape = dst_ndarray.shape();
irrt::ndarray::call_nac3_ndarray_reshape_resolve_and_check_new_shape(
generator,
ctx,
size,
dst_ndims,
dst_shape.as_slice_value(ctx, generator),
);
gen_if_callback(
generator,
ctx,
|generator, ctx| Ok(self.is_c_contiguous(generator, ctx)),
|generator, ctx| {
// Reshape is possible without copying
dst_ndarray.set_strides_contiguous(generator, ctx);
dst_ndarray.store_data(ctx, self.data().base_ptr(ctx, generator));
Ok(())
},
|generator, ctx| {
// Reshape is impossible without copying
unsafe {
dst_ndarray.create_data(generator, ctx);
}
dst_ndarray.copy_data_from(generator, ctx, *self);
Ok(())
},
)
.unwrap();
dst_ndarray
}
/// Create a transposed view on this ndarray like
/// [`np.transpose(<ndarray>, <axes> = None)`](https://numpy.org/doc/stable/reference/generated/numpy.transpose.html).
///
/// * `axes` - If specified, should be an array of the permutation (negative indices are
/// **allowed**).
#[must_use]
pub fn transpose<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
axes: Option<PointerValue<'ctx>>,
) -> Self {
assert!(
axes.is_none_or(|axes| axes.get_type().get_element_type() == self.llvm_usize.into())
);
// Define models
let transposed_ndarray = self.get_type().construct_uninitialized(generator, ctx, None);
let axes = if let Some(axes) = axes {
let num_axes = self.llvm_usize.const_int(self.ndims, false);
// `axes = nullptr` if `axes` is unspecified.
let axes = ArraySliceValue::from_ptr_val(axes, num_axes, None);
Some(TypedArrayLikeAdapter::from(
axes,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
))
} else {
None
};
irrt::ndarray::call_nac3_ndarray_transpose(
generator,
ctx,
*self,
transposed_ndarray,
axes.as_ref(),
);
transposed_ndarray
}
}

View File

@ -0,0 +1,85 @@
use inkwell::{
types::IntType,
values::{BasicValue, BasicValueEnum, StructValue},
};
use super::ProxyValue;
use crate::codegen::{types::TupleType, CodeGenContext};
#[derive(Copy, Clone)]
pub struct TupleValue<'ctx> {
value: StructValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> TupleValue<'ctx> {
/// Checks whether `value` is an instance of `tuple`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: StructValue<'ctx>,
_llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
TupleType::is_representable(value.get_type())
}
/// Creates an [`TupleValue`] from a [`StructValue`].
#[must_use]
pub fn from_struct_value(
value: StructValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(value, llvm_usize).is_ok());
Self { value, llvm_usize, name }
}
/// Stores a value into the tuple element at the given `index`.
pub fn store_element(
&mut self,
ctx: &CodeGenContext<'ctx, '_>,
index: u32,
element: impl BasicValue<'ctx>,
) {
assert_eq!(element.as_basic_value_enum().get_type(), unsafe {
self.get_type().type_at_index_unchecked(index)
});
let new_value = ctx
.builder
.build_insert_value(self.value, element, index, self.name.unwrap_or_default())
.unwrap();
self.value = new_value.into_struct_value();
}
/// Loads a value from the tuple element at the given `index`.
pub fn load_element(&self, ctx: &CodeGenContext<'ctx, '_>, index: u32) -> BasicValueEnum<'ctx> {
ctx.builder
.build_extract_value(
self.value,
index,
&format!("{}[{{i}}]", self.name.unwrap_or("tuple")),
)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for TupleValue<'ctx> {
type Base = StructValue<'ctx>;
type Type = TupleType<'ctx>;
fn get_type(&self) -> Self::Type {
TupleType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<TupleValue<'ctx>> for StructValue<'ctx> {
fn from(value: TupleValue<'ctx>) -> Self {
value.as_base_value()
}
}

View File

@ -6,7 +6,7 @@ use std::{
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use itertools::{izip, Itertools};
use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef};
@ -452,11 +452,11 @@ pub fn parse_type_annotation<T>(
type_vars.len()
)]));
}
let fields = chain(
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
)
.collect();
let fields = fields
.iter()
.map(|(k, v, m)| (*k, (*v, *m)))
.chain(methods.iter().map(|(k, v, _)| (*k, (*v, false))))
.collect();
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: VarMap::default() }))
} else {
Err(HashSet::from([format!("Cannot use function name as type at {loc}")]))

View File

@ -1,18 +1,14 @@
use std::iter::once;
use indexmap::IndexMap;
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType},
values::{BasicMetadataValueEnum, BasicValue, CallSiteValue},
IntPredicate,
};
use itertools::Either;
use inkwell::{values::BasicValue, IntPredicate};
use strum::IntoEnumIterator;
use super::{
helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDef, PrimDefDetails},
numpy::make_ndarray_ty,
helper::{
debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDef, PrimDefDetails,
},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
*,
};
use crate::{
@ -20,7 +16,8 @@ use crate::{
builtin_fns,
numpy::*,
stmt::exn_constructor,
values::{ProxyValue, RangeValue},
types::ndarray::NDArrayType,
values::{ndarray::shape::parse_numpy_int_sequence, ProxyValue, RangeValue},
},
symbol_resolver::SymbolValue,
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
@ -148,144 +145,6 @@ fn create_fn_by_codegen(
}
}
/// Creates a NumPy [`TopLevelDef`] function using an LLVM intrinsic.
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `intrinsic_fn`: The fully-qualified name of the LLVM intrinsic function.
fn create_fn_by_intrinsic(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
intrinsic_fn: &'static str,
) -> TopLevelDef {
let param_tys = params.iter().map(|p| p.0).collect_vec();
create_fn_by_codegen(
unifier,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys
.iter()
.zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty
.iter()
.zip_eq(args.iter())
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(intrinsic_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let param_llvm_ty = param_tys
.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
ctx.module.add_function(intrinsic_fn, fn_type, None)
});
let val = ctx
.builder
.build_call(intrinsic_fn, args_val.as_slice(), name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap();
Ok(val.into())
}),
)
}
/// Creates a unary NumPy [`TopLevelDef`] function using an extern function (e.g. from `libc` or
/// `libm`).
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `extern_fn`: The fully-qualified name of the extern function used as the implementation.
/// * `attrs`: The list of attributes to apply to this function declaration. Note that `nounwind` is
/// already implied by the C ABI.
fn create_fn_by_extern(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
extern_fn: &'static str,
attrs: &'static [&str],
) -> TopLevelDef {
let param_tys = params.iter().map(|p| p.0).collect_vec();
create_fn_by_codegen(
unifier,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys
.iter()
.zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty
.iter()
.zip_eq(args.iter())
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(extern_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let param_llvm_ty = param_tys
.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
let func = ctx.module.add_function(extern_fn, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
for attr in attrs {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let val = ctx
.builder
.build_call(intrinsic_fn, &args_val, name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap();
Ok(val.into())
}),
)
}
pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> BuiltinInfo {
BuiltinBuilder::new(unifier, primitives)
.build_all_builtins()
@ -336,7 +195,6 @@ struct BuiltinBuilder<'a> {
ndarray_float: Type,
ndarray_float_2d: Type,
ndarray_num_ty: Type,
float_or_ndarray_ty: TypeVar,
float_or_ndarray_var_map: VarMap,
@ -450,7 +308,6 @@ impl<'a> BuiltinBuilder<'a> {
ndarray_float,
ndarray_float_2d,
ndarray_num_ty,
float_or_ndarray_ty,
float_or_ndarray_var_map,
@ -512,6 +369,14 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpEye
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
PrimDef::FunNpSize | PrimDef::FunNpShape | PrimDef::FunNpStrides => {
self.build_ndarray_property_getter_function(prim)
}
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
self.build_ndarray_view_function(prim)
}
PrimDef::FunStr => self.build_str_function(),
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
@ -577,10 +442,6 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpHypot
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
self.build_np_sp_ndarray_function(prim)
}
PrimDef::FunNpDot
| PrimDef::FunNpLinalgCholesky
| PrimDef::FunNpLinalgQr
@ -1386,6 +1247,176 @@ impl<'a> BuiltinBuilder<'a> {
}
}
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpSize, PrimDef::FunNpShape, PrimDef::FunNpStrides],
);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpSize => create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
self.primitives.int32,
&[(in_ndarray_ty.ty, "a")],
Box::new(|ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray.into_pointer_value(), None);
let size = ctx
.builder
.build_int_truncate_or_bit_cast(
ndarray.size(generator, ctx),
ctx.ctx.i32_type(),
"",
)
.unwrap();
Ok(Some(size.into()))
}),
),
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
// The function signatures of `np_shape` an `np_size` are the same.
// Mixed together for convenience.
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
ret_ty,
&[(in_ndarray_ty.ty, "a")],
Box::new(move |ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray.into_pointer_value(), None);
let result_tuple = match prim {
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
_ => unreachable!(),
};
Ok(Some(result_tuple.as_base_value().into()))
}),
)
}
_ => unreachable!(),
}
}
/// Build np/sp functions that take as input `NDArray` only
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpTranspose => create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
in_ndarray_ty.ty,
&[(in_ndarray_ty.ty, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, arg_ty)
.map_value(arg_val.into_pointer_value(), None);
let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument
Ok(Some(ndarray.as_base_value().into()))
}),
),
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
// These two functions have the same function signature.
// Mixed together for convenience.
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
ret_ty,
&[
(in_ndarray_ty.ty, "x"),
(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding
],
Box::new(move |ctx, _, fun, args, generator| {
let ndarray_ty = fun.0.args[0].ty;
let ndarray_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let shape_ty = fun.0.args[1].ty;
let shape_val =
args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray_val.into_pointer_value(), None);
let shape = parse_numpy_int_sequence(generator, ctx, (shape_ty, shape_val));
// The ndims after reshaping is gotten from the return type of the call.
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
let ndims = extract_ndims(&ctx.unifier, ndims);
let new_ndarray = match prim {
PrimDef::FunNpBroadcastTo => {
ndarray.broadcast_to(generator, ctx, ndims, &shape)
}
PrimDef::FunNpReshape => {
ndarray.reshape_or_copy(generator, ctx, ndims, &shape)
}
_ => unreachable!(),
};
Ok(Some(new_ndarray.as_base_value().as_basic_value_enum()))
}),
)
}
_ => unreachable!(),
}
}
/// Build the `str()` function.
fn build_str_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunStr;
@ -1873,57 +1904,6 @@ impl<'a> BuiltinBuilder<'a> {
}
}
/// Build np/sp functions that take as input `NDArray` only
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
match prim {
PrimDef::FunNpTranspose => {
let ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.ndarray_num_ty],
Some("T".into()),
None,
);
create_fn_by_codegen(
self.unifier,
&into_var_map([ndarray_ty]),
prim.name(),
ndarray_ty.ty,
&[(ndarray_ty.ty, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
}),
)
}
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
PrimDef::FunNpReshape => create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.ndarray_num_ty,
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
Box::new(move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
}),
),
_ => unreachable!(),
}
}
/// Build `np_linalg` and `sp_linalg` functions
///
/// The input to these functions must be floating point `NDArray`
@ -1955,10 +1935,12 @@ impl<'a> BuiltinBuilder<'a> {
Box::new(move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
Ok(Some(result))
}),
),

View File

@ -1052,7 +1052,7 @@ impl TopLevelComposer {
}
let mut result = Vec::new();
let no_defaults = args.args.len() - args.defaults.len() - 1;
for (idx, x) in itertools::enumerate(args.args.iter().skip(1)) {
for (idx, x) in args.args.iter().skip(1).enumerate() {
let type_ann = {
let Some(annotation_expr) = x.node.annotation.as_ref() else {return Err(HashSet::from([format!("type annotation needed for `{}` (at {})", x.node.arg, x.location)]));};
parse_ast_to_type_annotation_kinds(

View File

@ -54,6 +54,16 @@ pub enum PrimDef {
FunNpEye,
FunNpIdentity,
// NumPy ndarray property getters
FunNpSize,
FunNpShape,
FunNpStrides,
// NumPy ndarray view functions
FunNpBroadcastTo,
FunNpTranspose,
FunNpReshape,
// Miscellaneous NumPy & SciPy functions
FunNpRound,
FunNpFloor,
@ -101,8 +111,6 @@ pub enum PrimDef {
FunNpLdExp,
FunNpHypot,
FunNpNextAfter,
FunNpTranspose,
FunNpReshape,
// Linalg functions
FunNpDot,
@ -240,6 +248,16 @@ impl PrimDef {
PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None),
// NumPy NDArray property getters,
PrimDef::FunNpSize => fun("np_size", None),
PrimDef::FunNpShape => fun("np_shape", None),
PrimDef::FunNpStrides => fun("np_strides", None),
// NumPy NDArray view functions
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Miscellaneous NumPy & SciPy functions
PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunNpFloor => fun("np_floor", None),
@ -287,8 +305,6 @@ impl PrimDef {
PrimDef::FunNpLdExp => fun("np_ldexp", None),
PrimDef::FunNpHypot => fun("np_hypot", None),
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Linalg functions
PrimDef::FunNpDot => fun("np_dot", None),

View File

@ -8,5 +8,5 @@ expression: res_vec
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(246)]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(261)]\n}\n",
]

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar245]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar245\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(258)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(263)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec
---
[
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[typevar244, typevar245]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar244\", \"typevar245\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(264)]\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(272)]\n}\n",
]

View File

@ -15,14 +15,13 @@ use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, Type, Unifier},
typedef::{Type, Unifier},
},
};
struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>,
id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
class_names: Mutex<HashMap<StrRef, Type>>,
}
impl ResolverInternal {
@ -179,11 +178,8 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = Arc::new(ResolverInternal {
id_to_def: Mutex::default(),
id_to_type: Mutex::default(),
class_names: Mutex::default(),
});
let internal_resolver =
Arc::new(ResolverInternal { id_to_def: Mutex::default(), id_to_type: Mutex::default() });
let resolver =
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
@ -784,13 +780,6 @@ fn make_internal_resolver_with_tvar(
unifier: &mut Unifier,
print: bool,
) -> Arc<ResolverInternal> {
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let res: Arc<ResolverInternal> = ResolverInternal {
id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])),
id_to_type: tvars
@ -806,7 +795,6 @@ fn make_internal_resolver_with_tvar(
})
.collect::<HashMap<_, _>>()
.into(),
class_names: Mutex::new(HashMap::from([("list".into(), list)])),
}
.into();
if print {
@ -819,7 +807,7 @@ struct TypeToStringFolder<'a> {
unifier: &'a mut Unifier,
}
impl<'a> Fold<Option<Type>> for TypeToStringFolder<'a> {
impl Fold<Option<Type>> for TypeToStringFolder<'_> {
type TargetU = String;
type Error = String;
fn map_user(&mut self, user: Option<Type>) -> Result<Self::TargetU, Self::Error> {

View File

@ -15,7 +15,7 @@ use super::{
};
use crate::toplevel::helper::PrimDef;
impl<'a> Inferencer<'a> {
impl Inferencer<'_> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
if matches!(expr.custom, Some(ty) if self.unifier.unioned(ty, self.primitives.none)) {
Err(HashSet::from([format!("Error at {}: cannot have value none", expr.location)]))
@ -94,7 +94,7 @@ impl<'a> Inferencer<'a> {
// there are some cases where the custom field is None
if let Some(ty) = &expr.custom {
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. })
&& !ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::List.id())
&& ty.obj_id(self.unifier).is_none_or(|id| id != PrimDef::List.id())
&& !self.unifier.is_concrete(*ty, &self.function_data.bound_variables)
{
return Err(HashSet::from([format!(

View File

@ -7,12 +7,12 @@ use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
use super::{
type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
};
use crate::{
symbol_resolver::SymbolValue,
toplevel::{
helper::PrimDef,
helper::{extract_ndims, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
};
@ -175,19 +175,8 @@ pub fn impl_binop(
ops: &[Operator],
) {
with_fields(unifier, ty, |unifier, fields| {
let (other_ty, other_var_id) = if other_ty.len() == 1 {
(other_ty[0], None)
} else {
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(tvar.ty, Some(tvar.id))
};
let function_vars = if let Some(var_id) = other_var_id {
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
} else {
VarMap::new()
};
let other_tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
let function_vars = into_var_map([other_tvar]);
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
@ -198,7 +187,7 @@ pub fn impl_binop(
ret: ret_ty,
vars: function_vars.clone(),
args: vec![FuncArg {
ty: other_ty,
ty: other_tvar.ty,
default_value: None,
name: "other".into(),
is_vararg: false,
@ -541,36 +530,43 @@ pub fn typeof_binop(
}
}
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims = extract_ndims(unifier, rhs_ndims);
if !(unifier.unioned(lhs_dtype, primitives.float)
&& unifier.unioned(rhs_dtype, primitives.float))
{
return Err(format!(
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
unifier.stringify(lhs),
unifier.stringify(rhs)
));
}
// Deduce the ndims of the resulting ndarray.
// If this is 0 (an unsized ndarray), matmul returns a scalar just like NumPy.
let result_ndims = match (lhs_ndims, rhs_ndims) {
(0, _) | (_, 0) => {
return Err(
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
)
}
_ => unreachable!(),
};
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
(1, 1) => 0,
(1, _) => rhs_ndims - 1,
(_, 1) => lhs_ndims - 1,
(m, n) => max(m, n),
};
match (lhs_ndims, rhs_ndims) {
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
(lhs, rhs) if lhs == 0 || rhs == 0 => {
return Err(format!(
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
u8::from(rhs == 0)
))
}
(lhs, rhs) => {
return Err(format!(
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
))
}
if result_ndims == 0 {
// If the result is unsized, NumPy returns a scalar.
primitives.float
} else {
let result_ndims_ty =
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
}
}
@ -773,7 +769,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);

View File

@ -94,7 +94,7 @@ fn loc_to_str(loc: Option<Location>) -> String {
}
}
impl<'a> Display for DisplayTypeError<'a> {
impl Display for DisplayTypeError<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
use TypeErrorKind::*;
let mut notes = Some(HashMap::new());

View File

@ -3,7 +3,7 @@ use std::{
cmp::max,
collections::{HashMap, HashSet},
convert::{From, TryInto},
iter::once,
iter::{once, repeat_n},
sync::Arc,
};
@ -187,7 +187,7 @@ fn fix_assignment_target_context(node: &mut ast::Located<ExprKind>) {
}
}
impl<'a> Fold<()> for Inferencer<'a> {
impl Fold<()> for Inferencer<'_> {
type TargetU = Option<Type>;
type Error = InferenceError;
@ -657,7 +657,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
type InferenceResult = Result<Type, InferenceError>;
impl<'a> Inferencer<'a> {
impl Inferencer<'_> {
/// Constrain a <: b
/// Currently implemented as unification
fn constrain(&mut self, a: Type, b: Type, location: &Location) -> Result<(), InferenceError> {
@ -1234,6 +1234,45 @@ impl<'a> Inferencer<'a> {
}));
}
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
let ndarray = self.fold_expr(args.remove(0))?;
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
let ret_ty = TypeEnum::TTuple {
ty: repeat_n(self.primitives.int32, ndims as usize).collect_vec(),
is_vararg_ctx: false,
};
let ret_ty = self.unifier.add_ty(ret_ty);
let func_ty = TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "a".into(),
default_value: None,
ty: ndarray.custom.unwrap(),
is_vararg: false,
}],
ret: ret_ty,
vars: VarMap::new(),
});
let func_ty = self.unifier.add_ty(func_ty);
return Ok(Some(Located {
location,
custom: Some(ret_ty),
node: ExprKind::Call {
func: Box::new(Located {
custom: Some(func_ty),
location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx },
}),
args: vec![ndarray],
keywords: vec![],
},
}));
}
if id == &"np_dot".into() {
let arg0 = self.fold_expr(args.remove(0))?;
let arg1 = self.fold_expr(args.remove(0))?;
@ -1555,7 +1594,7 @@ impl<'a> Inferencer<'a> {
}));
}
// 2-argument ndarray n-dimensional factory functions
if id == &"np_reshape".into() && args.len() == 2 {
if ["np_reshape".into(), "np_broadcast_to".into()].contains(id) && args.len() == 2 {
let arg0 = self.fold_expr(args.remove(0))?;
let shape_expr = args.remove(0);

View File

@ -18,7 +18,6 @@ use crate::{
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
id_to_def: HashMap<StrRef, DefinitionId>,
class_names: HashMap<StrRef, Type>,
}
impl SymbolResolver for Resolver {
@ -198,7 +197,6 @@ impl TestEnvironment {
let resolver = Arc::new(Resolver {
id_to_type: identifier_mapping.clone(),
id_to_def: HashMap::default(),
class_names: HashMap::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>;
TestEnvironment {
@ -454,7 +452,6 @@ impl TestEnvironment {
vars: IndexMap::default(),
})),
);
let class_names: HashMap<_, _> = [("Bar".into(), bar), ("Bar2".into(), bar2)].into();
let id_to_name = [
"int32".into(),
@ -492,7 +489,6 @@ impl TestEnvironment {
("Bar2".into(), DefinitionId(defs + 3)),
]
.into(),
class_names,
}) as Arc<dyn SymbolResolver + Send + Sync>;
TestEnvironment {

View File

@ -3,13 +3,13 @@ use std::{
cell::RefCell,
collections::{HashMap, HashSet},
fmt::{self, Display},
iter::{repeat, zip},
iter::{repeat, repeat_n, zip},
rc::Rc,
sync::{Arc, Mutex},
};
use indexmap::IndexMap;
use itertools::{repeat_n, Itertools};
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};

View File

@ -30,7 +30,7 @@ pub struct DwarfReader<'a> {
pub virt_addr: u32,
}
impl<'a> DwarfReader<'a> {
impl DwarfReader<'_> {
pub fn new(slice: &[u8], virt_addr: u32) -> DwarfReader {
DwarfReader { slice, virt_addr }
}
@ -113,7 +113,7 @@ pub struct DwarfWriter<'a> {
pub offset: usize,
}
impl<'a> DwarfWriter<'a> {
impl DwarfWriter<'_> {
pub fn new(slice: &mut [u8]) -> DwarfWriter {
DwarfWriter { slice, offset: 0 }
}
@ -375,7 +375,7 @@ pub struct FDE_Records<'a> {
available: usize,
}
impl<'a> Iterator for FDE_Records<'a> {
impl Iterator for FDE_Records<'_> {
type Item = (u32, u32);
fn next(&mut self) -> Option<Self::Item> {
@ -423,7 +423,7 @@ pub struct EH_Frame_Hdr<'a> {
fdes: Vec<(u32, u32)>,
}
impl<'a> EH_Frame_Hdr<'a> {
impl EH_Frame_Hdr<'_> {
/// Create a [EH_Frame_Hdr] object, and write out the fixed fields of `.eh_frame_hdr` to memory.
///
/// Load address is not known at this point.

View File

@ -159,7 +159,7 @@ struct SymbolTableReader<'a> {
strtab: &'a [u8],
}
impl<'a> SymbolTableReader<'a> {
impl SymbolTableReader<'_> {
pub fn find_index_by_name(&self, sym_name: &[u8]) -> Option<usize> {
self.symtab.iter().position(|sym| {
if let Ok(dynsym_name) = name_starting_at_slice(self.strtab, sym.st_name as usize) {

View File

@ -67,7 +67,7 @@ def _bool(x):
def _float(x):
if isinstance(x, np.ndarray):
return np.float_(x)
return np.float64(x)
else:
return float(x)
@ -111,6 +111,9 @@ def patch(module):
def output_strln(x):
print(x, end='')
def output_int32_list(x):
print([int(e) for e in x])
def dbg_stack_address(_):
return 0
@ -126,11 +129,12 @@ def patch(module):
return output_float
elif name == "output_str":
return output_strln
elif name == "output_int32_list":
return output_int32_list
elif name in {
"output_bool",
"output_int32",
"output_int64",
"output_int32_list",
"output_uint32",
"output_uint64",
"output_strln",
@ -179,6 +183,16 @@ def patch(module):
module.np_identity = np.identity
module.np_array = np.array
# NumPy NDArray view functions
module.np_broadcast_to = np.broadcast_to
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# NumPy NDArray property getters
module.np_size = np.size
module.np_shape = np.shape
module.np_strides = lambda ndarray: ndarray.strides
# NumPy Math functions
module.np_isnan = np.isnan
module.np_isinf = np.isinf
@ -218,8 +232,6 @@ def patch(module):
module.np_ldexp = np.ldexp
module.np_hypot = np.hypot
module.np_nextafter = np.nextafter
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# SciPy Math functions
module.sp_spec_erf = special.erf

View File

@ -68,6 +68,19 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
for c in range(len(n[r])):
output_float64(n[r][c])
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
for d in range(len(n)):
for r in range(len(n[d])):
for c in range(len(n[d][r])):
output_float64(n[d][r][c])
def output_ndarray_float_4(n: ndarray[float, Literal[4]]):
for x in range(len(n)):
for y in range(len(n[x])):
for z in range(len(n[x][y])):
for w in range(len(n[x][y][z])):
output_float64(n[x][y][z][w])
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
pass
@ -197,6 +210,104 @@ def test_ndarray_nd_idx():
output_float64(x[1, 0])
output_float64(x[1, 1])
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_int32(np_shape(x)[0])
output_int32(np_shape(x)[1])
output_ndarray_float_2(x)
output_int32(np_shape(y)[0])
output_int32(np_shape(y)[1])
output_ndarray_float_2(y)
output_int32(np_shape(z)[0])
output_int32(np_shape(z)[1])
output_ndarray_float_2(z)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
output_int32(np_shape(w)[0])
output_ndarray_float_1(w)
output_int32(np_shape(x)[0])
output_int32(np_shape(x)[1])
output_int32(np_shape(x)[2])
output_int32(np_shape(x)[3])
output_ndarray_float_4(x)
output_int32(np_shape(y)[0])
output_int32(np_shape(y)[1])
output_ndarray_float_2(y)
output_int32(np_shape(z)[0])
output_ndarray_float_1(z)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_int32(np_shape(x1)[0])
output_ndarray_int32_1(x1)
output_int32(np_shape(x2)[0])
output_int32(np_shape(x2)[1])
output_ndarray_int32_2(x2)
def test_ndarray_broadcast_to():
xs = np_array([1.0, 2.0, 3.0])
ys = np_broadcast_to(xs, (1, 3))
zs = np_broadcast_to(ys, (2, 4, 3))
output_int32(np_shape(xs)[0])
output_ndarray_float_1(xs)
output_int32(np_shape(ys)[0])
output_int32(np_shape(ys)[1])
output_ndarray_float_2(ys)
output_int32(np_shape(zs)[0])
output_int32(np_shape(zs)[1])
output_int32(np_shape(zs)[2])
output_ndarray_float_3(zs)
def test_ndarray_subscript_assignment():
xs = np_array([[11.0, 22.0, 33.0, 44.0], [55.0, 66.0, 77.0, 88.0]])
xs[0, 0] = 99.0
output_ndarray_float_2(xs)
xs[0] = 100.0
output_ndarray_float_2(xs)
xs[:, ::2] = 101.0
output_ndarray_float_2(xs)
xs[1:, 0] = 102.0
output_ndarray_float_2(xs)
xs[0] = np_array([-1.0, -2.0, -3.0, -4.0])
output_ndarray_float_2(xs)
xs[:] = np_array([-5.0, -6.0, -7.0, -8.0])
output_ndarray_float_2(xs)
# Test assignment with memory sharing
ys1 = np_reshape(xs, (2, 4))
ys2 = np_transpose(ys1)
ys3 = ys2[::-1, 0]
ys3[0] = -999.0
output_ndarray_float_2(xs)
output_ndarray_float_2(ys1)
output_ndarray_float_2(ys2)
output_ndarray_float_1(ys3)
def test_ndarray_add():
x = np_identity(2)
y = x + np_ones([2, 2])
@ -1440,27 +1551,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
output_ndarray_float_2(nextafter_x_zeros)
output_ndarray_float_2(nextafter_x_ones)
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w)
output_ndarray_float_2(y)
output_ndarray_float_1(z)
def test_ndarray_dot():
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
@ -1592,6 +1682,11 @@ def run() -> int32:
test_ndarray_slices()
test_ndarray_nd_idx()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_broadcast_to()
test_ndarray_subscript_assignment()
test_ndarray_add()
test_ndarray_add_broadcast()
test_ndarray_add_broadcast_lhs_scalar()
@ -1755,8 +1850,6 @@ def run() -> int32:
test_ndarray_nextafter_broadcast()
test_ndarray_nextafter_broadcast_lhs_scalar()
test_ndarray_nextafter_broadcast_rhs_scalar()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_dot()
test_ndarray_cholesky()

View File

@ -29,10 +29,10 @@ def u32_max() -> uint32:
return ~uint32(0)
def i32_min() -> int32:
return int32(1 << 31)
return int32(-(1 << 31))
def i32_max() -> int32:
return int32(~(1 << 31))
return int32((1 << 31)-1)
def u64_min() -> uint64:
return uint64(0)
@ -63,8 +63,9 @@ def test_conv_from_i32():
i32_max()
]:
output_int64(int64(x))
output_uint32(uint32(x))
output_uint64(uint64(x))
if x >= 0:
output_uint32(uint32(x))
output_uint64(uint64(x))
output_float64(float(x))
def test_conv_from_u32():
@ -108,7 +109,6 @@ def test_conv_from_u64():
def test_f64toi32():
for x in [
float(i32_min()) - 1.0,
float(i32_min()),
float(i32_min()) + 1.0,
-1.5,
@ -117,7 +117,6 @@ def test_f64toi32():
1.5,
float(i32_max()) - 1.0,
float(i32_max()),
float(i32_max()) + 1.0
]:
output_int32(int32(x))
@ -138,24 +137,17 @@ def test_f64toi64():
def test_f64tou32():
for x in [
-1.5,
float(u32_min()) - 1.0,
-0.5,
float(u32_min()),
0.5,
float(u32_min()) + 1.0,
1.5,
float(u32_max()) - 1.0,
float(u32_max()),
float(u32_max()) + 1.0
]:
output_uint32(uint32(x))
def test_f64tou64():
for x in [
-1.5,
float(u64_min()) - 1.0,
-0.5,
float(u64_min()),
0.5,
float(u64_min()) + 1.0,