1
0
forked from M-Labs/nac3

[core] codegen: Refactor ListType to use derive(StructFields)

This commit is contained in:
David Mak 2024-12-13 16:05:54 +08:00
parent 805a9d23b3
commit 822f9d33f8
5 changed files with 285 additions and 138 deletions

View File

@ -1090,33 +1090,6 @@ pub fn destructure_range<'ctx>(
(start, end, step) (start, end, step)
} }
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
///
/// Setting `ty` to [`None`] implies that the list is empty **and** does not have a known element
/// type, and will therefore set the `list.data` type as `size_t*`. It is undefined behavior to
/// generate a sized list with an unknown element type.
pub fn allocate_list<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Option<BasicTypeEnum<'ctx>>,
length: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ListValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_ty = ty.unwrap_or(llvm_usize.into());
// List structure; type { ty*, size_t }
let arr_ty = ListType::new(generator, ctx.ctx, llvm_elem_ty);
let list = arr_ty.alloca_var(generator, ctx, name);
let length = ctx.builder.build_int_z_extend(length, llvm_usize, "").unwrap();
list.store_size(ctx, generator, length);
list.create_data(ctx, llvm_elem_ty, None);
list
}
/// Generates LLVM IR for a [list comprehension expression][expr]. /// Generates LLVM IR for a [list comprehension expression][expr].
pub fn gen_comprehension<'ctx, G: CodeGenerator>( pub fn gen_comprehension<'ctx, G: CodeGenerator>(
generator: &mut G, generator: &mut G,
@ -1189,12 +1162,11 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
"listcomp.alloc_size", "listcomp.alloc_size",
) )
.unwrap(); .unwrap();
list = allocate_list( list = ListType::new(generator, ctx.ctx, elem_ty).construct(
generator, generator,
ctx, ctx,
Some(elem_ty),
list_alloc_size.into_int_value(), list_alloc_size.into_int_value(),
Some("listcomp.addr"), Some("listcomp"),
); );
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap(); let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
@ -1241,7 +1213,12 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
Some("length"), Some("length"),
) )
.into_int_value(); .into_int_value();
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp")); list = ListType::new(generator, ctx.ctx, elem_ty).construct(
generator,
ctx,
length,
Some("listcomp"),
);
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?; let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
// counter = -1 // counter = -1
@ -1406,7 +1383,8 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
.build_int_add(lhs.load_size(ctx, None), rhs.load_size(ctx, None), "") .build_int_add(lhs.load_size(ctx, None), rhs.load_size(ctx, None), "")
.unwrap(); .unwrap();
let new_list = allocate_list(generator, ctx, Some(llvm_elem_ty), size, None); let new_list = ListType::new(generator, ctx.ctx, llvm_elem_ty)
.construct(generator, ctx, size, None);
let lhs_size = ctx let lhs_size = ctx
.builder .builder
@ -1493,10 +1471,9 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
let elem_llvm_ty = ctx.get_llvm_type(generator, elem_ty); let elem_llvm_ty = ctx.get_llvm_type(generator, elem_ty);
let sizeof_elem = elem_llvm_ty.size_of().unwrap(); let sizeof_elem = elem_llvm_ty.size_of().unwrap();
let new_list = allocate_list( let new_list = ListType::new(generator, ctx.ctx, elem_llvm_ty).construct(
generator, generator,
ctx, ctx,
Some(elem_llvm_ty),
ctx.builder.build_int_mul(list_val.load_size(ctx, None), int_val, "").unwrap(), ctx.builder.build_int_mul(list_val.load_size(ctx, None), int_val, "").unwrap(),
None, None,
); );
@ -2553,7 +2530,20 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
Some(elements[0].get_type()) Some(elements[0].get_type())
}; };
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false); let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
let arr_str_ptr = allocate_list(generator, ctx, ty, length, Some("list")); let arr_str_ptr = if let Some(ty) = ty {
ListType::new(generator, ctx.ctx, ty).construct(
generator,
ctx,
length,
Some("list"),
)
} else {
ListType::new_untyped(generator, ctx.ctx).construct_empty(
generator,
ctx,
Some("list"),
)
};
let arr_ptr = arr_str_ptr.data(); let arr_ptr = arr_str_ptr.data();
for (i, v) in elements.iter().enumerate() { for (i, v) in elements.iter().enumerate() {
let elem_ptr = arr_ptr.ptr_offset( let elem_ptr = arr_ptr.ptr_offset(
@ -3031,8 +3021,12 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
.unwrap(), .unwrap(),
step, step,
); );
let res_array_ret = let res_array_ret = ListType::new(generator, ctx.ctx, ty).construct(
allocate_list(generator, ctx, Some(ty), length, Some("ret")); generator,
ctx,
length,
Some("ret"),
);
let Some(res_ind) = handle_slice_indices( let Some(res_ind) = handle_slice_indices(
&None, &None,
&None, &None,

View File

@ -1,5 +1,5 @@
use inkwell::{ use inkwell::{
types::{AnyTypeEnum, BasicType, BasicTypeEnum, PointerType}, types::{BasicType, BasicTypeEnum, PointerType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue}, values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel, AddressSpace, IntPredicate, OptimizationLevel,
}; };
@ -639,17 +639,17 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let list_ty = ListType::from_type(ty, llvm_usize); let list_ty = ListType::from_type(ty, llvm_usize);
let list_elem_ty = list_ty.element_type(); let list_elem_ty = list_ty.element_type().unwrap();
let ndims = llvm_usize.const_int(1, false); let ndims = llvm_usize.const_int(1, false);
match list_elem_ty { match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty) BasicTypeEnum::PointerType(ptr_ty)
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() => if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{ {
ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty)) ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty))
} }
AnyTypeEnum::PointerType(ptr_ty) BasicTypeEnum::PointerType(ptr_ty)
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() => if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{ {
todo!("Getting ndims for list[ndarray] not supported") todo!("Getting ndims for list[ndarray] not supported")
@ -670,10 +670,10 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
let llvm_i1 = ctx.ctx.bool_type(); let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let list_elem_ty = src_lst.get_type().element_type(); let list_elem_ty = src_lst.get_type().element_type().unwrap();
match list_elem_ty { match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty) BasicTypeEnum::PointerType(ptr_ty)
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() => if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{ {
// The stride of elements in this dimension, i.e. the number of elements between arr[i] // The stride of elements in this dimension, i.e. the number of elements between arr[i]
@ -733,7 +733,7 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
)?; )?;
} }
AnyTypeEnum::PointerType(ptr_ty) BasicTypeEnum::PointerType(ptr_ty)
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() => if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{ {
todo!("Not implemented for list[ndarray]") todo!("Not implemented for list[ndarray]")

View File

@ -1,68 +1,113 @@
use inkwell::{ use inkwell::{
context::Context, context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType}, types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
AddressSpace, values::{IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType; use super::ProxyType;
use crate::codegen::{ use crate::{
codegen::{
types::structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
values::{ListValue, ProxyValue}, values::{ListValue, ProxyValue},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
}; };
/// Proxy type for a `list` type in LLVM. /// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)] #[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> { pub struct ListType<'ctx> {
ty: PointerType<'ctx>, ty: PointerType<'ctx>,
item: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
} }
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ListStructFields<'ctx> {
/// Array pointer to content.
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub items: StructField<'ctx, PointerValue<'ctx>>,
/// Number of items in the array.
#[value_type(usize)]
pub len: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> ListStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ListStructFields {
items: StructField::create(
&mut counter,
"items",
item.ptr_type(AddressSpace::default()),
),
len: StructField::create(&mut counter, "len", llvm_usize),
}
}
}
impl<'ctx> ListType<'ctx> { impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not. /// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable( pub fn is_representable(
llvm_ty: PointerType<'ctx>, llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
) -> Result<(), String> { ) -> Result<(), String> {
let llvm_list_ty = llvm_ty.get_element_type(); let ctx = llvm_ty.get_context();
let AnyTypeEnum::StructType(llvm_list_ty) = llvm_list_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_list_ty}"));
};
if llvm_list_ty.count_fields() != 2 {
return Err(format!(
"Expected 2 fields in `list`, got {}",
llvm_list_ty.count_fields()
));
}
let list_size_ty = llvm_list_ty.get_field_type_at_index(0).unwrap(); let llvm_ty = llvm_ty.get_element_type();
let Ok(_) = PointerType::try_from(list_size_ty) else { let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected pointer type for `list.0`, got {list_size_ty}")); return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
}; };
let list_data_ty = llvm_list_ty.get_field_type_at_index(1).unwrap(); let fields = ListStructFields::new(ctx, llvm_usize);
let Ok(list_data_ty) = IntType::try_from(list_data_ty) else {
return Err(format!("Expected int type for `list.1`, got {list_data_ty}"));
};
if list_data_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `list.1`, got {}-bit int",
llvm_usize.get_bit_width(),
list_data_ty.get_bit_width()
));
}
check_struct_type_matches_fields(
fields,
llvm_ty,
"list",
&[(fields.items.name(), &|ty| {
if ty.is_pointer_type() {
Ok(()) Ok(())
} else {
Err(format!("Expected T* for `list.items`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
ListStructFields::new_typed(item, llvm_usize)
}
/// See [`ListType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
} }
/// Creates an LLVM type corresponding to the expected structure of a `List`. /// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use] #[must_use]
fn llvm_type( fn llvm_type(
ctx: &'ctx Context, ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>, element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> { ) -> PointerType<'ctx> {
// struct List { data: T*, size: size_t } let element_type = element_type.unwrap_or(llvm_usize.into());
let field_tys = [element_type.ptr_type(AddressSpace::default()).into(), llvm_usize.into()];
let field_tys =
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default()) ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
} }
@ -75,9 +120,50 @@ impl<'ctx> ListType<'ctx> {
element_type: BasicTypeEnum<'ctx>, element_type: BasicTypeEnum<'ctx>,
) -> Self { ) -> Self {
let llvm_usize = generator.get_size_type(ctx); let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize); let llvm_list = Self::llvm_type(ctx, Some(element_type), llvm_usize);
ListType::from_type(llvm_list, llvm_usize) Self { ty: llvm_list, item: Some(element_type), llvm_usize }
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, None, llvm_usize);
Self { ty: llvm_list, item: None, llvm_usize }
}
/// Creates an [`ListType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
// Check unifier type and extract `item_type`
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty
}
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
};
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
None
} else {
Some(ctx.get_llvm_type(generator, elem_type))
};
Self {
ty: Self::llvm_type(ctx.ctx, llvm_elem_type, llvm_usize),
item: llvm_elem_type,
llvm_usize,
}
} }
/// Creates an [`ListType`] from a [`PointerType`]. /// Creates an [`ListType`] from a [`PointerType`].
@ -85,30 +171,39 @@ impl<'ctx> ListType<'ctx> {
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self { pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok()); debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
ListType { ty: ptr_ty, llvm_usize } let ctx = ptr_ty.get_context();
// We are just searching for the index off a field - Slot an arbitrary element type in.
let item_field_idx =
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
let item = unsafe {
ptr_ty
.get_element_type()
.into_struct_type()
.get_field_type_at_index_unchecked(item_field_idx)
.into_pointer_type()
.get_element_type()
};
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
panic!(
"Expected BasicTypeEnum for list element type, got {}",
ptr_ty.get_element_type().print_to_string()
)
});
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
} }
/// Returns the type of the `size` field of this `list` type. /// Returns the type of the `size` field of this `list` type.
#[must_use] #[must_use]
pub fn size_type(&self) -> IntType<'ctx> { pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type() self.llvm_usize
.get_element_type()
.into_struct_type()
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
} }
/// Returns the element type of this `list` type. /// Returns the element type of this `list` type.
#[must_use] #[must_use]
pub fn element_type(&self) -> AnyTypeEnum<'ctx> { pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
self.as_base_type() self.item
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
} }
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type. /// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
@ -144,6 +239,73 @@ impl<'ctx> ListType<'ctx> {
) )
} }
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
///
/// The returned list will contain:
///
/// - `data`: Allocated with `len` number of elements.
/// - `len`: Initialized to the value of `len` passed to this function.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
// Generate a runtime assertion if allocating a non-empty list with unknown element type
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
let len_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
len_eqz,
"0:AssertionError",
"Cannot allocate a non-empty list with unknown element type",
[None, None, None],
ctx.current_loc,
);
}
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, len);
let item = self.item.unwrap_or(self.llvm_usize.into());
plist.create_data(ctx, item, None);
plist
}
/// Convenience function for creating a list with zero elements.
///
/// This function is preferred over [`ListType::construct`] if the length is known to always be
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
/// list is being allocated.
///
/// The returned list will contain:
///
/// - `data`: Initialized to `(T*) 0`.
/// - `len`: Initialized to `0`.
#[must_use]
pub fn construct_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, self.llvm_usize.const_zero());
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
plist
}
/// Converts an existing value into a [`ListValue`]. /// Converts an existing value into a [`ListValue`].
#[must_use] #[must_use]
pub fn map_value( pub fn map_value(

View File

@ -5,6 +5,7 @@ use inkwell::{
types::{BasicTypeEnum, IntType, StructType}, types::{BasicTypeEnum, IntType, StructType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue}, values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
}; };
use itertools::Itertools;
use crate::codegen::CodeGenContext; use crate::codegen::CodeGenContext;
@ -55,6 +56,20 @@ pub trait StructFields<'ctx>: Eq + Copy {
{ {
self.into_vec().into_iter() self.into_vec().into_iter()
} }
/// Returns the field index of a field in this structure.
fn index_of_field<V>(&self, name: impl FnOnce(&Self) -> StructField<'ctx, V>) -> u32
where
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
let field_name = name(self).name;
self.index_of_field_name(field_name).unwrap()
}
/// Returns the field index of a field with the given name in this structure.
fn index_of_field_name(&self, field_name: &str) -> Option<u32> {
self.iter().find_position(|(name, _)| *name == field_name).map(|(idx, _)| idx as u32)
}
} }
/// A single field of an LLVM structure. /// A single field of an LLVM structure.

View File

@ -8,7 +8,7 @@ use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator, ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
}; };
use crate::codegen::{ use crate::codegen::{
types::ListType, types::{structure::StructField, ListType},
{CodeGenContext, CodeGenerator}, {CodeGenContext, CodeGenerator},
}; };
@ -42,48 +42,26 @@ impl<'ctx> ListValue<'ctx> {
ListValue { value: ptr, llvm_usize, name } ListValue { value: ptr, llvm_usize, name }
} }
fn items_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).items
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr` /// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field. /// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> { fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type(); self.items_field(ctx).ptr_by_gep(ctx, self.value, self.name)
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
var_name.as_str(),
)
.unwrap()
}
}
/// Returns the pointer to the field storing the size of this `list`.
fn ptr_to_size(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.size.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
var_name.as_str(),
)
.unwrap()
}
} }
/// Stores the array of data elements `data` into this instance. /// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) { fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
ctx.builder.build_store(self.pptr_to_data(ctx), data).unwrap(); self.items_field(ctx).set(ctx, self.value, data, self.name);
} }
/// Convenience method for creating a new array storing data elements with the given element /// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`. /// type `elem_ty` and `size`.
/// ///
/// If `size` is [None], the size stored in the field of this instance is used instead. /// If `size` is [None], the size stored in the field of this instance is used instead. If
/// `size` is resolved to `0` at runtime, `(T*) 0` will be assigned to `data`.
pub fn create_data( pub fn create_data(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
@ -114,6 +92,10 @@ impl<'ctx> ListValue<'ctx> {
ListDataProxy(self) ListDataProxy(self)
} }
fn len_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).len
}
/// Stores the `size` of this `list` into this instance. /// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>( pub fn store_size<G: CodeGenerator + ?Sized>(
&self, &self,
@ -123,22 +105,16 @@ impl<'ctx> ListValue<'ctx> {
) { ) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx)); debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
let psize = self.ptr_to_size(ctx); self.len_field(ctx).set(ctx, self.value, size, self.name);
ctx.builder.build_store(psize, size).unwrap();
} }
/// Returns the size of this `list` as a value. /// Returns the size of this `list` as a value.
pub fn load_size(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> { pub fn load_size(
let psize = self.ptr_to_size(ctx); &self,
let var_name = name ctx: &CodeGenContext<'ctx, '_>,
.map(ToString::to_string) name: Option<&'ctx str>,
.or_else(|| self.name.map(|v| format!("{v}.size"))) ) -> IntValue<'ctx> {
.unwrap_or_default(); self.len_field(ctx).get(ctx, self.value, name)
ctx.builder
.build_load(psize, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
} }
} }